Hydrothermal synthesis and sorption performance to Cs(I) and Sr(II) of zirconia-analcime composites derived from coal fly ash cenospheres

Tatiana A. Vereshchagina a,*, Ekaterina A. Kutikhina a, Olga V. Buyko b, Alexander G. Anshits a,c

a: Institute of Chemistry and Chemical Technology, Federal Research Center “Krasnoyarsk Science Center of Siberian Branch of the Russian Academy of Sciences”, Krasnoyarsk 660036, Russia
b: Research Department, Siberian Federal University, Krasnoyarsk 660041, Russia
c: Department of Chemistry, Siberian Federal University, Krasnoyarsk 660041, Russia
* Corresponding author: vereshchagina.ta@icct.krasn.ru

This paper belongs to a Regular Issue.

© 2022, the Authors. This article is published in open access under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Abstract

The paper is concerned with (i) the hydrothermal synthesis of hydrous zirconium dioxide (HZD) bearing analcime (HZD–ANA, zirconia-analcime) and (ii) its sorption properties with respect to Cs+ and Sr2+. The HZD–ANA particles were synthesized from coal fly ash cenospheres composed of aluminosilicate glass with (SiO2/Al2O3)wt. ~3.1 and characterized by PXRD, SEM-EDS, STA, and low-temperature N2 adsorption. The non-radioactive simulants solutions of different acidity (pH = 2–10) and Cs+/Sr2+ content (0.5–50.0 mg/L) were used in the work. The effect of synthesis conditions on the HZD–ANA particle size, zirconia content and localization as well as the sorption behavior with respect to Cs+ and Sr2+ (capacity, K0) were clarified. It was found that the small-sized HZD–ANA composites surpasses the Zr-free analcime and large-sized HZD–ANA material in the Cs+ and Sr2+ sorption parameters (K0 ~ 104–106 mL/g). The conditions to synthesize the zirconia-analcime composite of the highly enhanced sorption ability with respect to Sr2+ (K0 ~ 106 mL/g) were determined. The high-temperature solid-phase re-crystallization of Cs+/Sr2+-exchanged HZD–ANA composites was shown to occur at 1000 °C, resulting in a polyphase system based on nepheline, tetragonal ZrO2, and glass phase.

Keywords
cenospheres
hydrothermal synthesis
zirconia-analcime composite
Cs(I) and Sr(II) sorption
radioactive waste

1. Introduction

The increased role of inorganic ion exchangers for treatment of radioactive waste solutions, both in nuclear power production and fuel reprocessing plants, is widely recognized [1, 2]. The sorption technologies being developed are aimed, first of all, at simultaneous separation of heat, radionuclides, and other elements. The sorption technologies being developed are valued for their ability to be used in the treatment of multiple waste solutions and to upgrade spent nuclear fuel reprocessing technologies that simultaneously separate two or more radionuclides are of the greatest interest as compared with technologies that separate only one element. The management of different radionuclides together in a single product, in which sorbed cations can accommodate in the only phase [8, 9] or be partitioned between several phases [10].

The last immobilization option can be implemented using composite sorbents based on the components differentiated by the affinity to certain radionuclides. Some composite sorbents for co-sorption of different cations, for example, alginate-encapsulated graphene oxide-layered double hydroxide beads [11], Al2O3-ZrO2–CeO2 composite material [12], poly-condensed feldspar and perlite-based sorbents [13], nickel-potassium ferrocyanide supported by hydrated titanium and zirconium dioxides [14], silica/ferrocyanide composite [15], synthetic nanocopper ferrocyanide-SiO2 materials [16], nano composite materials from biomass waste [17] were reported.

Received: 10.10.22
Revised: 04.11.22
Accepted: 05.11.22
Available online: 10.11.22
Great capabilities for selective separation of metal cations are inherent to zeolites, which are framework aluminosilicates with an open microporosity [18, 19]. The size of pore entrances imparts a molecular/ion sieve property to zeolites. In particular, analcime (ANA) having the minimal pore entrances (d = 2.6 Å) compared to other zeolites displays an affinity towards well-proportioned cations of actinides, lanthanides, and heavy metals [20–22]. At the same time, due to the ion sieving effect, analcime has a poor Cs⁺ and Sr²⁺ sorption capacity at 25 °C [23] but is capable to trap these cations under hydrothermal conditions at 250–300 °C [24].

