Chitosan-based polyelectrolyte complex in combination with allotropic forms of carbon as a basis of thin-film organic electronics
Abstract
Keywords
Full Text:
PDFReferences
Xu J, Wang S, Wang GJN, Zhu C, Luo S, Jin L, Gu X, Chen S, Feig VR, To JWF, Rondeau-Gagné S, Park J, Schroeder BC, Lu C, Oh JY, Wang Y, Kim YH, Yan H, Sinclair R, Zhou D, Xue G, Murmann B, Linder C, Cai W, Tok JBH, Chung JW, Bao Z. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Sci. 2017;355(6320):59–64. doi:10.1126/science.aah4496
Punetha VD, Rana S, Yoo HJ, Chaurasia A, Mcleskey JT, Ramasamy MS, Sahoo NK, Cho JW. Functionalization of carbon nanomaterials for advanced polymer nanocomposites: a comparison study between CNT and grapheme. Prog Polym Sci. 2017;67(14):1–47. doi:10.1016/j.progpolymsci.2016.12.010
Taherpour AA, Mousavi F. Carbon nanomaterials for electroanalysis in pharmaceutical applications. Fullerens Graph Nanotubes. 2018;169–225. doi:10.1016/B978-0-12-813691-1.00006-3
Thompson BC, Fre´chet JM. Polymer–fullerene composite solar cells. Angew Chem Int Ed. 2008;47(1):58–77. doi:10.1002/anie.200702506
Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul P, Lu A, Iverson TW, Shelimov K, Huffman CB, Rodriguez-Macias FJ, Shon YS, Lee TR, Colbert DT, Smalley RE. Fullerene Pipes. Sci. 1998;280(5367):1253–1256. doi:10.1126/science.280.5367.1253
Jiao LY, Zhang L, Wang XR, Diankov G, Dai HJ. Narrow graphene nanoribbons from carbon nanotubes. Nature. 2009;458(7240):877–880. doi:10.1038/nature07919
Saito R, Dresselhaus MS, Dresselhaus G. Physical properties of carbon nanotubes. Imperial College Press: Singapore; 1998. 3–26. doi:10.1142/9781860943799
Dekker C, Tans SJ, Verschueren ARM. Room-temperature transistor based on a single carbon nanotube. Nature. 1998;393(6680):49–52. doi:10.1038/29954
De Heer WA, Chatelain A, Ugarte D. A carbon nanotube field-emission electron source. Sci. 1995;270(5239):1179–1180. doi:10.1126/science.270.5239.1179
Thostenson ET, Ren Z, Chou TW. Advances in the science technology of carbon nanotubes and their composites: a review. Compos Sci Technol. 2001;61(13):1899–1912. doi:10.1016/S0266-3538(01)00094-X
Eletskii AV, Knizhnik AA, Potapkin BV, Kenny JM. Electrical characteristics of carbon nanotube-doped composites. Phy-Usp. 2015;58(3):209–251. doi:10.3367/UFNe.0185.201503a.0225
Brady GJ, Way A, Safron NS, Evensen H, Gopalan P, Arnold M. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Sci Adv. 2016;2(9):e1601240. doi:10.1126/sciadv.1601240
Ziyatdinova GK, Budnikov HC. Carbon nanomaterials and surfactants as electrode surface modifiers in organic electroanalysis. Nanoanal.: Nanoobjects. Nanotech Anal Chem. 2018;223–253. doi:10.1515/9783110542011-007
Kour R, Arya S, Young S-J, Gupta V, Bandhoria P, Khosla A. Recent advances in carbon nanomaterials as electrochemical biosensors. J Electrochem Soc. 2020;167(3):037555. doi:10.1149/1945-7111/ab6bc4
Ziyatdinova GK, Budnikov HC, Zhupanova AS. Electrochemical sensors for the simultaneous detection of phenolic antioxidants. J Anal Chem. 2022;77(2):155–172. doi:10.1134/S1061934822020125
Yiğit A, Alpar N, Yardım Y, Çelebi M, Şentürk Z. A graphene‐based electrochemical sensor for the individual, selective and simultaneous determination of total chlorogenic acids, vanillin and caffeine in food and beverage samples. Electroanal. 2018;30(9):2011–2020. doi:10.1002/elan.201800229
Parshina AV, Safronova EY, Habtemariam GZ, Ryzhikh EI, Prikhno IA, Bobreshova OV, Yaroslavtsev AB. Potentiometric sensors based on mf-4sc membranes and carbon nanotubes for the determination of nicotinic acid in aqueous solutions and pharmaceuticals. Membr Membr Technol. 20202(4): 256–264. doi:10.1134/S2517751620040083
Murtada K, Moreno V. Nanomaterials-based electrochemical sensors for the detection of aroma compounds - towards analytical approach. J Electroanal Chem. 2020;861:113988. doi:10.1016/j.jelechem.2020.113988
Yola ML. Development of novel nanocomposites based on graphene/graphene oxide and electrochemical sensor applications. Curr Anal Chem. 2019;15(2):159–165. doi:10.2174/1573411014666180320111246
Krishnan SK, Singh E, Singh P, Meyyappan M, Nalwa HS. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv. 2019;9(16):8778–8881. doi:10.1039/C8RA09577
Kuzikov AV, Bulko TV, Koroleva PI, Masamrekh RA, Babkina SS, Gilep AA, Shumyantseva VV. Cytochrome P450 3A4 as a drug metabolizing enzyme: the role of sensor system modifications in electocatalysis and electroanalysis. Biochem Suppl Ser B Biomed Chem. 202014(3):252–259. doi:10.1134/S1990750820030075
Zilberg R, Teres Yu, Agliulin M, Vakulin I, Bulysheva E, Sycheva M, Maistrenko V. Chiral voltammetric sensor on the basis of nanosized MFI zeolite for recognition and determination of tryptophan enantiomers. Electroanal. 2024;36(5):e202300375. doi:10.1002/elan.202300375
Zilberg RA, Teres JB, Bulysheva EO, Vakulin IV, Mukhametdinov GR, Khromova OV, Panova MV, Medvedev MG, Maleev VI, Larionov VA. Chiral octahedral cobalt(III) complex immobilized on Carboblack C as a novel robust and readily available enantioselective voltammetric sensor for the recognition of tryptophan enantiomers in real samples. Electrochim Acta. 2024;492:144334. doi:10.1016/j.electacta.2024.144334
Vakulin IV, Zilberg RA, Galimov II, Sycheva MA. Homochiral zeolites as chiral modifier for voltammetry sensors with high enantioselectivity. Chirality. 2023;36(2):e23635. doi:10.1002/chir.23635
Zilberg RA, Maistrenko VN, TeresYuB, Vakulin IV, Bulysheva EO, Seluyanova AA. A Voltammetric Sensor Based on Aluminophosphate Zeolite and a Composite of Betulinic Acid with a Chitosan Polyelectrolyte Complex for the Identification and Determination of Naproxen Enantiomers. J Anal Chem. 2023;78(7):933–944. doi:10.1134/S1061934823070158
Salikhov RB, Zilberg RA, Mullagaliev IN, Salikhov TR, Teres YB. Nanocomposite thin film structures based on polyarylenephthalide with SWCNT and graphene oxide fillers. Mendeleev Commun. 2022;32(4):520–522. doi:10.1016/j.mencom.2022.07.029
Tuktarov AR, Salikhov RB, Khuzin AA, Popod'ko NR, Safargalin IN, Mullagaliev IN, Dzhemilev UM. Photocontrolled organic field effect transistors based on the fullerene C60 and spiropyran hybrid molecule. RSC Adv. 2019;9:7505–7508. doi:10.1039/C9RA00939F
Salikhov RB, Biglova YN, Yumaguzin YM, Salikhov TR, Miftakhov MS, Mustafin AG. Solar-energy photoconverters based on thin films of organic materials. Tech Phys Lett. 2013;39(10):854–857. doi:10.1134/S1063785013100106
Tuktarov AR, Salikhov RB, Khuzin AA, Safargalin IN, Mullagaliev IN, Venidiktova OV, Valova TM, Barachevsky VA, Dzhemilev UM. Optically controlled field effect transistors based on photochromic spiropyran and fullerene C60 films. Mendeleev Commun. 2019;29(2):160–162. doi:10.1016/j.mencom.2019.03.014
Ramadhan LOAN, Radiman CL, Suendo V, Wahyuningrum D, Valiyaveettil S. Synthesis and Characterization of Polyelectrolyte Complex N-Succinylchitosan-chitosan for Proton Exchange Membranes. Procedia Chem. 2012;4:114–122. doi:10.1016/j.proche.2012.06.017
Kolesov SV, Gurina MS, Mudarisova RK. Specific features of the formation of aqueous nanodispersions of interpolyelectrolyte complexes based of chitosan and chitosan succinimide. Russ J Gen Chem. 2018;88(8):1694–1698. doi:10.1134/S1070363218080224
Kolesov SV, Gurina MS, Mudarisova RK. On the stability of aqueous nanodispersions of polyelectrolyte complexes based on chitosan and N-succinyl-chitosan. Polym Sci Ser A. 2019;61(3):253–259. doi:10.1134/S0965545X19030076
