Methyl orange sorption on octadecylamine-modified iron magnetic nanoparticles

Liang Tianhui a,b, Sayara Aga-Tagieva b,c, Alexander Omelyanchik b,c, Zhang Xiaozhou a,c, Hong Lu a,b, Katerina Levada b,c, Valeria Rodionova b,c, Kurban Magomedov b,c,*

a: College of Material Science and Engineering, Qiqihar University, Qiqihar, 161006, China
b: REC “Smart Materials and Biomedical Application, I. Kant Baltic Federal University, Kaliningrad 236001, Russia
c: Department of Analytical and Pharmaceutical Chemistry, Dagestan State University, Makhachkala, 367000, Russia
* Corresponding author: m_kurban@mail.ru

This paper belongs to a Regular Issue.

Abstract
This study investigates the sorption of 2-methyl orange dye onto octadecylamine-modified iron oxide magnetic nanoparticles (ODA-IONPs). The synthesized ODA-IONPs exhibit remarkable sorption capacity, reaching 800 mg/g at the nanoparticle concentrations ranging from 5 to 10 mg/g and pH of 2–8. The sorption process demonstrates rapid kinetics, achieving 90% of maximum sorption within 0.5 min. Thermodynamic analysis showed that sorption process is spontaneous and endothermic, as indicated by negative ΔG and positive ΔH values. The pseudo-second-order and Langmuir models best describe the sorption kinetics at 293 K (R² > 0.99). Compared to other adsorbents, ODA-IONPs show superior MO removal capacity under a wider pH range. The influence of nanoparticle concentration, pH, and temperature on sorption efficiency is systematically explored, with optimal conditions identified at 10 mg/L ODA-IONPs and pH 6. Furthermore, the feasibility of nanoparticle reusability for sorption purposes is assessed. These findings underscore the potential of ODA-IONPs as efficient sorbents for wastewater treatment and environmental remediation applications.

Key findings
- The adsorption capacity of ODA-IONPs was highest at 5 mg/L and 10 mg/L concentrations.
- The sorption process was spontaneous and endothermic, with negative ΔG values and a positive ΔH value.
- The pseudo-second-order and Langmuir models best described the dye sorption on ODA-IONPs at 293 K.

1. Introduction
During the process of modern industrial development, the usage of colored materials and dyes is indispensable, especially in industries such as textiles, food, and plastics [1, 2]. 2-Methyl Orange (MO), a simple and stable dye, is economically viable and resistant to decomposition under ultraviolet radiation. It constitutes approximately half of the dyes used in the textile industry and finds wide application in textile dyeing. However, MO itself is a toxic and harmful substance that can cause irritation to the human body. Prolonged exposure to MO can potentially lead to reproductive system and liver toxicity issues [3,4]. In industrial wastewater, if MO is discharged untreated directly into water sources and soil, it generates a large amount of suspended dye molecules, severely impacting the transparency of water bodies and affecting the life activities of fish, plants, and microorganisms. This poses serious threats to local ecosystems and food chains. Additionally, MO can be released into the air, causing negative impacts on air quality and atmospheric environment [5–8]. Therefore, it is essential to treat industrial wastewater containing MO before its discharge to ensure safety and harmlessness.

© 2024, the Authors. This article is published in open access under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Currently, methods for treating dye wastewater can be categorized into physical, biological, conventional chemical, and advanced oxidation processes [9]. Among these methods, physical processes such as adsorption [10], membrane separation [11], and ion exchange [12] are commonly used techniques for treating dye-polluted wastewater [13]. Biological processes utilize the metabolic processes of microorganisms such as bacteria and fungi to decompose organic pollutants in wastewater and purify the sewage, including aerobic biological processes [14], anaerobic biological processes [15], and aerobic/anaerobic mixed processes [16, 17]. They have advantages such as low cost and large treatment range. However, these processes have several limitations for environmental treatment, requiring suitable temperature, light, pH, and oxygen concentrations. In practical wastewater treatment, the complex water quality may result in insufficient biodegradability and low degradation performance for dye-containing wastewater [18]. Conventional chemical processes, such as electrochemical methods [19], chemical precipitation [20], redox reactions, and co-agulation [21, 22] alter the physical or chemical properties of pollutants in wastewater to change their forms, causing them to precipitate, float, or be partitioned into small molecular states. However, these methods are often associated with high costs, high energy consumption, and the need for complex post-treatment processes to avoid secondary pollution of the environment [23]. Advanced oxidation processes, which involve reactions under conditions of light [24], catalysts, high temperature, and high pressure, can degrade pollutants into small molecular substances and purify wastewater. However, their effectiveness in handling pollutants with high organic content is not ideal [25, 26].

Adsorption is a physical purification method that utilizes the porous physical properties of adsorbents to adsorb organic dyes from wastewater onto the surface or within the pores, thereby physically separating them from the wastewater. It has such advantages as simplicity, high efficiency, no pollution, and economic viability, making it an excellent method for purifying dye wastewater and the optimal and comprehensive technique for removing azo dyes from water [27]. There are many types of adsorbents available, among which activated carbon [28, 29], due to its microporous structure, large surface area, and strong adsorption capacity, is widely used. However, it has the drawbacks of high production costs and poor recycling performance. Various low-cost adsorbents such as alumina [30], zeolite [31, 32], polymers [33], activated carbon [34], silica [35], gel chitosan, clay materials [36], and agricultural [37] and industrial wastes [38, 39] have been extensively employed [40, 41]. However, research has shown that these low-cost adsorbents do not possess sufficient adsorption performance for MO [42, 43].

Iron oxide nanoparticles (IONPs), specifically those based on γ-Fe₂O₃ and Fe₃O₄, have rapidly advanced for sorption application owing to their magnetic properties, enabling their efficient collection with a magnetic field [44]. Their biocompatibility, ease of preparation, and high extraction efficiency enhance their effectiveness in solid-liquid separation, making them valuable adsorbents for water purification and various other applications [45–48]. The preparation methods for γ-Fe₂O₃/Fe₃O₄ IONPs include co-precipitation [49–51], microemulsion [52], thermal decomposition [53], and hydrothermal synthesis [54]. The co-precipitation method not only stands out for its simplicity and efficacy in the synthesis of IONPs but also offers an eco-friendly advantage by circumventing the use of toxic reagents [55].

However, bare IONPs have a tendency to self-aggregate and minimize their surface energy. To ensure chemical stability and uniform particle size of IONPs, protective coatings can be applied to the surface, which effectively increases the surface area-to-volume ratio of the particles [48, 56, 57]. Surface modification with various molecules, such as propylene glycol, silane coupling agents, citric acid, and hexadecyltrimethylammonium bromide [58, 59], can be used to meet different requirements. Moreover, different reactive groups, such as epoxy, carbonyl, and carboxyl groups, can be introduced onto IONPs through chemical reactions, enabling chemical bonding, π-π stacking, ion binding, and hydrogen bonding [60, 61].

In this study, the co-precipitation method was used to synthesize magnetic IONPs coated with octadecylamine (ODA). This ODA-IONPs composite was tested for adsorption capacity of MO under different conditions, and their adsorption kinetics was thoroughly studied to determine the optimal parameters and mechanical models for improving the efficiency of the process.

2. Experimental

2.1. Chemicals, materials and equipment

Iron (III) chloride hexahydrate (FeCl₃·6H₂O, ≥98%, LenReaktiv), Iron(II) sulfate heptahydrate (FeSO₄·7H₂O, ≥98%, LenReaktiv), sodium hydroxide (NaOH, ≥98%, Sigma-Aldrich) and octadecylamine (C₁₈H₃₉N, ≥98%, LenReaktiv) were used for the synthesis of the IONPs, MO (C₁₄H₁₄N₃O₅SNa, ≥99%, pure for analysis, LenReaktiv). Adsorption spectra were measured with a spectrophotometer SF-2000 (Manufacturer: OKB Spektr, St. Petersburg) in the wavelength range from 200 to 800 nm with a scanning step of 0.1 nm and a slit width of 1 nm.

2.2. Nanoparticle preparation

IONPs were synthesized by co-precipitation method as described elsewhere [49–51] with some modifications. Solutions of Fe²⁺ (10 mL, 10 mmol/L) and Fe³⁺ (10 mL, 20 mmol/L) were prepared in distilled water preheated to 80 °C. Sodium hydroxide solution (30 mmol/L) was then incrementally added under vigorous stirring to adjust the pH to value within the range of 9.0 to 11.0. The reaction mixture was maintained at 80 °C for 2 h with continuous stirring. Afterwards, the mixture was allowed to cool to
room temperature, and the resultant black precipitate was separated using permanent magnets (with the induction of magnetic field at surface of about 1.2 T). The precipitate was purified by washing twice with distilled water and thrice with ethanol. The purified precipitate was resuspended in 250 mL of distilled water. Separately, 1 g of ODA was dissolved in 250 mL of acetone, and this solution was added to the aqueous suspension. The mixture was stirred for 24 h at 30 °C, resulting in the synthesis of ODA-modified iron oxide (γ-Fe2O3/Fe3O4) nanoparticles (ODA-IONPs).

As we demonstrated earlier [62], the obtained particles were approximately 8 nm in size according to Transmission Electron Microscopy (TEM). X-ray Diffraction (XRD) analysis revealed that they possess a spinel ferrite structure typical for both magnetic iron oxides γ-Fe3O4 and Fe3O4. The synthesized particles showed superparamagnetic behavior at room temperature with saturation magnetization of approximately 55 Am2/kg, which is consistent with the expectations for nanoparticles of this size [50, 51].

2.3. Sorption study

2.3.1. Capacity

To determine the sorption capacity, a solution of ODA-IONPs (100 mg/l, 5 ml) was added to a MO solution (100 mg/l, 5 ml). The pH was adjusted to the desired level using hydrochloric acid and sodium hydroxide. Distilled water was then added to bring the volume to 50 ml, and the pH value was measured again to confirm the acidity. The solutions were placed on a stirrer for 1 h. After this period, the optical density of the solution was measured, followed by the magnetic separation and filtration steps. The optical density was recorded at a wavelength of 469 nm and compared with the calibration curve to determine the concentration of MO.

The static capacity of the adsorbent ODA-IONPs was calculated using the following formula:

\[
q_t = \frac{(C_0 - C_{eq})V}{m}
\]

where \(C_0\) is the initial concentration of the dye, \(C_{eq}\) is the equilibrium concentration of the dye, \(V\) is the volume of the flask, and \(m\) is the mass of the sorbent.

2.3.2. Effect of IONPs concentration on degree of extraction

The effect of a samples weight was studied in a manner similar to the one used for the pH, but using the optimum values of acidity, pH 6–8. The weight varied from 50 to 200 mg. The degree of extraction was calculated with the formula:

\[
R = \frac{(C_0 - C_{eq})}{C_{eq}} \times 100%.
\]

2.3.3. Period of sorption

To assess the period of sorption, distilled water was added to a 100 ml flask containing ODA-IONPs solution (100 mg/l, 10 ml) and MO solution (100 mg/l, 10ml) to the labeled mark. The flask was then put on a stirrer. The optical density measurements of the solution were taken by collecting 3.5 ml samples after 0.5, 1.5, 3.5, 5, 10, 20, 30, 40, 50, 60, 90, and 120 min.

2.3.4. Kinetics of sorption

The kinetics of MO adsorption on IONPs samples modified with ODA was analyzed using pseudo-first-order [63], second-order [64], Elovich [65, 66], Weber and Morris model [67], Langmuir [68], Freundlich [69], Temkin [70] and Dubinin–Radushkevich [71] models, which can be expressed in linear form as

\[
\ln(q_e - q_t) = \ln q_e - k_1 t,
\]

where \(q_e\) and \(q_t\) (mg/g) are the amount of adsorbed MO at equilibrium and at time \(t\), respectively; \(k_1\) is the equilibrium rate constant in the pseudo-first-order model (L/min);

\[
\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e} t,
\]

where \(q_e\) is the amount of the dye adsorbed at equilibrium (mg/g), and \(k_2\) is the equilibrium rate constant of the pseudo-second-order model (g/mg min);

\[
q_t = \frac{1}{\beta} \ln(a\beta) + \frac{1}{\beta} \ln t,
\]

where \(\alpha\) is the initial adsorption rate and \(\beta\) is the desorption constant;

\[
q_t = k_t t^{0.5} + C_p,
\]

\[
C_p = \frac{1}{q_e k_t} + \frac{1}{q_e} C_p,
\]

