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Abstract 

In this research, using the thia-Michael reaction, cationic amphiphilic 

meroterpenoids containing fragments of mono- and sesquiterpenoids 
were synthesized. The bacteriostatic and fungistatic activity of synthe-
sized meroterpenoids against the fungi Saccharomyces cerevisiae and Can-

dida sp., Gram-positive (Staphylococcus aureus, Staphylococcus epider-
midis) and Gram-negative (Salmonella typhimurium, Klebsiella pneu-

moniae, Pseudomonas aeruginosa) bacteria was studied. The compound 
containing the farnesyl fragment was most active against Saccharomyces 
cerevisiae (MIC 0.039 mg/mL), Candida sp. (MIC 0.078 mg/mL), Gram-

positive bacteria Staphylococcus epidermidis (MIC 0.02 mg/mL) and 
Gram-negative Salmonella typhimurium (MIC 0.078 mg/mL). Besides, the 
Ames test demonstrated the absence of direct mutagenic action in all the 

studied compounds. 
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© 2024, the Authors. This article is published in open access under the terms and conditions of  

     the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 

1. Introduction 

Pathogenic microorganisms have been posing a great danger 

to human health for centuries [1, 2]. Over the past twenty 

years, the emergence of new dangerous, antimicrobial agent-

resistant strains has been occurring with alarming regularity 

[3, 4]. At the moment, the task of finding and developing new 

drugs to fight bacteria and fungi is extremely urgent.  

One of the targets of antimicrobial drugs is cell mem-

branes [5]. The membrane components of Gram-negative 

and Gram-positive bacteria are negatively charged [6, 7]. 

The cell wall of fungi mainly consists of components con-

taining a negative charge [8]. Compared to bacterial and 

fungal cell membranes, the plasma membranes of mamma-

lian cells are less negatively charged [9]. These differences 

between the structure of bacterial, fungal and mammalian 

cell membranes provide a rational basis for the develop-

ment of several types of positively charged drug candidates. 

Interest in the development of antimycotic and antimicro-

bial cationic drugs is gaining relevance every day [10, 11]. 

The most promising compounds from this point of view are 

cationic amphiphilic drugs, such as quaternary ammonium 

salts due to their high affinity for the lipid membrane [12]. 

Quaternary ammonium salts of amphiphilic nature are 

widely used in medicine [13, 14].  

In recent years, more and more attention has been paid 

to the development of antimicrobial agents based on natu-

ral and semi-synthetic sources [15–19]. Terpenoids repre-

sent one of the most extensive and structurally diverse 

groups of natural compounds [20, 21]. The availability and 

diversity of natural terpene compounds exhibiting a wide 
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range of biological activity attracts the attention of re-

searchers more and more every year [22–25]. Lately, anti-

fungal and antibacterial activity of natural terpenoids and 

derivatives based on them has been shown [26–32]. There-

fore, the introduction of quaternary ammonium groups into 

natural terpenoids having lipophilic fragments with high 

biological activity is of particular interest for the creation 

of therapeutic agents.  

Thus, here we present the concept of creating cationic 

amphiphilic meroterpenoids with bacteriostatic and fungi-

static effects against pathogenic strains of fungi and bacte-

ria. The concept is based on the thia-Michael reaction be-

tween terpenyl acrylates and 2-(dimethylamino)ethan-

ethiol.  