Bazunova MV, Mustakimov RA, Bakirova ER. Conditions of formation of stable polyelectrolyte complexes based on N-succinyl chitosan and poly-N,N-diallyl-N,N-dimethylammonium chloride. Russ J Appl Chem. 2022;95(1):46–52. doi:10.1134/S1070427222010062
Barck K, Butler MF. Comparison of morphology and properties of polyelectrolyte complex particles formed from chitosan and polyanionic biopolymers. J Appl Polym Sci. 2005;98(4):1581–1593. doi:10.1002/ap.22177
Boddohi S, Moore N, Johnson PA, Kipper MJ. Polysaccharide-based polyelectrolyte complex nanoparticles from chitosan, heparin, and hyaluronan. Biomacromolec. 2009;10(6):1402–1409. doi:10.1021/bm801513e
Shu XZ, Zhu KJ. Chitosan/gelatin microspheres prepared by modified emulsification and ionotropic gelation. J Microencapsul. 2001;18(2):237–245. doi:10.1080/02652040010000415
Bernkop-Schnurch A, Dunnhautpt S. Chitosan-based drug delivery systems. Eur J Pharm Biopharm. 2012;81(3):463–469. doi:10.1016/j.ejpb.2012.04.007
Gurina MS, Vil’danova RR, Badykova LA, Vlasova NM, Kolesov SV. Microparticles based on chitosan–hyaluronic acid interpolyelectrolyte complex, which provide stability of aqueous dispersions. Russ J Appl Chem. 2017;90(2):219–224. doi:10.1134/S1070427217020100
Guo R, Chen L, Cai S, Liu Z, Zhu Y, Xue W, Zhang Y. Novel alginate coated hydrophobically modified chitosan polyelectrolyte complex for the delivery of BSA. J Mater Sci Mater Med. 2013;24(9):2093–2100. doi:10.1007/s10856-013-4977-3
Wu D, Zhu L, Li Y, Zhang X, Xu S, Yang G, Delair T. Chitosan-based colloidal polyelectrolyte complexes for drug delivery: a review. Carbohydr Polym. 2020;238:116126. doi:10.1016/j.carbpol.2020.116126
Zil'berg RA, Zagitova LR, Vakulin IV, Yarkaeva YA, Teres YB, Berestova TV. Enantioselective voltammetric sensors based on amino acid complexes of Cu(II), Co(III), and Zn(II). J Anal Chem. 2021;76(12):1438–1448. doi:10.1134/S1061934821120145
Zilberg RA, Vakulin IV, Teres YB, Galimov II, Maistrenko VN. Rational design of highly enantioselective composite voltammetric sensors using a computationally predicted chiral modifier. Chirality. 2022;34(11):1472–14788. doi:10.1002/chir.23502
Zilberg RA, Maistrenko VN, Kabirova LR, Dubrovsky DI. Selective voltammetric sensors based on composites of chitosan polyelectrolyte complexes with cyclodextrins for the recognition and determination of atenolol enantiomers. Anal Methods. 2018;10(16):1886–1894. doi:10.1039/C8AY00403J
Dos Santos M, Wrobel E, dos Santos V, Quinaia SP, Fujiwara ST, Garcia JR, Pessoa CA, Scheffer EWO, Wohnrath K. Development of an electrochemical sensor based on LbL films of Pt nanoparticles and humic acid. J Electrochem Soc. 2016;163(9):B499–B506. doi:10.1149/2.1001609jes
Zanardi C, Terzi F, Zanfrognini B, Pigani L, Seeber R, Lukkari J, Ääritalo T. Effective catalytic electrode system based on polyviologen and Au nanoparticles multilayer. Sens Act B Chem. 2010;144(1):92–98. doi:10.1016/j.snb.2009.10.041
Mathi S, Gupta P, Kumar R, Nagarale R, Sharma A. Ferrocenium ion confinement in polyelectrolyte for electrochemical nitric oxide sensor. Chem Select. 2019;4(13):3833–3840. doi:10.1002/slct.20180367
Škugor Ronˇcevi´c I, Krivi´c D, Buljac M, Vladislavi´c N, Buzuk M. Polyelectrolytes assembly: a powerful tool for electrochemical sensing application. Sensors. 2020;20(11):3211. doi:10.3390/s20113211
Prifitis D. Polyelectrolyte-graphene nanocomposites for biosensing application. Curr Org Chem. 2015;19:1819–1827. doi:10.2174/1385272819666150526005557
Bard AJ, Faulkner LR. Electrochemical Methods. Fundamentals and Application. 2nd edn. John Wiley and Sons: New York; 2004. 850 p.