The prospective single-phase ceramics proposed for “minor” actinide isolation are based on Zr-bearing mineral-like host phases including zircon, zirconia, zirconates, etc. [25, 26]. To implement the sorption approach to actinide immobilization, the Zr-based ion exchangers as precursors of Zr-bearing phases are to be used. The sorbent-precurser must be thermodynamically metastable to undergo the phase transformation in relatively mild conditions. High sorption ability and a developed porosity also facilitate crystallization of the sorbent due to the homogeneous distribution of target radionuclides in the sorbent structure. These properties are inherent to the microporous/layered ion exchange materials synthesized under mild hydrothermal treatment at 100–200 °C and autogenic pressure [27, 28]. The methods to synthesize hydrothermally nano-zirconia, zirconium incorporated micro/mesoporous silica, and zirconia-based nanocomposites were also reported [29–31].

Recently, the analcime based composite materials with hydrous zirconium dioxide (HZD) species embedded in a zeolite analcime body (HZD-ANA) were synthesized hydrothermally in an alkaline media using coal fly ash cenospheres as a Si and Al source and zirconium citrate, ammonium complex, as a Zr source [22, 32]. Variation of the synthesis conditions enables producing small-sized and large-sized ZrO₂-analcime crystals of narrow size distributions with maxima at about 6 μm [22] and 40 μm [32], respectively.

The thermal treatment of ZrO₂-bearing analcime up to 1000 °C resulted in a powdered zirconia/nepheline/glass composite material [32] having a potential as a precursor of the chemically – mechanically –, and radiation – resistant nuclear waste form, in which sorbed actinides can accommodate in a tetragonal zirconia-based phase, and retained Cs⁺ and Sr²⁺ can be hosted by aluminosilicate-based or vitreous phases [33, 34].

Evaluation of sorption properties of the small-sized HZD–ANA particles with respect to Nd³⁺, taken as an imitator of actinides (III), demonstrated that the material traps Nd³⁺ cations from diluted solutions with a distribution coefficient of about 10⁶ mL/g and efficiency of up to 99.6% [22]. The Nd³⁺ sorption parameters obtained for HZD–ANA are comparable with ones determined for pure analcime.

This fact testifies that, for the most part, analcime but not zirconia is responsible for Nd³⁺ sorption on the HZD–ANA composite. As for the Zr-bearing component, zirconia in a hydrous form is an effective ion exchanger with respect to both anions and cations, including cesium and strontium [2, 35–37]. So, the HZD–ANA material is expected to display the sorption properties also towards the Cs⁺ and Sr²⁺ cations.

The present paper is aimed at (i) the hydrothermal synthesis of hydrous zirconia bearing analcime under varied conditions, (ii) the evaluation of its sorption properties with respect to Cs⁺ and Sr²⁺ as imitators of radionuclides ¹³⁷Cs and ⁹⁰Sr, and (iii) the demonstration of possibility to immobilize the sorbed cations of different nature in a single solid. The non-radioactive simulant solutions of different acidity (pH = 2–10) and Cs⁺/Sr²⁺ contents being close to the compositions of the actual radioactive wastewater were used in the work.

2. Experimental

2.1 Chemicals and materials

The chemicals (sodium hydroxide; zirconium citrate, ammonium complex) used in this work were of reagent grade quality. They were obtained from the commercial supplier (OOO “Reaktiv”, Russia) and used without further purification.

The cenosphere material (marked further as (SiO₂–Al₂O₃)glass) was a product of separation of a coal fly ash cenosphere concentrate resulted from combustion of Kuznetsk coal (Russia) [38, 39]. The chemical and phase compositions (wt.%) of the initial cenosphere fraction were as follows: SiO₂ = 67.6, Al₂O₃ = 21.0, Fe₂O₃ = 3.2, CaO+MgO+Na₂O+K₂O = 7.7; quartz – 3.4, mullite – 0.8, calcite – 0.5, glass phase – 95.4; (SiO₂/Al₂O₃)glass = 3.1. The micrographs of the cenosphere globules are given in Figure 1.

2.2 Synthetic procedures

The small-sized zirconia bearing analcime was synthesized in the ZrCl₄·H₂O·NH₄·NaOH–H₂O–(SiO₂–Al₂O₃)glass system of the 1.0 SiO₂/0.18 Al₂O₃/0.89 Na₂O/0.15 ZrO₂/65 H₂O molar composition using zirconium-ammonium citrate as a Zr source and cenospheres as a Si and Al source. The reaction mixture was hydrothermally treated in a Teflon-lined stainless-steel autoclave (“Beluga”, Premex AG Switzerland) at 150 °C and autogenous pressure for 48–96 h applying two stirring modes. The first one is based on the permanent stirring of the reaction mixture in the horizontal plane at a rate of 50 rpm for 48 h (the sample is denoted as SS–HZD-ANA-50). Another option is the alternate stirring in the horizontal plane at a rate of 30 rpm, under which the agitation for 30 min alternated with the two-hour non-stirring regime for 96 h (the sample is denoted as SS–HZD-ANA–30).

The solid products were separated by filtration and washed with distilled water, followed by centrifuging the suspension, separation of a sediment, and drying at 65 °C. The subsequent separation of the sediment by particle sizes was done using a sieve with an aperture of 36 μm. To remove free zirconium dioxide, the product fractions <36 μm were put into water and treated by an ultrasonic source (Cole-Parmer Instruments CPX-750, USA) for 30 min. The sediments were separated by decantation and dried at 65 °C.
The large-sized (~40 μm) zirconia bearing analcime was prepared as described in [32] applying the agitation procedure based on rotation of the autoclave in a vertical plane at a rate of 30 rpm (the sample is denoted as LS–HZD–ANA–30).

Small-sized Zr free analcime was synthesized in the NaOH–H2O–(SiO2–Al2O3)glass system of the 1.0 SiO2/0.18 Al2O3/0.89 Na2O/65 molar composition under the same hydrothermal conditions (150 °C, 48 h) applying the permanent stirring of the reaction mixture in the horizontal plane at a rate of 50 rpm as described in [40] (the sample is denoted as SS–ANA–50). The solid product was washed with distilled water followed by filtration and drying at 80 °C.

2.3 Sorption experiments

Batch sorption experiments were performed upon contacting the specimen (0.0500±0.0005 g) with CsNO3 or Sr(NO3)2 solution of 0.5–50.0 mg/L Cs+/Sr2+ at agitation and ambient temperature (V = 40 mL; t = 24 h). Then the solid and liquid phases were separated by filtration and Cs+/Sr2+ equilibrium concentrations in the filtrate solutions were measured by flame atomic absorption spectroscopy (AAS) (AAS–30, Carl Zeiss, Germany) and, in the case of the metal content being below an AAS detection limit, inductively coupled plasma mass spectrometry (ICP-MS) (XSeries II, Thermo Scientific, USA).

The equilibrium Cs+/Sr2+ concentrations in the solid phase (Qe, mg/g) were determined as $Q_e = (C_o - C_e) \cdot V/m$, where C_o is the initial metal concentration in the liquid phase, mg/L; C_e is the equilibrium Cs+/Sr2+ concentration in the liquid phase, mg/L; V is the volume of solution, L; m is the mass of the sample, g.

The experimental sorption data were plotted as $Q_e = f(C_o)$ and fitted by the Langmuir equation:

$$Q_e = a_m \cdot \frac{b \cdot C_o}{(1 + C_o)}$$ \hspace{1cm} (1)

where a_m is the maximum sorption capacity of the solid, mg/g; b is the Langmuir constant, L/mg; C_e is the Cs+/Sr2+ equilibrium solution concentration, mg/L.

The distribution coefficient values ($K_0 = Q_e/C_o$, mL/g) were determined for the region of low equilibrium concentrations ($C_e < 1$ mg/L).

2.4 Characterization techniques

Chemical composition of the cenosphere fraction was determined according to State Standard (GOST) No. 5382-2019 [41].

Powder X-ray diffraction (PXRD) data were collected on a DRON-3 (Russia) and a PANalytical X'Pert PRO (Netherlands) diffractometers using the Cu Kα radiation over the 2θ range of 12–120 °. The samples were prepared by grinding with octane in an agate mortar and packed into a flat sample holder for the PXRD measurements in the Bragg-Brentano geometry. The crystallographic data base ICDD PDF-ICDD PDF-2 Release 2004 and the software PhasenX 2.0 were used to process the PXRD patterns.

The morphologies of materials under study were identified by the scanning electron microscopy (SEM) using a TM-3000 and a TM-4000 (Hitachi, Japan) instruments. To identify the elemental composition of sample materials, energy dispersive X-ray spectroscopy (EDS or EDX) analysis was performed using the TM-3000 microscope equipped with the Bruker microanalysis system including an energy-dispersive X-ray spectrometer with an XFlash 430 H detector and QUANTAX 70 software. The analysis was carried out at an accelerating voltage of 15 kV in a mapping mode. The data accumulation time was 10 min.

The synchronous thermal analysis (STA) was performed on a STA Jupiter 449C device (Netzsch, Germany) under a dynamic argon-oxygen atmosphere (20% O2, 50 ml/min total flow rate). Platinum crucibles with perforated lids were used. The measurement procedure consisted of a temperature stabilization segment (30 min at 40 °C) and a dynamic segment at a heating rate of 10 °C/min. Qualitative composition of a gas phase was evaluated on the basis of the ion intensity change with m/z = 18 (H2O).

The specific surface area (SSA, m²/g) of the ANA-based materials was evaluated by the Brunauer-Emmett-Teller (BET) method [42] on the basis of nitrogen adsorption isotherm measurements at 77 K using a Nova 3200e analyzer (Quantachrome Instruments, USA) and NovaWin software.
3. Results and discussion

3.1 Morphology and composition of solid products

As it follows from Table 1, the single crystal phase identified by PXRD in all the solid products is cubic analcime (ANA), NaAlSi$_2$O$_5$H$_2$O (ICDD #01-070-1575). The PXRD peaks of zirconium phases were not observed for the Zr-bearing systems. This fact gives reason to assume that Zr-containing matter is essentially amorphous in the sample.

By the SEM data (Figure 2–6), crystals of an icositetrahedron habit typical of analcime [43] are visualized on all images. However, some differences in the particle morphology and analcime crystal sizes are clearly evident for solids resulted from the Zr-free and Zr-containing reaction mixtures. So, in the Na$_2$O–H$_2$O–(SiO$_2$–Al$_2$O$_3$)$_{glass}$ system the analcime crystals of 3–10 µm in size are attached to an unconverted glass support, forming the hollow polycrystalline analcime microspheres (Figure 2). In the presence of zirconium, the loose analcime crystals of a narrow size distribution (5–10 µm) are formed (Figure 3, 4), the analcime-like particles being the only product in the reaction mixtures.

The effect of the synthesis operation (autoclave type, agitation mode) was manifested to the greatest extent in the size of the formed particles. Figure 3 shows the large-sized zirconium-bearing analcime crystals with the size distribution maximum of about 40 µm (Figure 3a, Table 1), which were produced under rotation of the autoclave in a vertical plane and described in detail in the earlier work [32].

The zirconia inclusions in the bulk of analcime crystals with an average Zr content of 4.8 wt.% was supported in [32] by the SEM-EDS measurements over analcime crystal cross-sections and X-ray photoelectron spectroscopy.

Zirconia species are also visible as contrast white spots on facets of analcime icositetrahedra (Figure 3b, 3c) giving the Zr content of about 5 wt.% (Figure 3d). The most probable state of zirconium occurred in Zr-bearing analcime is amorphous zirconia. There is no free zirconia matter on the crystal surfaces and between analcime particles (Figure 3a). The absence of an unbound porous material mixed with analcime is supported by the measurements of the low-temperature N$_2$ adsorption, which was extremely small due to the inaccessibility of the analcime microporous structure (D = 0.26 nm) for penetration of nitrogen molecules with a kinetic diameter of 0.37 nm [18].

As for the small-sized Zr-analcimes synthesized in the autoclave applying the stirring in a horizontal plane, the aggregated zirconia species cover the crystal surfaces as a free porous matter (Figure 4) providing the rather high specific surface area ~ 30–40 m2·g$^{-1}$ (Table 1).

The enhanced SSA of the Zr-free SS-ANA-50 is likely to be due to the porosity of residual leached glass and micro/meso-sized voids between analcime crystals fixed on glass. The main difference between two small-sized Zr-analcimes is revealed in the Zr content on the crystal surface (Figure 4e, 4f). The analcime particles synthesized at the alternate stirring are characterized by the greater Zr content than zirconia-analcime resulted from the synthesis at the permanent agitation.