\[
\ln q_t = \ln k_F + \frac{1}{n} \ln C_p,
\]

\[
\ln q_t = B \ln k_r + B \ln C_p,
\]

\[
\ln q_t = \ln q_{p-0} - k_{p-0} \epsilon^2,
\]

where \(k_1, k_2, k_F, k_T,\) and \(k_{p-0}\), are the intraparticle diffusion rates (mg/g min\(^{0.5}\)) according to the Weber and Morris, Langmuir, Freundlich, Temkin, Dubinin–Radushkevich models, respectively; \(t\), \(C_p\) is a constant for any experiment (mg/dm\(^3\)), \(n\) is the Freundlich isotherm constant, showing the heterogeneity of the surface, \(B\) is the constant associated with the heat of sorption (J/mol), \(q_{p-0}\) is the theoretical capacity of the sorbent (mol/g); \(\epsilon\) is the Polanyi potential.

3. Results and Discussion

Figure 1 illustrates the effect of different concentrations (0.5–100 mg/l) of ODA-IONPs on the adsorption process of 10 mg/l MO solution. The adsorption capacity (q) and separation factor (R) were measured after adsorption for 2 h. The q value increased gradually, reaching a maximum of 768.6 mg/g at a concentration of 5 mg/L, after which it gradually decreased. R gradually increased in the range of
o – 10 mg/l, then decreased in the range of 10 – 100 mg/l, achieving a maximum of 95% at 100 mg/l ODA-IONPs.

Through comparison and selection of the above results, it was found that the q of ODA-IONPs reached its highest values at the concentrations of 5 mg/l and 10 mg/l, while R was highest at the concentration of 10 mg/l. Therefore, the concentration of 10 mg/l is considered to be the optimal adsorption concentration for ODA-IONPs. This concentration provides the best balance between high adsorption capacity and efficient separation of the MO dye from the solution.

Figure 2 lists the effects of different PH environments on the adsorption of ODA-IONPs. The concentrations of ODA-IONPs and MO are both 10 mg/l. At room temperature, with the increase of pH value, q and R both increase first and then decrease, reaching the highest values at pH ~6.0. This phenomenon can be attributed to the behavior of ODA-IONPs at different concentrations. At low concentrations (10 mg/l and below), the ODA-IONPs remain well-dispersed without significant agglomeration. However, as the concentration increases (20 mg/l and above), the zeta potential decreases, leading to nanoparticle agglomeration. This agglomeration reduces the effective surface area available for interaction with MO molecules. Consequently, the contact area between the ODA-IONPs and MO decreases, resulting in a lower sorption capacity of the sorbent.

Figure 3 shows the effects of different reaction temperature and time on the adsorption q value of ODA-IONPs at the reaction temperatures of 293, 303, 313 and 323 K, respectively, while both ODA-IONPs and MO concentrations of ODA-IONPs and MO are set at 10 mg/l and a pH of 6.0. The q value was observed to increase with time, and higher reaction temperatures resulted in higher q values. Compared with the four reaction temperature curves, the q value increases greatly from 293 to 303 K, while the three curves at 303, 313 and 323 K have little difference. Table 1 presents the time for reaching the highest q value at the four reaction temperatures, as well as the time for reaching 95% ($t_{95\%}$) and 90% ($t_{90\%}$) of the highest q value. It can be seen from the figure that the highest q value at the four reaction temperatures is reached at 120 min. Within the range of 293–313 K, it only takes 0.5 min to reach 90% of the highest q value. At 323 K, only 0.5 min is needed to achieve 95% of the maximum q value.

Figure 4 illustrates the effects of different reaction temperatures and time on the adsorption R value of ODA-IONPs. The trends observed in R values were consistent with those for q in Figure 3. As the reaction temperature increased, the R value also increased, indicating enhanced adsorption efficiency at higher temperatures.

The Gibbs energy (ΔG) values at all indicated temperatures are negative, which indicates the spontaneity of the sorption process. With increasing temperature, the ΔG values become more negative, which indicates an increase in the spontaneity of the sorption process with increasing temperature.

Table 1 Temperature dependence of the time to reach different degrees of sorption and the amount of adsorbed MO.

<table>
<thead>
<tr>
<th>T, K</th>
<th>$t_{90%}$ min (q, mg/g)</th>
<th>$t_{95%}$ min (q, mg/g)</th>
<th>$t_{50%}$ min (q, mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>293</td>
<td>120 (926.4)</td>
<td>5 (880.0)</td>
<td>0.5 (837.71)</td>
</tr>
<tr>
<td>303</td>
<td>120 (968.6)</td>
<td>5 (920.1)</td>
<td>0.5 (871.70)</td>
</tr>
<tr>
<td>313</td>
<td>120 (959.4)</td>
<td>1.5 (911.4)</td>
<td>0.5 (835.37)</td>
</tr>
<tr>
<td>323</td>
<td>120 (967.8)</td>
<td>0.5 (919.4)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1 Dependence of the sorption and degree of sorption of MO on ODA-modified iron oxide magnetic nanoparticles on the different concentrations of ODA-IONPs.

Figure 2 Dependence of the sorption and degree of sorption of MO on ODA-IONPs vs pH.

Figure 3 Dependence of degree of sorption of MO on the ODA-IONPs from time at different temperatures.
The negative entropy change (\(\Delta S = -164.64 \text{ J/(mol-K)}\)) indicates a decrease in the entropy of the system during sorption, likely due to the ordering of dye molecules on the surface of nanoparticles. A positive enthalpy (\(\Delta H = 43.4 \text{ kJ/mol}\)) indicates that the sorption process is endothermic, requiring the absorption of heat from the environment. Thus, the process of dye sorption on nanoparticles is spontaneous and endothermic, accompanied by a decrease in the entropy of the system. An increase in temperature contributes to an increase in the spontaneity of the process, which manifests itself in more negative \(\Delta G\) values.

From the analysis of Table 2, it can be seen that the pseudo-second-order and Langmuir models most accurately describe the dye sorption on ODA-IONPs at 293 K. These models have high coefficients of determination (\(R^2\)), indicating good agreement with the experimental data. The negative values of \(\Delta G\) by Langmuir model confirm the spontaneous nature of the sorption process. The Freundlich, Temkin and Dubinin–Radushkevich models also show relatively high values of \(R^2\), but with some anomalies in the parameters, which requires further study.

3.1. Comparison with other adsorbents

For further comparison with other various adsorbents, the adsorption capacity (\(q_{\text{max}}, \text{mg/g}\)) of different adsorbents reported in the literature [66, 72, 81, 73–80] are listed in Table 3. According to this Table, the adsorption capacities of the ODA-IONPs were much higher than those of the reported adsorbents, indicating that the ODA-IONPs have important potential for the adsorption MO from aqueous solution. Only magnetic hierarchical porous carbon spheres have higher capacity, but lower pH range (study only for pH 7) [81].

4. Limitations

Difficulties can arise in the determination of dyes at different pH because errors occur when determining the concentration at the isobestic point. Simple and rapid methods are needed for the determination of various dyes (including MO) in sorption and catalysis studies using CCD spectrophotometers and chemometric processing, possibly using neural networks.

5. Conclusions

The investigation into ODA-IONPs reveals their substantial potential as sorbents for MO dye, with a maximum capacity of 800 mg/g and rapid sorption kinetics with 90% of maximum sorption achieved within 0.5 min. Thermodynamic analysis reveals the process to be spontaneous (\(\Delta G < 0\)) and endothermic (\(\Delta H = 43.4 \text{ kJ/mol}\)). The high adsorption capacity, rapid kinetics, and wide pH range (2–8) of ODA-IONPs offer significant advantages over conventional adsorbents.

Table 2 Parameters of kinetics model for sorption of ODA-IONPs of MO.