Lasia A. Electrochemical Impedance Spectroscopy and its Applications. Springer: NewYork.; 2014; 1–21. doi:10.1007/978-1-4614-8933-7
Hallani RK, Paulsen BD, Petty AJ, Sheelamanthula R, Moser M, Thorley KJ, Sohn W, Rashid RB, Savva A, Moro S, Parker JP, Drury O, Alsufyani M, Neophytou M, Kosco J, Inal S, Costantini G, Rivnay J, McCulloch I. Regiochemistry-driven organic electrochemical transistor performance enhancement in ethylene glycol-functionalized polythiophenes. J Am Chem Soc. 2021;143(29):11007–11018. doi:10.1021/jacs.1c03516.
Jia H, Huang Z, Li P, Zhang S, Wang Y, Wang J-Y, Gu X, Lei T. Engineering donor–acceptor conjugated polymers for high-performance and fast-response organic electrochemical transistors. J Mater Chem C. 2021;9(14):4927–4934. doi:10.1039/D1TC00440A
Moser M, Savva A, Thorley K, Paulsen BD, Hidalgo TC, Ohayon D, Chen H, Giovannitti A, Marks A, Gasparini N, Wadsworth A, Rivnay J, Inal S, McCulloch I. Polaron delocalization in donor–acceptor polymers and its impact on organic electrochemical transistor performance. Angew Chem Int Ed. 2021;60:7777–7785. doi:10.1002/anie.202014078
Inal S, Malliaras GG, Rivnay J. Benchmarking organic mixed conductors for transistors. Nat Commun. 2017;8(1):1767. doi:10.1038/s41467-017-01812-w
Luo X, Shen H, Perera K, Tran DT, Boudouris BW, Mei J. Designing donor-acceptor copolymers for stable and high-performance organic electrochemical transistors. ACS Macro Lett. 2021;10(8):1061–1067. doi:10.1021/acsmacrolett.1c00328
Lan L, Chen J, Wang Y, Li P, Yu Y, Zhu G, Li Z, Lei T, Yue W, McCulloch I. Facilely accessible porous conjugated polymers toward high-performance and flexible organic electrochemical transistors. Chem Mater. 2022;34(4):1666–1676. doi:10.1021/acs.chemmater.1c03797
Budzalek K, Ding H, Janasz L, Wypych-Puszkarz A, Cetinkaya O, Pietrasik J, Kozanecki M, Ulanski J, Matyjaszewski K. Star polymer–TiO2 nanohybrids to effectively modify the surface of PMMA dielectric layers for solution processable OFETs. J Mater Chem C. 2020;9:1269–1278. doi:10.1039/D0TC03137B
Han S-T, Zhou Y, Yang Q-D, Lee C-S, Roy VAL. Poly(3-hexylthiophene)/gold nanoparticle hybrid system with an enhanced photoresponse for light-controlled electronic devices. Part Part Syst Charact. 2013;30(7):599–605. doi:10.1002/ppsc.201300005
Kim Y, Kwon YJ, Ryu S, Lee CJ, Lee JU. Preparation of nanocomposite-based high performance organic field effect transistor via solution floating method and mechanical property evaluation. Polymers. 2020;12(5):1046. doi:10.3390/polym12051046
Hong K, Yang C, Kim SH, Jang J, Nam S, Park CE. photopatternable source/drain electrodes using multiwalled carbon nanotube/polymer nanocomposites for organic field-effect transistors. ACS Appl Mater Interfaces. 2009;1(10):2332–2337. doi:10.1021/am900483y
DOI: https://doi.org/10.15826/chimtech.2024.11.3.02
Copyright (c) 2024 Rufina Zilberg, Renat Salikhov, Ilnur Mullagaliev, Yulia Teres, Elena Bulysheva, Timur Salikhov, Anastasia Ostaltsova, Ivan Vakulin
This work is licensed under a Creative Commons Attribution 4.0 International License.
Chimica Techno Acta, 2014–2025
eISSN 2411-1414
Copyright Notice