2. Materials and methods 

2.1. General experimental information 

All reagents and solvents (Sigma-Aldrich, St. Louis, MO, 

USA) were used directly as purchased or purified according 

to the standard procedures. The 1H and 13C NMR spectra 

were recorded on an Avance 400 spectrometer (Bruker 

Corp., Billerica, MA, USA) (400 MHz for 1H-atoms) for 5% 

solutions in CDCl3 and DMSO-d6. The residual solvent peaks 

were used as an internal standard. The FT-IR ATR spectra 

were recorded on a Spectrum 400 FT-IR spectrometer (Per-

kin Elmer, Seer Green, Lantrisant, UK) with a Diamond 

KRS-5 attenuated total internal reflectance attachment 

(resolution 0.5 cm−1, accumulation of 64 scans, recording 

time 16 s in the wavelength range 400–4000 cm−1). ESI-

HRMS experiments of compounds were analyzed using an 

Impact II mass spectrometer with Elute UHPLC system 

(«Bruker Daltonik GmbH», Germany). The column used 

was YMC-Triart C18 (50×2 mm; 3 μm). The temperature of 

the column thermostat was set at 40 °C and the tempera-

ture of the autosampler at 12 °C. The elution solvents used 

were 0.1% formic acid in Milli-Q water (A) and 0.1% formic 

acid in HPLC-grade acetonitrile (B), and the elution gradi-

ent was the following: 0 min at 5% B, 3 min at 95% B, 4 

min at 95% B, 4.1 min at 95% B, 6 min at 95% B with flow 

rate of 0.3 mL/min. The injection volume was 2 μL. The an-

alytes were ionized by electrospray in positive polarity. The 

ESI conditions were set with the capillary temperature of 

220 °C, capillary voltage of 4.5 kV and sheath gas (N2) flow 

rate of 6 L/min. The measurements were made in the range 

m/z 300–3500. The solution of analyte (1 mg/mL, HPLC-

grade methanol) was diluted in HPLC-grade acetonitrile to 

concentration 0.01 mg/mL. The solution of sodium iodide 

in Milli-Q water (0.2 mg/mL) was used as a calibrant. The 

relative error in determining the masses was no more than 

5.0 ppm. For instrument control and data aquisition, the 

otofControl software (Bruker Daltonik GmbH, Version 5.2) 

was used. The data processing was performed by the DataA-

nalysis software (Bruker Daltonik GmbH, Version 5.3). The 

melting points were determined using the Boetius Block ap-

paratus (VEB Kombinat Nagema, Radebeul, Germany).  

2.2. Synthesis of compounds 2a–d 

Compounds 2a–d were synthesized according to published 

procedures [27].  

2.3. General synthesis procedure 3a–d 

A solution of 2.5 mmol of terpenyl acrylate (2a–d) in meth-

anol was prepared in a 25 mL round-bottom flask. 2.1 mmol 

of 2-(dimethylamino)ethane-1-thiol hydrochloride was 

added to the resulting solution. Next, the mixture was re-

fluxed for 56 h. The solvent was removed using a rotary 

evaporator. The crude product was recrystallized from hex-

ane to remove the terpenyl acrylate. Then the crude product 

was dried on a rotary evaporator under reduced pressure. 

The products were obtained in the form of pale yellow pow-

ders.  

2.3.1. 2-((3-(geranyloxy)-3-oxopropyl)thio)-N,N-di-

methylethan-1-aminium chloride 3a 

Yield: 0.7113 g (97%), pale yellow powder. Mp = 66 °C. 1H 

NMR (CDCl3, , ppm, J/Hz): 1.59 (s, 3H, –CH3), 1.67 (s, 3H, 

–CH3), 1.70 (s, 3H, –CH3), 2.03–2.10 (m, 4H, –CH2–CH2–), 

2.65 (t, 2H, –CH2–C(O)–O, 3JHH = 6.9 Hz), 2.83 (d, 6H,  

–N+(CH3)2, 3JHH = 4.9 Hz), 2.84–2.86 (m, 2H, –CH2N+–), 

3.02–3.06 (m, 2H, –CH2S–), 3.18–3.24 (m, 2H, –CH2S–),  

4.61 (d, 2H, –CH2O–, 3JHH = 7.1 Hz), 5.07 (t, 1H, =CH–, 

 3JHH = 6.5 Hz), 5.32 (t, 1H, =CH–, 3JHH = 6.6 Hz), 12.77 (br.s., 

1H, –N+H). 13C NMR (DMSO-d6, , ppm): 16.16, 17.56, 24.60, 

25.47, 25.77, 25.91, 30.94, 34.18, 41.84, 42.04, 55.26, 

60.83, 118.39, 123.70, 131.06, 141.48, 171.28. FTIR (ν/cm–1): 

3016 (C=C–H); 2964 (CH3); 2939 (CH2); 2938 (CH2–O); 

2908 (CH2–C(O)O); 2887 (CH3); 2710–2376 (NH+); 1725 

(C=O); 1452 (CH2); 1437 (CH3); 1434 (CH2–S); 1373 (CH3); 

1374 (C(CH3)2); 1362 (C(CH3)2); 1306 (CH2)1243 (CH2–S); 1228 

(C–O–C); 1127 (C–O–C); 1044 (C–NH); 816 (C=C–H). HRMS: cal-

culated [M–Cl–]+ m/z = 314.2148, found [M–Cl–]+ m/z = 314.2155.  