<table>
<thead>
<tr>
<th>Model</th>
<th>Model parameters</th>
<th>293</th>
<th>303</th>
<th>313</th>
<th>323</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFO</td>
<td>(k_1)</td>
<td>8.10^{-3}</td>
<td>8.10^{-3}</td>
<td>8.10^{-3}</td>
<td>8.10^{-3}</td>
</tr>
<tr>
<td></td>
<td>(R^2)</td>
<td>0.576</td>
<td>0.7593</td>
<td>0.8606</td>
<td>0.4605</td>
</tr>
<tr>
<td>PSO</td>
<td>(K_a)</td>
<td>0.0011</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(R^2)</td>
<td>0.9988</td>
<td>0.9998</td>
<td>0.9999</td>
<td>0.9997</td>
</tr>
<tr>
<td>Langmuir</td>
<td>(R^2)</td>
<td>0.9951</td>
<td>0.9992</td>
<td>0.9994</td>
<td>0.9998</td>
</tr>
<tr>
<td></td>
<td>(K_L), l/mol</td>
<td>5.1371</td>
<td>24.1973</td>
<td>19.8059</td>
<td>35.1309</td>
</tr>
<tr>
<td></td>
<td>(a_{\text{max}}, \text{mol/g})</td>
<td>0.00225</td>
<td>0.00265</td>
<td>0.00262</td>
<td>0.00273</td>
</tr>
<tr>
<td></td>
<td>(\Delta G, J/mol)</td>
<td>-3988.54</td>
<td>-8030.57</td>
<td>-7774.09</td>
<td>-9562.07</td>
</tr>
<tr>
<td>Freundlich</td>
<td>(R^2)</td>
<td>0.8032</td>
<td>0.9535</td>
<td>0.9697</td>
<td>0.9812</td>
</tr>
<tr>
<td></td>
<td>(K_f)</td>
<td>0.00275</td>
<td>0.00277</td>
<td>0.00276</td>
<td>0.00279</td>
</tr>
<tr>
<td></td>
<td>(n)</td>
<td>-7.752</td>
<td>-15.823</td>
<td>-13.736</td>
<td>-18.315</td>
</tr>
<tr>
<td>Temkin</td>
<td>(R^2)</td>
<td>0.8084</td>
<td>0.9591</td>
<td>0.9736</td>
<td>0.9829</td>
</tr>
<tr>
<td></td>
<td>(K_T)</td>
<td>0.000123</td>
<td>8.31529·10^{-7}</td>
<td>8.31529·10^{-7}</td>
<td>8.31529·10^{-7}</td>
</tr>
<tr>
<td></td>
<td>(B)</td>
<td>-0.0003</td>
<td>-0.0002</td>
<td>-0.0002</td>
<td>-0.0002</td>
</tr>
<tr>
<td>Dubinin–Radushkevich</td>
<td>(R^2)</td>
<td>0.7672</td>
<td>0.9184</td>
<td>0.9433</td>
<td>0.9669</td>
</tr>
<tr>
<td></td>
<td>(K_{D-R})</td>
<td>0.0001</td>
<td>0.00004</td>
<td>0.00005</td>
<td>0.00003</td>
</tr>
<tr>
<td></td>
<td>(a, \text{mol/g})</td>
<td>0.00222</td>
<td>0.00260</td>
<td>0.00255</td>
<td>0.00265</td>
</tr>
</tbody>
</table>

DOI: 10.15826/chimtech.2024.11.3.05
Table 3 Comparison of MO adsorption capacity of ODA-IONPs with that of various adsorbents.