One can see in Figure 5 that the analcime particles entering the SS–HZD–ANA–30 display the inhomogeneous zirconia covering with variation of the Zr content in the range of 8–14 wt.%. Additional agglomerates of an irregular form containing Zr species together with glass residues are also a part of this solid product.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Main crystal phase</th>
<th>SSA, m2·g$^{-1}$</th>
<th>Zr content, wt.%</th>
<th>Crystal size, µm</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS–ANA–50</td>
<td>Cubic (Ia–3d) analcime</td>
<td>36</td>
<td>–</td>
<td>2–7</td>
</tr>
<tr>
<td>SS–HZD–ANA–50</td>
<td>NaAlSi$_2$O$_5$H$_2$O</td>
<td>30</td>
<td>4–5</td>
<td>5–10</td>
</tr>
<tr>
<td>SS–HZD–ANA–30</td>
<td>NaAlSi$_2$O$_5$H$_2$O</td>
<td>39</td>
<td>8–13</td>
<td>7–10</td>
</tr>
</tbody>
</table>

*glass-supported analcime; ** not determined; *** crystal size distribution maximum.

Figure 2 SEM images of Zr-free devitrified cenospheres resulted from the NaOH–H$_2$O–(SiO$_2$–Al$_2$O$_3$)$_{glass}$ system: total view of the microsphere product (a); glass-supported analcime (b).
In turn, the synthesis carried out at the permanent agitation resulted in predominantly pure zirconia-analcime with the lower content of zirconia deposition (4–7 wt.% Zr) (Figure 6). The SSA value for SS–HZD–ANA–50 is, reasonably, by one and a half time lower than the SSA for the SS–HZD–ANA–30 sample (Table 1).

Thus, the revealed features of particle morphology, zirconia occurrence form and content in the solid products are expected to affect their retention ability with respect to Cs⁺ and Sr²⁺.

3.2 Sorption behavior to Cs(I) and Sr(II) of the zirconia-analcime composites

The sorption ability of the zirconia-analcime composites with respect to Cs⁺ and Sr²⁺ was evaluated by measuring the equilibrium sorption capacity at different concentrations of metal cations in solutions and pH. Figure 7 show the experimental values of Cs⁺ and Sr²⁺ sorption at pH = 6 as well as the Cs⁺ and Sr²⁺ sorption isotherms based on the Langmuir model for SS–ANA–50 (Figure 7a) and LS–HZD–ANA–30 (Figure 7b).

It was revealed that the Zr-free analcime bearing solid exhibits the expected poor Cs⁺ and Sr²⁺ sorption capacities (Figure 7a, Table 2) because of the ion-sieve effect [18].
The sorption behavior of the large-sized zirconia-analcime composite is slightly better (Figure 7 b, Table 2), which is most likely due to embedded zirconia being partially available on the particle surface.

It is notable that the $Q_e = f(C_e)$ dependences for Sr2+ sorption on SS–HZD–ANA–30 are linear in the whole region of applied Sr2+ concentrations and pH, giving the K_0 of up to 10^6 mL/g (Figure 8a–c). Such high Sr2+ sorption parameters of the small-sized zirconia-analcime composites are comparable with those for the known specific Sr2+ sorbents, such as hydrated antimony pentoxide [44, 45], titano- and zirconosilicates [46, 47]. A number of distribution coefficients for Cs+ and Sr2+ sorption for different inorganic sorbents produced in Russia [48] are given in Table 3.

It can be seen that in near neutral solutions hydrated zirconium dioxide (Termoxide 3K) displays the higher K_0 value (3.5×10^4 mL/g) for the Sr2+ sorption than K_0 for the Cs+ sorption.

The lower K_0 for the Cs+ sorption is observed also in the case of SS–HZD–ANA–30 (Tables 2, 3). The enhanced K_0 at pH ≥ 6 is the characteristic feature of amphoteric oxides, such as hydrated zirconia, operating as a cation exchanger in alkaline and neutral solutions [49]. This is also in good agreement with the zirconia content and accessibility on the analcime surface in both samples, supporting the determining role of hydrated zirconia in the Cs+ and Sr2+ sorption behavior of the zirconia-analcime composites. At the same time, due to the dissolution of ce-nosphere’s aluminosilicate glass in the alkaline reaction medium, the formation of zirconium silicate cannot be excluded. Therefore, the marked Cs+ and Sr2+ sorption in acid media (Figure 8a, d) can be associated with the existence of additional binding centers, such as zirconium silicate reported as a cation exchanger [50].