2.3.2. 2-((3-(S-perillyloxy)-3-oxopropyl)thio)-N,N-di-

methylethan-1-aminium chloride 3b 

Yield: 0.6197 g (85%), pale yellow powder. Mp = 82 °C. 1H 

NMR (CDCl3, , ppm, J/Hz): 1.42–1.53 (m, 1H, –CH–),  

1.73 (s, 3H, –CH3), 1.82–1.87 (m, 1H, –CH2–), 1.93–2.00 (m, 

1H, –CH2–), 2.05–2.18 (m, 4H, –CH2–CH2–), 2.67 (t, 2H,  

–CH2–C(O)–O, 3JHH = 6.9 Hz), 2.84 (d, 6H, –N+(CH3)2, 
3JHH = 4.8 Hz), 2.85–2.87 (m, 2H, –CH2N+–), 3.02–3.06 (m, 

2H, –CH2S–), 3.17–3.24 (m, 2H, –CH2S–), 4.48 (s, 2H,  

–CH2O–), 4.71 (d, 2H, =CH2, 3JHH = 8.5 Hz), 5.75 (m, 1H, =CH–), 

12.70 (br.s., 1H, –N+H). 13C NMR (DMSO-d6, , ppm): 20.60, 

24.63, 25.74, 25.92, 26.78, 29.77, 30.91, 34.15, 41.91, 42.09, 

55.63, 67.65, 109.02, 124.90, 132.39, 149.01, 171.22. FTIR 

(ν/cm–1): 3012 (CH=C); 2961 (CH3); 2938 (CH2–C(O)O); 

2937 (CH2–O); 2921 (CH2); 2888 (CH3); 2835 (CH2); 2709–

2316 (NH+); 1725 (C=O); 1644 (CH2=C); 1473 (CH2); 

1464 (CH3); 1457 (CH2); 1436 (CH2–S); 1427 (CH2=C); 

1374 (CH3); 1242 (CH2–S); 1230 (=C–O–C); 1145 (C–O–C); 

1042 (C–NH); 888 (CH2=C); 815 (H–C=C). HRMS-ESI: calcu-

lated [M–Cl–]+ m/z = 312.1991, found [M–Cl–]+  

m/z = 312.1992.  
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2.3.3. 2-((3-(R-myrtenyloxy)-3-oxopropyl)thio)-N,N-di-

methylethan-1-aminium chloride 3c 

Yield: 0.5687 (78%), pale yellow powder. Mp = 59 °C. 1H 

NMR (CDCl3, , ppm, J/Hz): 0.81–0.82 (br.s., 3H, –CH3–), 

1.15–1.17 (s, 1H, –CH–), 1.28 (s, 3H, –CH3–), 1.96–2.01 (m, 

2H, –CH2–), 2.09–2.11 (m, 1H, –CH–), 2.40 (dt, 2H, –CH–, 
3JHH = 8.8, 5.6 Hz), 2.66 (t, 2H, –CH2–C(O)–O, 3JHH = 6.9 Hz), 

2.85 (d, 6H, –N+(CH3)2, 3JHH = 5.0 Hz), 2.89–2.91 (m, 2H,  

–CH2S–), 2.99–3.05 (m, 2H, –CH2S–), 3.20–3.25 (m, 2H,  

–CH2N+–), 4.43–4.53 (m, 2H, –CH2O–), 5.56 (m, 1H, =CH–), 

12.72 (br.s., 1H, –N+H). 13C NMR (DMSO–d6, , ppm): 21.06, 

28.55, 31.06, 31.37, 34.55, 37.81, 40.45, 41.89, 42.08, 44.77, 

55.41, 66.85, 121.21, 129.39, 171.29. FTIR (ν/cm–1): 3649–

3150 (R2N–H); 2946 (CH2–C(O)O); 2943 (CH2), 2938 (CH3); 

2937 (CH2–O); 2914 (CH2); 2831 (CH2); 2762–2251 (NH+); 

1728 (C=O); 1471 (CH2); 1429 (CH2–S); 1383 (C(CH3)2); 

1365 (C(CH3)2); 1248 (CH2–S); 1170 (C–O–C); 1046 (=C–O–

C); 809 (C=CH). HRMS-ESI: calculated [M–Cl–]+  

m/z = 312.1991, found [M–Cl–]+ m/z = 312.1989.  

2.3.4. 2-((3-(2E,6Z-farnesyloxy)-3-oxopropyl)thio)-

N,N-dimethylethan-1-aminium chloride 3d 

Yield: 0.7360 g (84%), pale yellow powder. Mp = 94 °C. 1H 

NMR (CDCl3, δ, ppm., J/Hz): 1.60 (s, 3H, CH3), 1.68 (s, 6H, 

CH3), 1.70 (s, 3H, CH3), 2.03–2.10 (m, 8H, –CH2–CH2–),  

2.65 (t, 2H, –CH2–C(O)–O, 3JHH = 6.8 Hz), 2.83 (d, 6H,  

–N+(CH3)2, 3JHH = 4.8 Hz), 3.03–3.07 (m, 2H, –CH2S–), 3.18–

3.23 (m, 2H, –CH2S–), 4.62 (d, 2H, –CH2O–, 3JHH = 7.2 Hz), 

5.09 (t, 2H, =CH–, 3JHH = 5.9 Hz), 5.33 (t, 1H, =CH–,  
3JHH = 7.1 Hz), 12.87 (br.s., 1H, –N+H). 13C NMR (DMSO–d6, 

, ppm): 15.79, 16.15, 17.54, 23.14, 24.63, 25.47, 25.65, 

25.93, 26.16, 31.06, 34.19, 41.83 42.08, 55.32, 60.82, 

118.42, 123.51, 124.07, 130.66, 134,71, 141.45, 171.27. FTIR 

(ν/cm–1): 3500–3200 (R2N–H); 2966 (CH2–C(O)O); 2962 

(CH3); 2920 (CH2); 2854 (CH2); 2804–2250 (NH+); 1728 

(C=O); 1669 (C=C); 1452 (CH2); 1442 (CH2–S); 1377 

(C(CH3)2); 1356 (C(CH3)2); 1240 (CH2–S); 1238 (=C–O–C); 

1148 (C–O–C); 830 (=C–H). HRMS-ESI: calculated [M–Cl–]+ 

m/z = 382.2774, found [M–Cl–]+ m/z = 382.2776.  

2.3.5. Resazurin assay 

MIC of 3a–d for Staphylococcus aureus ATCC® 29213™, 

Staphylococcus epidermidis clinical isolate, Klebsiella pneu-

moniae clinical isolate, Pseudomonas aeruginosa clinical 

isolate, Salmonella typhimurium TA 98, Saccharomyces 

cerevisiae and Candida sp. clinical isolate were determined 

with resazurine assay according to the published method 

[33]. Briefly, sterile 96 well plates were prepared and la-

belled under aseptic conditions, a volume of 180 μL of S. 

cerevisiae and Candida sp. suspensions (5×105 cells/mL) in 

Sabouraud broth and 180 μL of S. aureus ATCC® 29213™, S. 

epidermidis, K. pneumoniae, P. aeruginosa, S. typhimurium 

TA 98 in LB-broth were pipetted into the first row of the 

plates. To all other wells 100 μL of broth was added. Then 

a volume of 20 μL of tested agent solutions in H2O was 

added into the first row and serial dilutions were per-

formed using a multichannel pipette. Each well had 100 μL 

of the medium with the test materials in sequentially de-

scending concentrations. Each plate was wrapped loosely in 

cling film to ensure that the culture did not become dehy-

drated. The variants were prepared in triplicate and placed 

in an incubator set at 37 °C for 24 h. After incubation 10 μL 

of resazurin indicator solution (0.1%) was added into each 

well. The colour change was then assessed visually after 4 

h incubation at 37 °C with resazurin. Any colour changes 

from purple to pink or colourless were recorded as positive. 

The lowest concentration at which the colour change did 

not take place was taken as the MIC value. The MIC deter-

mination was carried out in three independent experi-

ments.  

2.3.6. Ames test 

A histidine-dependent strain of Salmonella typhimurium TA 

98, was used in the experiment. This strain carries muta-

tions in the genes of the histidine operon, and exposure to 

mutagens can increase the frequency of spontaneous rever-

sions from the initially histidine auxotrophic state to pro-

totrophy [34]. S. typhimurium ТА 98 was incubated over-

night in L-broth with ampicillin (25 µg/mL). 5 mL of the 

overnight culture was transferred to 20 mL of fresh LB 

broth with ampicillin and incubated for 2 h at 37 °C with 

aeration. The cell pellet was resuspended in 0.02 M sodium 

phosphate buffer (pH = 7.2). Glucose minimal agar was pre-

prepared and poured into Petri plates and 0.6% top agar 

into tubes. 0.1 mL of the bacterial suspension and 0.1 mL of 

the test agent solution were added to the melted and pre-

cooled to ~45 °C. The top agar was then stirred and poured 

onto the glucose minimal agar. After complete solidification 

of the agar, the plates were transferred to the thermostat 

and incubated at 37 °C. 
Water was used as the solvent in the negative control of 

the Ames test. 4-Nitro-O-phenylenediamine (2.5 µg per 

plate) was used as a positive control. The results were rec-

orded by counting revertant colonies after 48 h of incuba-

tion. The number of revertant colonies grown under the in-

fluence of terpenoids was compared with that in the nega-

tive control. A compound was considered to be non-muta-

genic if the number of induced revertants was less than 

twice the number of spontaneous revertants as recom-

mended in [35]. 

3. Results and Discussion 

3.1. Synthesis of the meroterpenoids 

The starting compound for designing the cationic am-

phiphilic meroterpenoids was 2-(dimethylamino)ethan-

ethiol hydrochloride. We selected it because it contains an 

ammonium moiety and a reactive –SH group. Conjugated 

nucleophilic addition to electron-deficient alkenes and al-

kynes is one of the most frequently used methods for creat-

ing a new carbon-heteroatom bond [36–38]. The thia-Mi-

chael reaction is one of the convenient methods for creating 

C–S bonds. Therefore, terpene acrylates 2a–d (Scheme 1) 

https://doi.org/10.15826/chimtech.2024.11.2.09
https://doi.org/10.15826/chimtech.2024.11.2.09


Chimica Techno Acta 2024, vol. 11(2), No. 202411209 ARTICLE 

 4 of 7 DOI: 10.15826/chimtech.2024.11.2.09

   

based on geraniol, S-perillyl alcohol, R-myrtenol and farne-

sol were selected as the initial terpene-containing com-

pounds. Previously, farnesol activity was shown against 

such cell strains as S. aureus ATCC 43300 (MIC 0.128 

mg/mL), S. epidermidis ATCC 12228 (0.032 mg/mL); how-

ever, farnesol does not show activity against most strains 

and clinical isolates [39]. Some geraniol derivatives have 

also been shown to have activity against Candida albicans 

(MIC 0.025 mg/mL) [40]. Terpene acrylates were obtained 

according to a previously published method [27]. The inter-

action of terpene acrylates with 2-(dimethylamino)ethan-

ethiol hydrochloride was studied. Several possible ap-

proaches were considered. The solvent of the synthesis was 

varied: methanol, acetonitrile, DMF. The form of 2-(dime-

thylamino)ethanethiol used was either an amine or a hy-

drochloride. The best results were received when the reac-

tion was carried out at the boiling point of methanol with 

2-(dimethylamino)ethanethiol hydrochloride. As a result, 

target products 3a–d were obtained in yields of 79–97%. 

Admixture of the initial acrylate was removed by recrystal-

lization from hexane.  

