Cover Image

Methyl orange sorption on octadecylamine-modified iron oxide magnetic nanoparticles

Liang Tianhui, Sayara Aga-Tagieva, Alexander Omelyanchik, Zhang Xiaozhou, Hong Lu, Katerina Levada, Valeria Rodionova, Kurban Magomedov

Abstract


This study investigates the sorption of 2-methyl orange dye onto octadecylamine-modified iron oxide magnetic nanoparticles (ODA-IONPs). The synthesized ODA-IONPs exhibit remarkable sorption capacity, reaching 800 mg/g at the nanoparticle concentrations ranging from 5 to 10 mg/g and pH of 2–8. The sorption process demonstrates rapid kinetics, achieving 90% of maximum sorption within 0.5 min. Thermodynamic analysis showed that sorption process is spontaneous and endothermic, as indicated by negative ΔG and positive ΔH values. The pseudo-second-order and Langmuir models best describe the sorption kinetics at 293 K (R² > 0.99). Compared to other adsorbents, ODA-IONPs show superior MO removal capacity under a wider pH range. The influence of nanoparticle concentration, pH, and temperature on sorption efficiency is systematically explored, with optimal conditions identified at 10 mg/L ODA-IONPs and pH 6. Furthermore, the feasibility of nanoparticle reusability for sorption purposes is assessed. These findings underscore the potential of ODA-IONPs as efficient sorbents for wastewater treatment and environmental remediation applications.

Keywords


sorption; methyl orange; magnetic nanoparticles; octadecylamine; kinetics; thermodynamics; Fe3O4

Full Text:

PDF

References


Lin J, Ye W, Xie M, Seo DH, Luo J, Wan Y, et al. Environ-mental impacts and remediation of dye-containing wastewater. Nat Rev Earth Environ 2023 411. 2023;4:785–803. doi:10.1038/s43017-023-00489-8

Ali K, Zeidan H, Amar B, Ali ( K, Zeidan H. Evaluation of the use of agricultural waste materials as low-cost and eco-friendly sorbents to remove dyes from water: a review. 2023 [cited 18 May 2024]. doi:10.5004/dwt.2023.29725

Al-Tohamy R, Ali SS, Li F, Okasha KM, Mahmoud YAG, Elsamahy T, et al. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation ap-proaches for environmental safety. Ecotoxicol Environ Saf. 2022;231:113160. Medline:35026583 doi:10.1016/J.ECOENV.2021.113160

Jan S, Mishra AK, Bhat MA, Bhat MA, Jan AT. Pollutants in aquatic system: a frontier perspective of emerging threat and strategies to solve the crisis for safe drinking water. Environ Sci Pollut Res Int. 2023;30:113242–79. Med-line:37864686 doi:10.1007/S11356-023-30302-4

Islam T, Repon MR, Islam T, Sarwar Z, Rahman MM. Impact of textile dyes on health and ecosystem: a review of struc-ture, causes, and potential solutions. Environ Sci Pollut Res 2022 304. 2022;30:9207–42. Medline:36459315 doi:10.1007/S11356-022-24398-3

Sehar S, Rasool T, Syed HM, Mir MA, Naz I, Rehman A, et al. Recent advances in biodecolorization and biodegradation of environmental threatening textile finishing dyes. 3 Bio-tech. 2022;12:1–12. doi:10.1007/S13205-022-03247-7

Peramune D, Manatunga DC, Dassanayake RS, Premalal V, Liyanage RN, Gunathilake C, et al. Recent advances in bi-opolymer-based advanced oxidation processes for dye re-moval applications: A review. Environ Res. 2022;215:114242. Medline:36067842 doi:10.1016/J.ENVRES.2022.114242

Saad I, Ralha N, Abukhadra MR, Al Zoubi W, Ko YG. Recent advances in photocatalytic oxidation techniques for decon-tamination of water. J Water Process Eng. 2023;52:103572. doi:10.1016/J.JWPE.2023.103572

Solayman HM, Hossen MA, Abd Aziz A, Yahya NY, Leong KH, Sim LC, et al. Performance evaluation of dye wastewater treatment technologies: A review. J Environ Chem Eng. 2023;11:109610. doi:10.1016/J.JECE.2023.109610