Table 2 Parameters of the Langmuir equation and distribution coefficients for Cs+ and Sr2+ sorption on Zr-free and Zr-bearing analcime solids.

<table>
<thead>
<tr>
<th>Sample</th>
<th>pH</th>
<th>Cation</th>
<th>a_m, mg/g</th>
<th>b, L/mg</th>
<th>K_D, mL/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS–ANA–50</td>
<td>6</td>
<td>Cs+</td>
<td>24.3</td>
<td>0.03</td>
<td>9.0-10^3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sr2+</td>
<td>15.7</td>
<td>0.17</td>
<td>4.7-10^3</td>
</tr>
<tr>
<td>SS–HZD–ANA–30</td>
<td>6</td>
<td>Cs+</td>
<td>30.5</td>
<td>0.06</td>
<td>7.0-10^3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sr2+</td>
<td>15.9</td>
<td>0.77</td>
<td>5.0-10^4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Cs+</td>
<td>66.5</td>
<td>0.05</td>
<td>4.8-10^3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sr2+</td>
<td>15.9</td>
<td>0.77</td>
<td>5.0-10^4</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Cs+</td>
<td>39.7</td>
<td>0.69</td>
<td>8.1-10^4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sr2+</td>
<td>n.d.</td>
<td>n.d.</td>
<td>2.8-10^3</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Cs+</td>
<td>36.0</td>
<td>0.48</td>
<td>5.2-10^5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sr2+</td>
<td>n.d.</td>
<td>n.d.</td>
<td>2.5-10^5</td>
</tr>
</tbody>
</table>

Table 3 Distribution coefficients (K_{D}) for Cs+ and Sr2+ sorption on different inorganic sorbents in 0.1 mol/L NaNO\textsubscript{3}, pH = 5–6 [48].

<table>
<thead>
<tr>
<th>Sorbent</th>
<th>K_{D}, mL/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural zeolite clinoptilolite</td>
<td>1800</td>
</tr>
<tr>
<td>Bentonite clay</td>
<td>1.9-10^4</td>
</tr>
<tr>
<td>Synthetic zeolite NaA</td>
<td>8900</td>
</tr>
<tr>
<td>Synthetic zeolite NaX</td>
<td>1800</td>
</tr>
<tr>
<td>Hydrated zirconium dioxide (Termoxide 3K)</td>
<td>150</td>
</tr>
<tr>
<td>Zirconium phosphate (Termoxide 3A)</td>
<td>1800</td>
</tr>
<tr>
<td>Sodium titanosilicate (TISI)</td>
<td>1.9-10^5</td>
</tr>
<tr>
<td>Nickel ferrocyanide/Hydrated zirconium dioxide (Termoxide 35)</td>
<td>1.2-10^5</td>
</tr>
<tr>
<td>Nickel ferrocyanide/Silica gel</td>
<td>8.4-10^4</td>
</tr>
<tr>
<td>Hydrated zirconium dioxide/Analcime (SS–HZD–ANA–30) (this work)*</td>
<td>8.1-10^4</td>
</tr>
</tbody>
</table>

* pH = 6, no added NaNO\textsubscript{3}
3.3 Thermochemical conversion of zirconia-analcime composites loaded with Cs(I) and Sr(II)

The thermochemical conversion of the zirconia-analcime composites studied by example of the SS–HZD–ANA–30 sample loaded with Cs\(^{+}\) and Sr\(^{2+}\) includes two stages (Figure 9). The first broad endothermic DSC peak with the substantial mass loss is situated at 100–400 °C and is accompanied by the simultaneous increase of intensity of \(m/z=18\) (H\(_2\)O) ion due to the elimination of structural water from the analcime structure [32]. There are two pronounced exothermic peaks at 800–950 °C. The absence of mass change in this temperature interval suggests that the exo-effects are caused by the solid-state transformation (re-crystallization) of analcime and amorphous zirconia [51, 52].

The PXRD analysis of the zirconia-analcime composite calcined at 1000 °C revealed tetragonal zirconia (ICDD #04-005-4479) and hexagonal nepheline (ICDD #01-079-992) phases in the calcination product (Figure 1b, c), so the observed broad double peak at 800–950 °C can be assigned to the HZD and analcime (Figure 10a) phase transformation.

![Figure 9](image_url) The TG and DSC curves for thermal conversion of the SS–HZD–ANA–30 material loaded with Cs\(^{+}\) (a) and Sr\(^{2+}\) (b).

