Cover Image

Composite catalysts based on the CaO‒Fe2O3 system for the oxidative conversion of methane

Nadezhda Kirik, Evgenii Rabchevskii, Nina Shishkina, Leonid Solovyov, Alexander Anshits

Abstract


The catalysts of the CaO‒Fe2O3 system with Fe2O3 content in the range of 0‒100 wt.% were synthesized by the solid state method at 900 and 1000 °C. The catalysts were characterized by XRD and SEM‒EDX methods, and their activity in the oxidative conversion of methane at 750 °C was studied. The phase composition of the catalysts corresponds to the CaO‒Ca2Fe2O5, Ca2Fe2O5‒CaFe2O4 and CaFe2O4‒a-Fe2O3 regions of the phase diagram. The specific catalytic activity dependence on the Fe2O3 content has an extremum. The CaO‒Ca2Fe2O5 catalysts have the highest reactivity and the active centers in them are localized at the phase interface. The activity of Ca2Fe2O5–CaFe2O4 samples decreases with an increase in the CaFe2O4 content. The CaFe2O4‒a-Fe2O3 catalysts have a core-shell structure and exhibit the least activity, which is determined by the CaFe2O4 shell.

Keywords


catalysts; calcium ferrites; solid state synthesis; oxidative methane conversion

Full Text:

PDF

References


Hirabayashi D, Yoshikawa T, Kawamoto Y, Mochizuki K, Suzuki K. Characterization and applications of calcium fer-rites based materials containing active oxygen species. Adv Sci Technol. 2006;45:2169–2176. doi:10.4028/www.scientific.net/AST.45.2169

Isupova LA, Tsybulya SV, Kryukova GN, Budneva AA, Paukshtis EA, Litvak GS, Ivanov VP, Kolomiichuk VN, Pavlyukhin YuT, Sadykov VA. Mechanochemical synthesis and catalytic properties of the calcium ferrite Ca2Fe2O5. Kinet Catal. 2002;43(1):132–139. doi:10.1023/A:1014217716883

Ismail M, Liu W, Dunstan MT, Scott SA. Development and performance of iron based oxygen carriers containing cal-cium ferrites for chemical looping combustion and produc-tion of hydrogen. Int J Hydrogen Energ. 2016;41:4073–4084. doi:10.1016/j.ijhydene.2015.11.066

Siriwardane R, Riley J, Tian H, Richards G. Chemical loop-ing coal gasification with calcium ferrite and barium fer-rite via solid–solid reactions. Appl Energy. 2016;165:952–966. doi:10.1016/j.apenergy.2015.12.085

Miller DD, Siriwardane R. CaFe2O4 oxygen carrier charac-terization during the partial oxidation of coal in the chemi-cal looping gasification application. Appl Energy. 2018;224:708–716. doi:10.1016/j.apenergy.2018.05.035

Zhang J, He T, Wang Z, Zhu M, Zhang K, Li B, Wu J. The search of proper oxygen carriers for chemical looping par-tial oxidation of carbon. Appl Energy. 2017;190:1119–1125. doi:10.1016/j.apenergy.2017.01.024

Riley J, Siriwardane R, Tian H, Benincosa W, Poston J. Ki-netic analysis of the interactions between calcium ferrite and coal char for chemical looping gasification applica-tions: Identifying reduction routes and modes of oxygen transfer. Appl Energy. 2017;201:94–110. doi:10.1016/j.apenergy.2017.05.101

Huang B-S, Chen H-Y, Chuang K-H, Yang R-X, Wey M-Y. Hydrogen production by biomass gasification in a fluidized bed reactor promoted by an Fe/CaO catalyst. Int J Hydrogen Energ. 2012;37:6511–6518. doi:10.1016/j.ijhydene.2012.01.071

Sun Zh, Chen Sh, Hu J, Chen A, Rony AH, Russell ChK, Xiang W, Fan M, Dyar MD, Elizabeth C, Dklute EC. Ca2Fe2O5: A promising oxygen carrier for CO/CH4 conversion and al-most pure H2 production with inherent CO2 capture over a two-step chemical looping hydrogen generation process. Appl Energy. 2018;211:431–442. doi:10.1016/j.apenergy.2017.11.005

Ismail M, Liu W, Chan MSC, Dunstan MT, Scott SA. Syn-thesis, application, and carbonation behavior of Ca2Fe2O5 for chemical looping H2 production. Energy Fuels. 2016;30(8):6220–6232. doi:10.1021/acs.energyfuels.6b00631

Solovyov LA. Full-profile refinement by derivative differ-ence minimization. J Appl Cryst. 2004;37:743–747. doi:10.1107/S0021889804015638

ISO 9277:2010-09 (E). Determination of the specific surface area of solids by gas adsorption – BET method. 2010.

Berezhnoi AS. Mnogokomponentnye sistemi oksidov [Mul-ticomponent oxide systems]. Kiev: Naukova dumka; 1970. P.97. Russian.

Knyazev YuV., Shishkina NN., Bayukov OA., Kirik NP., Solo-vyov LA., Anshits AG. Cation distribution in the composite materials of the CaFe2O4-α-Fe2O3 series. Russ J Struct Chem. 2019;60(5):763–771. doi:10.1134/S0022476619050081

Shaula AL, Pivak YV, Waerenborgh JC, Gaczyñski P, Yarem-chenko AA, Kharton VV. Ionic conductivity of brownmiller-ite-type calcium ferrite under oxidizing conditions. Solid State Ionics. 2006;177:2923–2930. doi:10.1016/j.ssi.2006.08.030

Popovskii VV. Regular features of total oxidation over solid oxide catalysts. Kinet. Katal. 1972,13(5):1190–1203.

Paulus W, Schober H, Eibl S, Johnson M, Berthier T, Her-nandez O, Ceretti M, Plazanet M, Conder K, Lamberti C. Lat-tice dynamics to trigger low temperature oxygen mobility in solid oxide ion conductors. J Am Chem Soc. 2008;130:16080–16085. doi:10.1021/ja806144a




DOI: https://doi.org/10.15826/chimtech.2024.11.4.01

Copyright (c) 2024 Nadezhda Kirik, Evgenii Rabchevskii, Nina Shishkina, Leonid Solovyov, Alexander Anshits

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice