Reviewing twenty years of patents on ultrasonic-assisted pectin extraction from food and food waste

Aleksandr A. Drannikov a,b, Marina E. Trusova a, Antonio Di Martino a

a: Research School of Chemistry and Applied Biomedical Science, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
b: Faculty of Physical Engineering, Novosibirsk State Technical University, Novosibirsk 630073, Russia

* Corresponding author: aad12@tpu.ru

This paper belongs to a Regular Issue.

Abstract

A growing number of alternative agro-industrial waste sources are being considered as possible sources of pectin because of the growing market demand. Pectin's multifunctionality stems from the nature of its molecule, which varies in its chemical structures, physicochemical characteristics, and possible uses based on the extraction methods and sources used. Green methods utilizing microwaves and ultrasound are becoming more popular, in addition to the traditional extraction of pectin, which relies on the use of acids and/or chelators. As a result, this review focuses on patents related to the extraction of pectin from food and food waste using ultrasound assisted technologies. The following patent databases were searched using International Patent Classification (IPC) codes and relevant keywords: PatFT-AppFT, Espace Patent Search, Information Retrieval System, Eurasian Patent Office Search, and Patentscope. Based on the analysis findings, which cover the years 2003 to 2023, 54 pertinent documents—the majority of which were issued in China—were chosen and categorized into multiple groups based on their objectives, methods for extraction intensification, and raw materials. According to the data, 2017 had the greatest number of patent registrations in the industry.

Keywords
pectin ultrasound extraction food waste patent

Key findings

• A total of 54 patent documents emerged between 2003 and 2023, with the greatest number occurring between 2016 and 2017.
• Five methods were implemented to intensify the extraction process: surfactant, enzyme, microwave, vibration, and supercritical solvents application.
• There is a growing interest in combining or replacing conventional extraction techniques with ultrasound assisted extraction.
• Using food waste as the main pectin source correlates with the current need for reducing its environmental impact.

© 2024, the Authors. This article is published in open access under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Pectins are a class of complex carbohydrates that are mostly present in plants and consist of galactose and rhamnose connected to β-(1-4)-linked D-galacturonic acid [1]. The sugar moiety’s carboxyl group in the pectin structure can be partially esterified with a methyl group and partially or completely neutralized with one or more bases. Pectinic acid is a polygalacturonic acid that contains many methyl ester groups. In turn, pectic acid is the result of polygalacturonic acid’s lack of methyl ester groups.

Therefore, the term "pectin" refers to water-soluble pectic acids that, in the right circumstances, can form gels with sugars and acids and have different degrees of neutralization and methyl ester concentration [2]. A high methoxyl pectin content makes it difficult for it to gel on its own; instead, it needs a high concentration of both sugar and acid to do so. Conversely, in the presence of specific metal ions, low-methoxyl pectin readily forms a gel without the need for sugar [3]. Pectins can be categorized as low methoxyl pectin (<50 % esterification) or high methoxyl pectin (>50 % esterifica-
tion) based on the amount of methoxyl present [4,5]. Methoxyl content is a crucial factor that influences pectin’s commercial properties and its use in industry [6, 7].

Pectin is primarily used as a gelling, thickening, and stabilizing ingredient in the food companies [8]. The traditional use is to prepare jams and marmalades. Pectin also makes low-calorie jams gel stronger and decreases syneresis in jams and marmalades [9]. It is approved as fat and sugar replacer [10]. Besides, recent results demonstrate high potential of pectin for the formation of biopolymer films that are widely used in food coatings [11].

The second largest market for pectin is the health care sector. Since it was discovered that pectin can remove a variety of harmful substances from the human body, including heavy metals [12], long-lived radioactive elements like cesium, strontium, yttrium, and other nuclides with decades-long disintegration times, the interest towards it has increased significantly over the past three decades [13]. Nitrates, free radicals, metabolic products, xenobiotics, biogenic toxins, anabolic steroids, and other hazardous chemicals as well as compounds stored in the body, such as cholesterol, bile acids, urea, mast cell products, and many other toxins, are expelled from the body using pectin’s absorbent quality [13 – 15].

Pectin is an effective antioxidant as well. Beyond treating digestive issues [16], wound healing [17], preventing colon cancer [18, 19], antibacterial therapy [20] and many other ailments, its use in healthcare extends far beyond these boundaries. Keeping diabetic patients’ glycemic index stable is one of pectin’s most crucial uses [21].

Indeed, a few of countries have put laws into place requiring the use of pectin to treat employers who work in dangerous environments.

Pectin is used by the pharmaceutical industry to make children’s granules [22], suspensions [23], wound treatments [17], nutrient media [24], and as a viscosity agent in emulsions for absorbing heavy metallic ions [25].

Pectin is also used in cosmetology to make a variety of gels [26] and face masks [27], among other products. Pectin is employed in a number of technical processes, including the synthesis of D-galacturonic acid.

Overall, pectin is a valuable ingredient that is in high demand in the aforementioned industries as well as in the dairy, bread, fragrance, cosmetics, canning, pharmaceutical, textile, typography, and other sectors.

Commercial pectin is currently extracted primarily from citrus peels (85.5%) and apple pomace (14.0%), with a small fraction extracted from sugar beet pulp (0.5%) [28]. Pectin obtained from various sources and extracted via various techniques may have distinct molecular configurations. Furthermore, the maturity and growth stages of the fruit and parent plant, respectively, might affect the pectin structure [29].

Pectin is coded E440a for Low Molecular Pectin (LMP) and High Molecular Pectin (HMP), and E440b for amidated pectin. However, due to rising interest in food byproduct valuation and strong worldwide demand, the global pectin market is expected to reach a valuation of USD 1.0 billion by 2019 and is expected to rise by 50% over the next six years [30]. This encouraged researchers to investigate new pectin sources. Several studies have focused on the extraction and characterization of pectin from different agro-industrial wastes, such as mango and banana peels [31, 32], pumpkin and melon peels [33, 34], cocoa pod husks [35], eggplants [36], tomatoes [37], and potato peels [38].

Pectin extraction is a multi-step physico-chemical process where temperature, pH, solvent characteristics, source characteristics, and extraction duration affect the solubilization, hydrolysis, and extraction of pectin from plant tissues [39].

The following are the primary obstacles in the pectin extraction process: blanching and drying raw materials, a large amount of water, gathering and using the pectin source (typically the leftovers from fruit and vegetable processing industries), chemicals essential to creating the right conditions for pectin extraction, large amounts of precipitating agents such as various kinds of alcohol (up to 10 L for the production of 10 g of pectin), and high energy consumption by machinery for mechanical grinding, freeze-drying, and heating are all required during the extraction process [40].

In the last decades, conventional acid extraction of pectin has been adopted. It is carried out at elevated temperatures (50–100 °C) for up to 2 h [41]. The choice of solvent for extraction is determined by several factors, including its ability to dissolve pectin, selectivity, stability, renewability, and viscosity [4]. However, degradation of pectin in acid extraction leading to loss of its quality, and potential impacts of effluents of acid extraction on environment have encouraged use of alternative sustainable extraction methods such as microwave, ultrasonication, high pressure and pulsed electric field assisted extractions [42].

These green extraction protocols and new techniques like applying ultrasound or microwaves demand less energy and fewer reagents, have shorter extraction times, and are less hazardous. They also reduce processing time and enhance the use of environmentally friendly extractants. Further investigations are still needed to develop novel extraction techniques that will extract pectin in a way that is economical, reliable, safe for the environment, and efficient.

Herein we report a patent analysis described in Global patent literature in the period 2003–2023 focused on the ultrasound assisted extraction (UAE) of pectin from food and food waste. Additionally, the influence of the extraction on the pectin properties, in particular molecular weight and esterification degree, is reported, as they strongly influence the industrial application of the pectin.

2. Methodologies

The databases used for the patent search related to the pectin ultrasonic extraction from different food waste were:

- Patentscope [43];
- Espace Patent Search [44];
In this database, the search query was developed with keywords relating extraction methods to different sources of pectin. The following keywords in combination with the boolean operators were used: (TITLE -KEY (pectin*) AND TITLE-ABS-KEY (ultrasound) AND TITLE-ABS-KEY (“extraction* method”) AND TITLE-ABS-KEY (food* waste).

We used International Patent Classificatory (IPC) to optimize the search. Regarding IPC the main code we applied was C08B 37/06, with all related subclasses, groups, and subgroups. This code considers inventions “Pectin; Derivatives thereof” [48].

2.2. Filtering of information

Once all the patents registered were identified, a pre-selection was made, based on the topic of pectin extraction from food and food waste by UAE reported in English language. This pre-selection was carried out by reading and analysis of each patent’s information presented in the abstract. At this stage, patents dealing with the extraction of compounds different from pectin, those not mentioning extraction methods or not related to the use of ultrasound, were excluded except those in which pectin is extracted among the group of compounds.

2.3. Patents review and data relation

After the selection of the patents, a thorough analysis of each was conducted to determine the procedures and operational settings that affect the pectin’s quality, yield, and physicochemical characteristics. The information was located, gathered, and arranged. The following variables were selected for analysis: UAE intensification method; the food and food waste used as biomass; the yield obtained and the quality of the extracted pectin according to the degree of esterification; the extraction parameters (pH, temperature, extraction time, mass (g) / volume (mL) ratio).

3. Results and Discussion

According to our research criteria, we selected 54 patents across the specified databases in the period between 2003–2023. These comprise 36 applications and 18 granted patents. In Figure 1 the evolution of the patent documents specific to the UAE of pectin from food and food waste is illustrated.

The first patent was filed in the depicted area in 1998 by Konovalov A.I. et al. [49], but no more applications were made until 2008.

As of now, most of patents in the field are claimed by Chinese companies (85.19 %) mainly located in south-east provinces such as Chongqing, Zhejiang, Guangxi which are among the top citrus producers [50] followed by Russian group of companies (11.11%) located in the European part of country, which is the most promising for agriculture production development [51], US and Mexican (each 1.85%).

Through the analysis of revealed patent documents, four main research directions followed by the inventors have been identified. Ultrasound-assisted extraction is an innovative and promising extraction technique that aims to enhance the yield and quality of pectin, reduce the processing time, energy, and solvent consumption as well as lower the cost of production. The UAE process uses acoustic cavitation effects that result in the damage of plant cell walls and enhanced contact between solvent and target content of the cell, which leads to an increase in mass transfer and results in high pectin yields [52]. For this reason, 1/3 of all patents claim the integration of ultrasound to increase the extraction yield and simultaneously reduce the environmental impact and lower the cost of the whole process [53–75].

Considering the research parameters, the Southwest State University (Federalnoe gosudarstvennoe byudzhnetnoe obrazovatelnoe uchrezhdenie vysshego obrazovaniya "Yugo-Zapadnyj gosudarstvennyj universitet) from Russia is one of the key inventors, holding the property rights on two patents focused on the intensification of pectin extraction from the beet residues [74, 75] which are annually available due to the large production scale of beet in the Russian territory [76]. It has to be mentioned that sugar beet pectin possesses physicochemical differences to conventional pectin due to the higher proportion of neutral-sugar side chains, higher content of acetyl groups, higher content of phenolic compounds, and higher amounts of covalently bound protein moieties [77]. These outstanding properties restrict the thermally induced gelation, even in the presence of high sugar contents under acidic conditions [78].

Figure 1 Evolution of the patent documents related to the UAE pectin extraction from the food waste in the period between 2008–2022.
Along with the improvement of the extraction yield and reduction of the environmental and economic impact, researchers are deeply focused on the quality of pectin extracted, according to the original papers.

Generally, the molecular weight, methoxyl content, and esterification degree are the main factors used to assess the quality of pectin. Distinctive macro and microstructural variations of each pectin, which originates from a variety of plant sources, provide the basis for numerous commercial applications as a texture modifier, gel-inducing agent, colloidal stabilizer, viscosity enhancer, or health-promoting ingredient. These uses are technically connected to the pectin’s behavior in solution (gels or dispersion) [78, 79]. Commercial pectin is usually utilized to customize complex food products’ physicochemical, physiological, rheological, and organoleptic features [80]. Texture, mouthfeel, flavor, or digestibility are known as being significantly influenced by extrinsic (e.g., pH, overall pectin concentration, temperature, sugars, sugar type, and buffer salts) and intrinsic (e.g., degree of esterification/acetylation, surface charge density, overall surface charge, molecular weight, molecular structure, and calcium sensitivity) parameters [81]. The majority of applications for customized pectins include glazes, juices, dairy products, jams, jellies, and marmalades, among many other goods (Table 1).

Along with the type of pectin source, the temperature, duration, and type of acid employed during the extraction process have a significant impact on the quality [82, 83].

Acid extraction and alcoholic precipitation are commonly employed in industrial scale. The basis for acid extraction of pectin is the fact that proteopextin hydrolyzes in an acidic environment (pH range of 1 to 3) at temperature between 70–90 °C [84, 85]. Strong acids have the main advantages of generating a high pectin yield and reducing the extraction time; however, they also come with significant environmental disadvantages, such as the need to dispose of acidic wastewater, high energy consumption and costs.

Rather than using HCl for extracting pectin, food-grade organic acids such as citric, tartaric, and malic have been employed as an environmentally friendly alternative [86]. When compared to other organic acid treatments, the molecular weight and apparent viscosity of pectin extracted with citric acid turn out to be greater [7].

According to the analysis of the degree of methyl esterification, pectins extracted with organic acids tend to be majorly methoxylated [87]. At lower temperatures, ultrasound-assisted extraction yields high-purity product obtained in a few minutes. It is a clean, efficient, and sustainable method [87].

In relation to this, in almost thirty percent of the selected patents, the inventors developed solutions that enable extraction at ambient temperature through the use of ultrasound to provide mild extraction conditions and reducing solvent use [88–103]. The Hefei Bensheng Biotechnology Co Ltd. (China) is the leading company in the area as it filled two patent applications on pectin extraction from citrus and Premna microphylla providing a heavy metal and solvent free product [102, 103].

The trend in Figure 2 shows that starting in 2013, the aims indicated in the patents began to vary.

In 2013–2014, the inventors begin to focus on the use of ultrasound to increase the selectivity towards certain pectin fractions such as HG, RG-I, RG-II, XGA and AGA for specific commercial applications [104].

From the analysis of the found patents, we revealed that some of them are dedicated to selective isolation of metal ions and particles [105, 106]. Both methods claimed to use the enzymolysis process to decrease the degree of esterification (DE) of pectin; however, for general metal absorption, it is applied for total DE reduction, resulting in an increase in complexation ability [105], while in [106] enzymolysis is applied to remove only the polygalacturonic acid, improving the absorption selectivity of pectin towards radioactive ions.

Another pectin composition consisting of D-mannose 5.68%, D-xylene 0.94%, L-rhamnose 18.79%, D-galacturonic acid 51.12%, D-Glucose 1.78%, D-galactitolipin 16.14% and L-Arabinose 4.99% obtained from the sunflower demonstrates its antimicrobial properties. It acts in two consequent ways: firstly, the pectin oligosaccharide acts on the thallus, destroys the somatic cell wall and further inhibiting the bacterial respiration, causing their death [107].

More research groups focused on the RG-I pectin extraction with ultrasound [108–112]. RG-I pectins are of specific interest due to their higher compactness and flexibility with a random coil conformation, which make pectin more stable to the outer influence, especially the pH [94]. In this area, Zhejiang University (ZJU) is on the frontier of the RG-I rich pectin extraction process development. Those inventors applied mild extraction conditions followed by dialysis and lipophilization to prevent the degradation of the target product [111, 112].

Table 1 Range of available commercial pectin for different application fields (readapted from [78]).

<table>
<thead>
<tr>
<th>Degree of esterification (%)</th>
<th>Classification</th>
<th>Commercial use</th>
</tr>
</thead>
<tbody>
<tr>
<td>>70</td>
<td>Rapid set</td>
<td>Acidified dairy drinks, Jam, beverages (fruit, soy, etc.)</td>
</tr>
<tr>
<td>60–70</td>
<td>Slow set</td>
<td>Jellies, bakery, confectionery</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>“Jelly sugar” (home users)</td>
</tr>
<tr>
<td>40–50</td>
<td>Low-medium calcium reactivity</td>
<td>Reduced sugar products, Baking stable fruit preparations, Yoghurt fruit preparations, Low sugar or low acid products</td>
</tr>
<tr>
<td>30–40</td>
<td>High calcium reactivity</td>
<td>Nonacid foods, juice fining</td>
</tr>
<tr>
<td><10</td>
<td>Pectate</td>
<td></td>
</tr>
</tbody>
</table>
Over the past decade, food waste from the processing of plant and animal raw materials—which usually means eliminating or extracting nutritious components from the leftovers of low-nutrient or inedible ingredients—has also contributed to the world’s environmental issues [113]. In this regard, scientists are required to develop novel strategies for valorizing food waste, such as thorough extraction of important elements despite the substantial additional costs [114–119]. Examples of food waste and potential extractives obtained by UAE extraction are summarized in Table 2.

Patent applications from the Guangxi Institute of Botany of CAS have been submitted in the greatest number; they define the complete fermentation-based production of vinegar and the subsequent UAE of pectin from mango peels, which allows for full utilization of these peels [7, 120]. Different extraction intensification techniques are often combined in modern technological pectin isolation processes to avoid hydrolysis, leading to more efficient polysaccharide extraction from exudates. The main principle of polysaccharide extraction is to break down cell walls in moderate conditions [7].

Further demand in the high yield of extraction led to the combination of ultrasound and other intensification methods, which are summarized in Figure 3.

The use of surfactants (2012 [56]), enzymes (2013 [103]), pulsed electric field application (2014 [58]), microwave (2015 [59]), vibration (2015 [74]), and supercritical conditions (2020 [71]) are some examples of these extraction-intensifying approaches. All of these components impact the pectin’s quality and yield. Table 3 describes the extraction intensification strategy according to its description, advantages, and disadvantages. However, the solid-liquid UAE is mentioned in approximately 54 percent of patents without any further impact on raw material. UAE provides an already good isolation result due to its benefits, which include good scalability, low operating temperatures and process length, rapid mass and heat transfers, together with high extraction yields and selectivity. Furthermore, the UAE parameters’ high degree of variability enables effective process and product quality management. Summarizing the information from the patents, the parameters of ultrasound vary as follows: frequency 4–100 kHz and 350 kHz, power 20–2000 Wt, intensity 0.35–9 Wt/cm², temperature 25–100 °C, power density 0.002–0.003 Wt/cm³ and 0.2–3.5 Wt/cm³.

The specific extraction of pectin fractions from various source materials is carried out by a variety of intensification methods. When it comes to waste materials, fruit and vegetable pieces including pulp, leaves, and pericarp are the primary sources of pectin. Figure 4 presents the primary sources of pectin recovered using ultrasound.

Wastes from citrus and apples are the primary sources of commercial pectin [7]. But when it comes to the UAE process, the utilization of apple pomace as a source accounts for only 1.75%; instead, citrus—which includes oranges (12.28%), lemons (5.26%), and pomelo (3.51%)—takes the first position, followed by other plants high in pectin.

Table 2 Food waste and extractives obtained with the UAE extraction.

<table>
<thead>
<tr>
<th>Patent number</th>
<th>Raw material</th>
<th>Extractives</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN104000138B</td>
<td>Potato</td>
<td>Pectin, dietary fiber</td>
<td>[114]</td>
</tr>
<tr>
<td>CN105461824A</td>
<td>Passion fruit pomace</td>
<td>Pectin, alcohol</td>
<td>[115]</td>
</tr>
<tr>
<td>CN112314955A</td>
<td>Citrus peel</td>
<td>Oil, flavonoid, pectin, dietary fiber</td>
<td>[116]</td>
</tr>
<tr>
<td>CN113425754A</td>
<td>Passion fruit peel</td>
<td>Flavone, pectin</td>
<td>[117]</td>
</tr>
<tr>
<td>CN109182074B, CN109337790B</td>
<td>Mango peel</td>
<td>Vinegar, pectin</td>
<td>[118, 119]</td>
</tr>
</tbody>
</table>

![Figure 2 Aims of patent documents related to UAE in the period between 2003–2023.](image1)

![Figure 3 UAE intensification methods.](image2)

![Figure 4 Source of food waste used in UAE of pectin.](image3)
An overview of the scientific publications was made from 2003 to 2023 using PubMed database through two search queries i) Pectin [Title/Abstract] AND ii) (ultrasound) OR (ultrasonic) [Title/Abstract] AND iii) extraction [Title/Abstract] AND iv) (food) OR (food waste [Title/Abstract]). The results are represented in Figure 5. A total of 22,482 (93.3%) publications with the number growing exponentially from 2003 to 2023 confirms the great interest in pectin UAE and its future prospects. Around 3144 articles were published in the year 2023. This large number of research publications follow the increase in the pectin use and request and, consequently, in the research of new extraction strategies and sources, demonstrating the future potential of the polysaccharide.

5. Current trends & future outlook

In this review, we examined patents related to the extraction of pectin from food and food waste, their purpose and the characteristics of each of the identified groups.

Pectin is the complex polysaccharide group contained in the primary cell wall and intercellular regions of the plants, affecting their flexibility and mechanical strength [31]. As depicted in Figure 2, pectin-based products demonstrate various applications such as food [82], agriculture [121, 122], pharmacy and health promotion [13, 83], packaging [1, 123], water treatment [124] and 3D-printing [125].

The key process of pectin production is extraction from natural sources; the polysaccharide content in raw materials reaches up to 25% depending on the biomass [78]. The exponentially growing number of scientific publications emphasize the prospects for the use of pectin and the demand in development of extraction methods that allow the isolation of pectin with specified parameters or component composition.
Figure 5 Trend in publication activity related to the UAE of pectin from food and food waste in the period 2003 – 2023.

However, according to patent analysis this trend is downward and is gradually giving a way to works aimed at increasing the resource efficiency of the extraction, which results in a comprehensive conversion of raw materials and subsequent isolation of several groups of substances including pectin.

In order to prevent the degradation of valuable components, scientists also target the developing of soft technologies. This allows them to fulfill the second trend, which is the environmental friendliness of pectin isolation, and provides additional cost reduction due to the wastewater volume decrease. In turn, this leads to developing more sustainable process with higher raw material conversion, and the diversity of the resulting products will make it more stable towards market fluctuations.

Summarizing the data, further development of pectin industry will definitely target the comprehensive processing of previously unexplored raw materials, including those atypical for pectin production. Another way is the combining existing technological approaches, aimed to intensifying the separation of pectin fractions within one process, which will increase the target product cost becoming promising for industrial implementation. This agrees with recent conclusion of scientific literature stating that the combination of several techniques can significantly improve pectin yield and make the extraction process more efficient and environmental friendly [126]. However, the literature provides higher variety of extraction methods, which have not yet been combined with the UAE approach. These are, for example Ohmic heating extraction and subcritical water extraction [127] as well as ultra-high pressure approach [128] and deep eutectic solvent extraction [129]. There are still some uninvestigated fields for the combined UAE method development and extraction process enhancement.

6. Conclusions

The ultrasound assisted approaches for pectin extraction from food and food waste sources were assessed in this patent research study. Based on the research methodologies, a total of 54 patent documents emerged between 2003 and 2023, with the greatest number occurring between 2016 and 2017.

Of these, 18 have been granted patents and 36 are patent applications. The relevant patents that were chosen explain distinct UAE modes and how they combine with extraction-intensifying methods to separate pectin from different types of food and food waste while controlling the desired product’s characteristics. Five methods were implemented to intensify the extraction process: surfactant application, enzyme application, microwave, vibration, and supercritical solvents. Each method report benefits as well as drawbacks, and its use is contingent upon the particulars of what is needed and the raw material. The results of this study show that there is growing interest in combining or replacing conventional extraction techniques with ultrasound assisted extraction to lower extraction-related costs and adverse environmental impacts. The preference for using food waste as the main source points to an increasing emphasis on developing solutions to address the current need for reducing the impact of food waste on the environment.

- Supplementary materials
No supplementary materials are available.

- Funding
The work was financially supported by the Ministry of Science and Higher Education of Russian Federation No 075-15-2023-602 (NIP TPU n 20.0060. МГ.2023).

- Acknowledgments
None.

- Author contributions
Conceptualization: A.A.D., A.D.M.
Data curation: A.A.D.
Funding acquisition: A.D.M.
Investigation: A.A.D.
Methodology: A.A.D.
Project administration: A.D.M.
Resources: A.A.D., A.D.M.
Supervision: M.E.T.
Visualization: A.A.D., A.D.M.
Writing – original draft: A.A.D., A.D.M.
Writing – review & editing: M.E.T.
A list of 10 most significant cited papers

References

Chimica Techno Acta 2024, vol. 11(2), No. 202411213

DOI: 10.15826/chimtech.2024.11.2.13

Chimica Techno Acta 2024, vol. 11(2), No. 202411213

11 of 12

DOI: 10.15826/chimtech.2024.11.2.13

method and application thereof. China patent CN 110527703 A, 2019 Dec 03.