Wang J, Guo X. Adsorption kinetic models: Physical mean-ings, applications, and solving methods. J Hazard Mater. 2020;390:122156. Medline:32006847 doi:10.1016/J.JHAZMAT.2020.122156

Feng X, Peng D, Zhu J, Wang Y, Zhang Y. Recent advances of loose nanofiltration membranes for dye/salt separation. Sep Purif Technol. 2022;285:120228. doi:10.1016/J.SEPPUR.2021.120228

Cai L, Ying D, Liang X, Zhu M, Lin X, Xu Q, et al. A novel cationic polyelectrolyte microsphere for ultrafast and ul-tra-efficient removal of heavy metal ions and dyes. Chem Eng J. 2021;410:128404. doi:10.1016/J.CEJ.2021.128404

Ahmed SF, Mofijur M, Nuzhat S, Chowdhury AT, Rafa N, Uddin MA, et al. Recent developments in physical, biologi-cal, chemical, and hybrid treatment techniques for remov-ing emerging contaminants from wastewater. J Hazard Ma-ter. 2021;416:125912. doi:10.1016/J.JHAZMAT.2021.125912

Khouni I, Marrot B, Amar R Ben. Treatment of reconstituted textile wastewater containing a reactive dye in an aerobic sequencing batch reactor using a novel bacterial consorti-um. Sep Purif Technol. 2012;87:110–9. doi:10.1016/J.SEPPUR.2011.11.030

Türgay O, Ersöz G, Atalay S, Forss J, Welander U. The treatment of azo dyes found in textile industry wastewater by anaerobic biological method and chemical oxidation. Sep Purif Technol. 2011;79:26–33. doi:10.1016/J.SEPPUR.2011.03.007

Lin X, Zhou Q, Xu H, Chen H, Xue G. Advances from conven-tional to biochar enhanced biotreatment of dyeing wastewater: A critical review. Sci Total Environ. 2024;907:167975. doi:10.1016/J.SCITOTENV.2023.167975

Kasbaji M, Mennani M, Oubenali M, Ait Benhamou A, Bous-setta A, Ablouh EH, et al. Bio-based functionalized adsorp-tive polymers for sustainable water decontamination: A systematic review of challenges and real-world implemen-tation. Environ Pollut. 2023;335:122349. doi:10.1016/J.ENVPOL.2023.122349

Yu JX, Chi RA, He ZY, Qi YF, Zhan G, Guo J. Combination of biosorption and photodegradation to remove methyl orange from aqueous solutions. Eng Life Sci. 2011;11:309–315. doi:10.1002/ELSC.201000158

Särkkä H, Bhatnagar A, Sillanpää M. Recent developments of electro-oxidation in water treatment — A review. J Elec-troanal Chem. 2015;754:46–56. doi:10.1016/J.JELECHEM.2015.06.016

Ondersma JW, Hamann TW. Recombination and redox cou-ples in dye-sensitized solar cells. Coord Chem Rev. 2013;257:1533–43. doi:10.1016/J.CCR.2012.09.010

Al-Raad AA, Hanafiah MM. Removal of inorganic pollutants using electrocoagulation technology: A review of emerging applications and mechanisms. J Environ Manage. 2021;300:113696. doi:10.1016/j.jenvman.2021.113696

Aragaw TA, Bogale FM. Role of coagulation/flocculation as a pretreatment option to reduce colloidal/bio-colloidal fouling in tertiary filtration of textile wastewater: A re-view and future outlooks. Front Environ Sci. 2023;11:1142227. doi:10.3389/FENVS.2023.1142227/BIBTEX

Khan MD, Singh A, Khan MZ, Tabraiz S, Sheikh J. Current perspectives, recent advancements, and efficiencies of var-ious dye-containing wastewater treatment technologies. J Water Process Eng. 2023;53:103579. doi:10.1016/J.JWPE.2023.103579

Islam M, Kumar S, Saxena N, Nafees A. Photocatalytic Deg-radation of Dyes Present in Industrial Effluents: A Review. ChemistrySelect. 2023;8:e202301048. doi:10.1002/SLCT.202301048

Ahsan A, Jamil F, Rashad MA, Hussain M, Inayat A, Akhter P, et al. Wastewater from the textile industry: Review of the technologies for wastewater treatment and reuse. Ko-rean J Chem Eng 2023 409. 2023;40:2060–2081. doi:10.1007/S11814-023-1475-2

Ledakowicz S, Pázdzior K. Recent Achievements in Dyes Removal Focused on Advanced Oxidation Processes Inte-grated with Biological Methods. Mol 2021, Vol 26, Page 870. 2021;26:870. doi:10.3390/MOLECULES26040870

Darwish AAA, Rashad M, AL-Aoh HA. Methyl orange adsorp-tion comparison on nanoparticles: Isotherm, kinetics, and thermodynamic studies. Dye Pigment. 2019;160:563–71. doi:10.1016/J.DYEPIG.2018.08.045

Jorge AMS, Athira KK, Alves MB, Gardas RL, Pereira JFB. Textile dyes effluents: A current scenario and the use of aqueous biphasic systems for the recovery of dyes. J Water Process Eng. 2023;55:104125. doi:10.1016/J.JWPE.2023.104125

Kumar N, Pandey A, Rosy, Sharma YC. A review on sustain-able mesoporous activated carbon as adsorbent for efficient removal of hazardous dyes from industrial wastewater. J Water Process Eng. 2023;54:104054. doi:10.1016/J.JWPE.2023.104054

Zhou J, Tang C, Cheng B, Yu J, Jaroniec M. Rattle-type car-bon-alumina core-shell spheres: Synthesis and application for adsorption of organic dyes. ACS Appl Mater Interfaces. 2012;4:2174–2179. doi:10.1021/AM300176K

Correa-Coyac D, Michtchenko A, Zacahua-Tlacuatl G, Cruz-Narváez Y, Castro-Arellano JJ, Sanpedro-Díaz M, et al. Ad-sorption and Photodegradation of Lanasol Yellow 4G in Aqueous Solution by Natural Zeolite Treated by CO2-Laser Radiation. Materials (Basel). 2023;16:4855. doi:10.3390/MA16134855

Ma Z, Zhang Q, Weng X, Mang C, Si L, Guan Z, et al. Fluo-ride ion adsorption from wastewater using magnesium(II), aluminum(III) and titanium(IV) modified natural zeolite: Kinetics, thermodynamics, and mechanistic aspects of ad-sorption. J Water Reuse Desalin. 2018;8:479–489. doi:10.2166/WRD.2017.037

Li CJ, Zhang YJ, Chen H, He PY, Meng Q. Development of porous and reusable geopolymer adsorbents for dye wastewater treatment. J Clean Prod. 2022;348:131278. doi:10.1016/J.JCLEPRO.2022.131278

Tariq R, Abatal M, Bassam A. Computational intelligence for empirical modeling and optimization of methylene blue adsorption phenomena using available local zeolites and clay of Morocco. J Clean Prod. 2022;370:133517. doi:10.1016/J.JCLEPRO.2022.133517

Shaban M, Abukhadra MR, Hamd A. Recycling of glass in synthesis of MCM-48 mesoporous silica as catalyst support for Ni2O3 photocatalyst for Congo red dye removal. Clean Technol Environ Policy. 2018;20:13–28. doi:10.1007/S10098-017-1447-5

López-Rodríguez D, Micó-Vicent B, Jordán-Núñez J, Bonet-Aracil M, Bou-Belda E. Uses of Nanoclays and Adsorbents for Dye Recovery: A Textile Industry Review. Appl Sci 2021, Vol 11, Page 11422. 2021;11:11422. doi:10.3390/APP112311422

Orooji Y, Han N, Nezafat Z, Shafiei N, Shen Z, Nasrollahza-deh M, et al. Valorisation of nuts biowaste: Prospects in sustainable bio(nano)catalysts and environmental applica-tions. J Clean Prod. 2022;347:131220. doi:10.1016/J.JCLEPRO.2022.131220

Li H, Li M, Zheng F, Wang J, Chen L, Hu P, et al. Efficient removal of water pollutants by hierarchical porous zeolite-activated carbon prepared from coal gangue and bamboo. J Clean Prod. 2021;325:129322. doi:10.1016/J.JCLEPRO.2021.129322

Yuan N, Zhao A, Hu Z, Tan K, Zhang J. Preparation and ap-plication of porous materials from coal gasification slag for wastewater treatment: A review. Chemosphere. 2022;287:132227. doi:10.1016/J.CHEMOSPHERE.2021.132227

Chai Z, Liu B, Lv P, Bai Y, Wang J, Song X, et al. Recycling of coal gasification fine slag as ultra-high capacity adsorbents for the removal of Rhodamine B dye: Graded synthesis method, kinetics and adsorption mechanism. Fuel. 2023;333:126318. doi:10.1016/J.FUEL.2022.126318

Mohammad Hosseini N, Sheshmani S, Shahvelayati AS, Ahmadi R, Adhami F. Development and Characterization of Environmentally-Friendly Magnetically Graphene Oxide-Embedded Chitosan as a Recyclable Heterogeneous Photo-catalyst. J Polym Environ. 2024;32:1952–1971. doi:10.1007/S10924-023-03117-0

Slama H Ben, Chenari Bouket A, Pourhassan Z, Alenezi FN, Silini A, Cherif-Silini H, et al. Diversity of Synthetic Dyes from Textile Industries, Discharge Impacts and Treatment Methods. Appl Sci. 2021;11. doi:10.3390/app11146255

Katheresan V, Kansedo J, Lau SY. Efficiency of various re-cent wastewater dye removal methods: A review. J Environ Chem Eng. 2018;6:4676–97. doi:10.1016/J.JECE.2018.06.060

Mohammed L, Gomaa HG, Ragab D, Zhu J. Magnetic nano-particles for environmental and biomedical applications: A review. Particuology. 2017;30:1–14. doi:10.1016/j.partic.2016.06.001

Ahmad T, Phul R, Khan H. Iron Oxide Nanoparticles: An Efficient Nano-catalyst. Curr Org Chem. 2019;23:994–1004. doi:10.2174/1385272823666190314153208

Adak L, Kundu D, Roy K, Saha M, Roy A. Reusable Iron/Iron Oxide-based Nanoparticles Catalyzed Organic Reactions. Curr Org Chem. 2022;26:399–417. doi:10.2174/1385272826666220209120545

Campos AFC, Michels-Brito PH, Da Silva FG, Gomes RC, Gomide G, Depeyrot J. Removal of direct yellow 12 from wa-ter using CTAB-coated core-shell bimagnetic nanoadsor-bents. J Environ Chem Eng. 2019;7:103031. doi:10.1016/j.jece.2019.103031

Magomedov KE, Omelyanchik AS, Vorontsov SA, Čižmár E, Rodionova VV, Levada EV. SDS-Modified Iron Oxide Magnet-ic Nanoparticles for Removing of Methylene Blue from Aqueous Solution. Bull Russ Acad Sci Phys. 2023;87:720–727. doi:10.3103/S1062873823702027

Massart R. Preparation of aqueous magnetic liquids in alka-line and acidic media. IEEE Trans Magn. 1981;17:1247–8. doi:10.1109/TMAG.1981.1061188

Omelyanchik A, da Silva FG, Gomide G, Kozenkov I, Depeyrot J, Aquino R, et al. Effect of citric acid on the mor-pho-structural and magnetic properties of ultrasmall iron oxide nanoparticles. J Alloys Compd. 2021;883:160779. doi:10.1016/J.JALLCOM.2021.160779

Omelyanchik A, Kamzin AS, Valiullin AA, Semenov VG, Vereshchagin SN, Volochaev M, et al. Iron oxide nanoparti-cles synthesized by a glycine-modified coprecipitation method: Structure and magnetic properties. Colloids Sur-faces A Physicochem Eng Asp. 2022;647:129090. doi:10.1016/J.COLSURFA.2022.129090

Scano A, Cabras V, Pilloni M, Ennas G. Microemulsions: The Renaissance of Ferrite Nanoparticle Synthesis. J Na-nosci Nanotechnol. 2019;19:4824–4838. doi:10.1166/JNN.2019.16876

Muscas G, Peddis D, Cobianchi M, Lascialfari A, Cannas C, Musinu A, et al. Magnetic Interactions Versus Magnetic An-isotropy in Spinel Ferrite Nanoparticles. IEEE Magn Lett. 2019;10. doi:10.1109/LMAG.2019.2956908

Santoyo Salazar J, Perez L, De Abril O, Truong Phuoc L, Ihiawakrim D, Vazquez M, et al. Magnetic iron oxide nano-particles in 10-40 nm range: Composition in terms of mag-netite/maghemite ratio and effect on the magnetic proper-ties. Chem Mater. 2011;23:1379–86. doi:10.1021/CM103188A

Synthesis of Superparamagnetic Iron Oxide Nanoparticles: SWOT Analysis Towards Their Conjugation to Biomole-cules for Molecular Recognition Applications. J Nanosci Nanotechnol. 2019;19. doi:10.1166/jnn.2019.16931

Andrade ÂL, Fabris JD, Ardisson JD, Valente MA, Ferreira JMF. Effect of Tetramethylammonium Hydroxide on Nucle-ation, Surface Modification and Growth of Magnetic Nano-particles. Francis LD, editor. J Nanomater. 2012;2012:454759. doi:10.1155/2012/454759

Abakumov MA, Semkina AS, Skorikov AS, Vishnevskiy DA, Ivanova A V., Mironova E, et al. Toxicity of iron oxide na-noparticles: Size and coating effects. J Biochem Mol Toxi-col. 2018;32:e22225. doi:10.1002/JBT.22225

Eslamipour F, Hejazi P. Effects of surface modification and activation of magnetic nanoparticles on the formation of amylase immobilization bonds under different ionic strength conditions. J Mol Catal B Enzym. 2015;119:1–11. doi:10.1016/J.MOLCATB.2015.05.006

Jiang F, Li X, Zhu Y, Tang Z. Synthesis and magnetic charac-terizations of uniform iron oxide nanoparticles. Phys B Condens Matter. 2014;443:1–5. doi:10.1016/J.PHYSB.2014.03.009

Karaagac O, Kockar H, Tanrisever T. Properties of iron ox-ide nanoparticles synthesized at different temperatures. J Supercond Nov Magn. 2011;24:675–8. doi:10.1007/S10948-010-0932-4/METRICS

Nguyen DT, Park D-W, Kim K-S. Seed-Mediated Synthesis of Iron Oxide and Gold/Iron Oxide Nanoparticles. Jf Nanosci Nanotechnol. 2011. pp. 7214–7217. doi:10.1166/jnn.2011.4824

Aga-Tagieva SE, Omelyanchik AS, Magomedov KE, Mo-torzhina A V, Orudzhev FF, Rodionova V V, et al. PEGylated Iron-Oxide Nanoparticles: Structural, Magnetic, and Sorp-tion Properties. Nanobiotechnology Reports. 2023;18:886–893. doi:10.1134/S2635167623600633

Corbett JF. Pseudo first-order kinetics. J Chem Educ. 1972;49:663. doi:10.1021/ED049P663

Robati D. Pseudo-second-orders kinetic equations for mod-eling adsorption systems for removal of lead ions using multi-walled carbon nanotube. J Nanostructure Chem. 2013;3:1–6. doi:10.1186/2193-8865-3-55

Kumar PS, Ramalingam S, Kirupha SD, Murugesan A, Vidhyadevi T, Sivanesan S. Adsorption behavior of nick-el(II) onto cashew nut shell: Equilibrium, thermodynam-ics, kinetics, mechanism and process design. Chem Eng J. 2011;167. doi:10.1016/j.cej.2010.12.010

Alyasi H, Mackey H, McKay G. Adsorption of Methyl Orange from Water Using Chitosan Bead-like Materials. Mol 2023, Vol 28, Page 6561. 2023;28:6561. doi:10.3390/MOLECULES28186561

WeberJr. WJ, Morris JC. Kinetics of Adsorption on Carbon from Solution. J Sanit Eng Div. 1963;89:31–59. doi:10.1061/JSEDAI.0000430

Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 1918;40. doi:10.1021/ja02242a004

Freundlich H. Über die Adsorption in Lösungen. Zeitschrift für Phys Chemie. 1907;57U:385–470. doi:10.1515/zpch-1907-5723

Temkin, M.J. Pyzhev V. Recent modifications to Langmuir isotherms, Acta Physiochim. Ussr 12. 1940;12:217–25.

Dubinin MM, Radushkevich LV. Equation of the character-istic curve of activated charcoal. Proc Acad Sci USSR Phys Chem Sect. 1947;55.

Li H, Jin H, Li R, Hua J, Zhang Z, Li R. Magnetic Fe3O4@SiO2 study on adsorption of methyl orange on na-noparticles. Sci Reports 2024 141. 2024;14:1–16. doi:10.1038/s41598-023-50368-x

Fisli A, Winatapura DS, Alfian A. The Surface Functionali-zation of Fe3O4 Nanoparticles by CTAB as Adsorbent for Methyl Orange Elimination in Water. J Phys Conf Ser. 2018;1091:012002. doi:10.1088/1742-6596/1091/1/012002

Munagapati VS, Yarramuthi V, Kim DS. Methyl orange re-moval from aqueous solution using goethite, chitosan beads and goethite impregnated with chitosan beads. J Mol Liq. 2017;240:329–339. doi:10.1016/J.MOLLIQ.2017.05.099

Khajeh M, Barkhordar A. Fe3O4/Graphene Oxide Composite for Adsorption of Methylene Blue and Methyl Orange in Water Treatment. J Appl Spectrosc. 2020;87:701–707. doi:10.1007/S10812-020-01057-4

Phi Y, Song G, Li A, Wang J, Wang H, Sun Y, et al. Graphene oxide-chitosan composite aerogel for adsorption of methyl orange and methylene blue: Effect of pH in single and bi-nary systems. Colloids Surfaces A Physicochem Eng Asp. 2022;641:128595. doi:10.1016/J.COLSURFA.2022.128595

Barakat MA, Kumar R, Lima EC, Seliem MK. Facile synthe-sis of muscovite–supported Fe3O4 nanoparticles as an ad-sorbent and heterogeneous catalyst for effective removal of methyl orange: Characterisation, modelling, and mecha-nism. J Taiwan Inst Chem Eng. 2021;119:146–157. doi:10.1016/J.JTICE.2021.01.025

Zhao Y, Chen H, Li J, Chen C. Hierarchical MWCNTs/Fe3O4/PANI magnetic composite as adsorbent for methyl orange removal. J Colloid Interface Sci. 2015;450:189–195. doi:10.1016/J.JCIS.2015.03.015

Wu L, Liu X, Lv G, Zhu R, Tian L, Liu M, et al. Study on the adsorption properties of methyl orange by natural one-dimensional nano-mineral materials with different struc-tures. Sci Rep. 2021 111. 2021;11:1–11. doi:10.1038/s41598-021-90235-1

Pang J, Han Q, Liu W, Shen Z, Wang X, Zhu J. Two basic bismuth nitrates: [Bi6O6(OH)2](NO3)4 · 2H2O with supe-rior photodegradation activity for rhodamine B and [Bi6O5(OH)3](NO3)5 · 3H2O with ultrahigh adsorption ca-pacity for methyl orange. Appl Surf Sci. 2017;422:283–294. doi:10.1016/J.APSUSC.2017.06.022

Siyasukh A, Chimupala Y, Tonanon N. Preparation of mag-netic hierarchical porous carbon spheres with graphitic features for high methyl orange adsorption capacity. Car-bon N Y. 2018;134:207–221. doi:10.1016/J.CARBON.2018.03.093




DOI: https://doi.org/10.15826/chimtech.2024.11.3.05

Copyright (c) 2024 Liang Tianhui, Sayara Aga-Tagieva, Alexander Omelyanchik, Zhang Xiaozhou, Hong Lu, Katerina Levada, Valeria Rodionova, Kurban Magomedov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

© Chimica Techno Acta, 2014–2024
ISSN 2411-1414 (Online)
This journal is licensed under a Creative Commons Attribution 4.0 International