Thus, based on the thia-Michael reaction, an approach 

to the design of cationic amphiphilic meroterpenoids 3a–d 

was developed. Optimal conditions for the synthesis be-

tween the starting terpene acrylates and a compound con-

taining an ammonium group and a thiol fragment (2-(dime-

thylamino)ethanethiol hydrochloride) were selected. The 

target cationic amphiphilic meroterpenoids were obtained 

in high yields of 79–97%. The structure and composition of 

the obtained compounds were confirmed by a number of 

physical methods such as 1H and 13C NMR spectroscopy, IR 

spectroscopy, HRMS ESI.  

3.2. Study of antifungal, antibacterial activity and 

the mutagenicity of the compounds 3a–d 

The antifungal activity of compounds 3a–d was studied us-

ing the yeast Saccharomyces cerevisiae, one of the best stud-

ied and easily grown model organisms. Experiments were 

also performed on a clinical isolate of Candida sp. The anti-

bacterial activity of compounds 3a–d was studied on Gram-

positive (Staphylococcus aureus, clinical isolate of Staphy-

lococcus epidermidis) and Gram-negative (Salmonella 

typhimurium, clinical isolates of Klebsiella pneumoniae and 

Pseudomonas aeruginosa) bacteria. Using the resazurin 

assay, it was shown that meroterpenoids 3a–d (Table 1) 

have inhibitory properties against bacteria and fungi. The 

sesquiterpene farnesol derivative 3d (0.039 mg/mL) 

showed the greatest activity against Saccharomyces cere-

visiae. The monoterpene derivative 3a (0.156 mg/mL), 

containing a geranyl moiety, also had moderate activity 

against the Saccharomyces cerevisiae cell line (Table 1). A 

study of the effectiveness of terpenoids 3a–d against Can-

dida cells was carried out on a clinical isolate of Candida 

sp. This fungal cell line turned out to be more resistant to 

the studied compounds than Saccharomyces cerevisiae. 

However, the trend remains: the derivatives of farnesol 

3d (0.078 mg/mL) and the derivatives of geraniol 3a 

(0.625 mg/mL) showed the greatest activity. The bacteria 

Staphylococcus aureus turned out to be less sensitive to 

the action of meroterpenoids. The derivatives of geraniol 

3a and farnesol 3d showed the greatest activity with the 

same MIC value of 0.3125 mg/mL. Clinical isolates of 

Klebsiella pneumoniae and Pseudomonas aeruginosa 

turned out to be the most sensitive to the action of the 

myrtenol derivative 3c – 0.625 and 0.156 mg/mL, respec-

tively. Since the resazurin assay was carried out at pH 

7.0–7.4, it can be argued that the studied compounds 3a–

d during the experiment were in the form of quaternized 

ammonium salts. 

Mutagenicity is one of the many adverse properties of a 

compound, preventing it from becoming a commercial drug. 

Screening drug candidates for mutagenicity is a regulatory 

requirement for drug approval since mutagenic compounds 

pose a toxic hazard to humans. The Ames test is a short-term 

in vitro assay designed to detect genetic damage caused by 

chemicals. It has become the standard test for mutagenicity 

because it is relatively simple, rapid, and inexpensive.  

 
Scheme 1 Reagents and conditions: i) CH2=CHC(O)Cl, DIPEA, 
CHCl3, –5 °C, ii) 2-(Dimethylamino)ethanethiol hydrochloride, 

CH3OH, reflux. 

Table 1 Antifungal and antibacterial activity of compounds 3a–d. 