![Figure 10](image_url) Powder X-ray diffraction patterns for the SS–HZD–ANA–30 (a) and solids resulted from calcination of the SS–HZD–ANA–30 loaded with sorbed Cs\(^{+}\) (b) and Sr\(^{2+}\) (c) at 1000 °C: A – c-analcime (ICDD #01-070-1575), Z – f-nepheline (ICDD #01-079-992), Z – t-zirconia (ICDD #04-005-4479).

The formation of tetragonal zirconia under heating is an additional evidence of the fact that amorphous zirconia that resulted from the hydrothermal synthesis is the dominant Zr-bearing matter covering the analcime surface.

Thus, the obtained data for the small-sized HZD-analcime composites loaded with Cs\(^+\) and Sr\(^{2+}\) are in agreement with the previous STA results [32], making it possible to consider this material as the efficient Cs\(^+\) and Sr\(^{2+}\) sorbent with a potential to be a precursor of a Zr-aluminosilicate mineral-like matrix hosting the trapped cations.

4. Conclusions

For the first time, the hydrous zirconia bearing analcime composite which demonstrated the high sorption ability to trap Cs\(^+\) and Sr\(^{2+}\) from diluted CsNO\(_3\) and Sr(NO\(_3\))\(_2\) solutions of pH = 2–10, in terms of retention capacity and distribution coefficient, was prepared under selected hydrothermal conditions starting from coal fly ash cenospheres with the (SiO\(_2\)/Al\(_2\)O\(_3\))\(_{\text{glass}}\) = 3.1. It was established that the defining role in the sorption performance to Cs\(^+\) and Sr\(^{2+}\) belongs to the parameters such as the zirconia occurrence form, its content and the localization in the HZD–ANA particle as well as the particle size. The conditions for the synthesis of the zirconia-analcime with a highly enhanced sorption ability regarding Sr\(^{2+}\) (K\(_0\) ~10\(^4\) mL/g) were determined.

Based on the previous knowledge together with the data obtained, the HZD-analcime composite can be considered as a sorbent targeted at both Cs\(^+\)/Sr\(^{2+}\) (due to HZD) and Ln\(^3+\) (due to analcime), which can simultaneously immobilize two or more radionuclides in the single product under heating with partitioning the sorbed cations between several phases – Cs\(^+\)/Sr\(^{2+}\) in the aluminosilicate phases (e.g., nepheline) and Ln\(^3+\)/An\(^{3+}\) in the Zr-phases (in this case, zirconia). The further testing of the sorbent on simulant waste solutions and real radioactive waste is a necessary step to confirm its effectiveness.

Supplementary materials

No supplementary materials are available.

Funding

This research was funded by Ministry of Science and Higher Education of the Russian Federation (Budget Project No. 0287-2021-0013 for the Institute of Chemistry and Chemical Technology SB RAS). The reported study was conducted by using the equipment of Krasnoyarsk Regional Research Equipment Centre of SB RAS for SEM-EDS, PXRD and AAS analyses and Siberian Federal University for STA, PXRD and ICP-MS analyses.

Acknowledgments

The authors acknowledge G.N. Bondarenko and L.A. Solovyov for performing the PXRD, S.N. Vereshchagin for the
STA, E.V. Mazurova for the SEM-EDS, O.A. Levitskaya and V.R. Kuzik for the AAS analysis.

Author contributions

Conceptualization: V.T.A., A.A.G.
Data curation: K.E.A.
Formal Analysis: K.E.A., B.O.V.
Funding acquisition: V.T.A., A.A.G.
Investigation: K.E.A., B.O.V.
Methodology: V.T.A., A.A.G.
Project administration: A.A.G.
Resources: K.E.A., B.O.V.
Software: K.E.A., B.O.V.
Supervision: A.A.G.
Writing – original draft: V.T.A.
Writing – review & editing: V.T.A.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Author IDs:
Tatiana A. Vereshchagina, Scopus ID 6701428729;
Ekaterina A. Kutikhina, Scopus ID 24399263009;
Olga V. Buyko, Scopus ID 258026591090;

Websites:
Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", https://ksc.kras.ru;

References

24. Redkin AF, Hemley JJ. Experimental Cs and Sr sorption on analcite in rock-buffered systems at 250–300 °C and Pₑₑₙ and the thermodynamic evaluation of mineral solubilities and