Compound 

MIC (mg/mL) 

Fungi Bacteria 

Saccharomyces 

cerevisiae 

Candida 

sp. 
S. aureus S. epidermidis S. typhimurium P. aeruginosa 

K. pneu-

moniae 

3a 0.156 0.625 0.3125 0.156 0.156 5 1.25 

3b 0.3125 1.25 0.625 0.3125 0.156 2.5 0.625 

3c 0.3125 2.5 2.5 1.25 0.625 0.625 0.156 

3d 0.039 0.078 0.3125 0.02 0.078 1.25 2.5 

Fluconazole 0.016 [41] 0.032 [42]      
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In this research, the direct mutagenicity of terpenoids 

3a–d was determined using the Ames test in the variant 

without metabolic activation. The excess of the number of 

revertant colonies to the histidine prototrophy of the S. 

typhimurium TA 98 strain when treated with test agents 

3a–d over that in the variant without treatment (negative 

control) was determined. To validate the results obtained, 

we used a variant with the addition of a known mutagen, 4-

Nitro-O-phenylenediamine (positive control) to the incuba-

tion medium at a concentration of 2.5 μg/plate. The results 

of the Ames test are presented in Tables 2–3. A tenfold ex-

cess of the number of revertants in the positive control over 

the negative control indicates the validity of the test system 

used. In none of the experimental variants studied we rec-

orded the formation of a number of revertants that would 

exceed that in the negative control variant by more than 

2.5 times. This could indicate the presence of mutagenic ac-

tivity in the tested compounds. Thus, water-soluble terpe-

noid derivatives 3a–d at the studied concentrations did not 

exhibit mutagenic activity in the Ames test without meta-

bolic activation.  

It was shown that the application of the thia-Michael 

reaction between terpenyl acrylates and 2-(dimethyla-

mino)ethanethiol is valid for the design of cationic am-

phiphilic meroterpenoids with bacteriostatic and fungi-

static effects against pathogenic strains of fungi and bac-

teria. Compound 3d containing a farnesyl fragment was 

the most active against the fungi Saccharomyces cere-

visiae (MIC 0.039 mg/mL) Candida sp. (MIC 0.078 

mg/mL) and Gram-positive bacteria clinical isolate 

Staphylococcus epidermidis (MIC 0.02 mg/mL) and 

Gram-negative Salmonella typhimurium (MIC 0.078 

mg/mL). Despite the fact that the activity of compound 

3d is slightly lower than that of the known drug flucon-

azole (Table 1), compound 3d is not mutagenic, while flu-

conazole induces cytotoxic and geno-toxic alterations 

[43]. The Ames test showed the absence of direct muta-

genic activity of all tested compounds.  

Table 2 Results of control crops. 

 Positive control Negative control 

Number of revertants ± 
SD 

101.0±7.9 9.3±3.8 

Table 3 Results of the analysis of mutagenic activity of compounds 

3a–d. 

Compound C, mg/mL Number of revertants ± SD 

3a 
0.04 9.0±4.4 

0.08 9.7±5.8 

3b 
0.04 10.0±3.5 

0.08 6.0±7.1 

3c 
0.2 7.0±2.0 

0.4 8.5±4.9 

3d 
0.02 6.0±2.0 

0.04 12.6±9.6 

4. Limitations 

This article describes an approach to the design of cationic 

amphiphilic meroterpenoids with bacteriostatic and fungi-

static effects. Despite the apparent simplicity of the synthesis 

of the target compounds, the use of this approach with other 

terpene acrylates or other Michael acceptors will require the 

search of optimal synthesis conditions, which is the subject 

of further research. Among other things, the cytotoxicity of 

the synthesized compounds remains to be studied. 

5. Conclusions 

Thus, based on the thia-Michael reaction, an approach to 

the design of cationic amphiphilic meroterpenoids contain-

ing geranyl, S-perillyl, R-myrtenyl or 2E,6Z-farnesyl frag-

ments was developed. The target compounds were obtained 

in high yields of 79–97%. The bacteriostatic and fungistatic 

activity of the synthesized meroterpenoids against patho-

genic strains of fungi and bacteria was studied. The com-

pound containing the farnesyl fragment was the most active 

against fungi Saccharomyces cerevisiae (MIC 0.039 

mg/mL), Candida sp (MIC 0.078 mg/mL), Gram-positive 

bacteria of the clinical isolate Staphylococcus epidermidis 

(MIC 0.02 mg/mL) and Gram-negative Salmonella typhi-

murium (MIC 0.078 mg/mL). Also, the Ames test showed 

the absence of direct mutagenic activity of all the studied 

compounds. The compounds developed in this research may 

find their use as safe antimicrobial or antiseptic agents.  
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