<table>
<thead>
<tr>
<th>No.</th>
<th>Adsorbent Material</th>
<th>R, %</th>
<th>q_{max}, mg/L</th>
<th>pH</th>
<th>Method of q_{max}</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fe$_3$O$_4$@SiO$_2$</td>
<td>83</td>
<td>182.5</td>
<td>2</td>
<td>Langmuir</td>
<td>[72]</td>
</tr>
<tr>
<td>2</td>
<td>Fe$_3$O$_4$·CTAB</td>
<td>~90</td>
<td>7.6</td>
<td>4–6</td>
<td>Langmuir</td>
<td>[73]</td>
</tr>
<tr>
<td>3</td>
<td>Magnetic hierarchical porous carbon spheres</td>
<td>99.9</td>
<td>1522.6</td>
<td>7</td>
<td>Langmuir</td>
<td>[81]</td>
</tr>
<tr>
<td>4</td>
<td>Chitosan beads</td>
<td>94</td>
<td>73</td>
<td>3</td>
<td>Langmuir</td>
<td>[74]</td>
</tr>
<tr>
<td>5</td>
<td>Fe$_3$O$_4$/GO nanocomposite</td>
<td>98</td>
<td>714.3</td>
<td>6</td>
<td>Langmuir</td>
<td>[75]</td>
</tr>
<tr>
<td>6</td>
<td>Graphene oxide</td>
<td>98.2</td>
<td>543.4</td>
<td>5</td>
<td>Langmuir</td>
<td>[76]</td>
</tr>
<tr>
<td>7</td>
<td>Fe$_3$O$_4$·MUS composite</td>
<td>85</td>
<td>149.25</td>
<td>3</td>
<td>Langmuir</td>
<td>[77]</td>
</tr>
<tr>
<td>8</td>
<td>MWNTs/Fe$_3$O$_4$/PANI</td>
<td>–</td>
<td>544.99</td>
<td>4</td>
<td>Langmuir</td>
<td>[78]</td>
</tr>
<tr>
<td>9</td>
<td>Chitosan Bead-like Materials</td>
<td>98.8</td>
<td>12.46</td>
<td>4–6</td>
<td>Langmuir</td>
<td>[66]</td>
</tr>
<tr>
<td>10</td>
<td>Silicate minerals:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Halloysite nanotubes</td>
<td>–</td>
<td>13.56</td>
<td>7</td>
<td>Langmuir</td>
<td>[79]</td>
</tr>
<tr>
<td>12</td>
<td>Chrysotile nanotubes</td>
<td>–</td>
<td>31.46</td>
<td>7</td>
<td>Langmuir</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>[Bi$_2$O$_3$(OH)$_3$]$(NO_3)_3$·3H$_2$O</td>
<td>97</td>
<td>730</td>
<td>6–8</td>
<td>Langmuir</td>
<td>[80]</td>
</tr>
<tr>
<td>14</td>
<td>ODA-IONPs</td>
<td>90</td>
<td>880</td>
<td>6</td>
<td>Langmuir</td>
<td>This work</td>
</tr>
<tr>
<td>15</td>
<td>ODA-IONPs</td>
<td>80</td>
<td>800</td>
<td>2–8</td>
<td>Langmuir</td>
<td>This work</td>
</tr>
</tbody>
</table>

These properties, combined with their magnetic nature allowing easy separation, position ODA-IONPs as promising candidates for large-scale wastewater treatment applications, particularly in textile and dye industries. Future studies should explore the scalability of ODA-IONPs synthesis and their efficacy against a broader range of pollutants, paving the way for comprehensive environmental remediation strategies.

- Supplementary materials

No supplementary materials are available.

- Conflict of interest

The authors declare no conflict of interest.

- Acknowledgement

None.

- Funding

This work was supported by the Russian Science Foundation; grant no. 22-22-20124, regional part no. 08-C/2022, https://www.rscf.ru/en.

- Additional information

Author IDs:

Liang Tianhui, Scopus ID 57217402100;
Sayara Aga-Tagieva, Scopus ID 58548751300;
Alexander Omelyanchik, Scopus ID 57196416798;
Zhang Xiaozhou, Scopus ID 11639083000;
Hong Lu, Scopus ID 57224814524;
Katerina Levada, Scopus ID 58497273900;
Valeria Rodionova, Scopus ID 7003646285;
Kurban Magomedov, Scopus ID 55992161500.

Websites:

Qiqihar University, https://www.qqhu.edu.cn/;
I. Kant Baltic Federal University, https://kanti-ana.ru/en/;
Dagestan State University, https://dgu.ru/.

References

doi:10.1016/ECOEVN.2021.113160

doi:10.1007/S11356-023-30302-4

doi:10.1002/ESLC.202100158

doi:10.1016/J.1HIHAZMAT.2020.122156

doi:10.1016/J.SEPPT.2011.11.070

doi:10.1016/J.SEPPT.2011.07.007

doi:10.1016/J.ENCPOL.2023.122349

doi:10.1002/ELSC.2010900158

doi:10.1016/J.JWPE.2021.113696

doi:10.3389/FENVS.2022.103478

doi:10.1016/J.WPJE.2023.103579

doi:10.1002/CESL.202310108

doi:10.1007/S11614-023-14753-4

doi:10.1007/S11614-023-14753-4

doi:10.1021/AM300176K

doi:10.3390/MA16134855

doi:10.2166/WRD.2017.077

doi:10.1016/J.JCLEPRO.2022.112178

doi:10.1016/J.JCLEPRO.2022.133517

33. Shaban M, Abukhadra MR, Hamd A. Recycling of glass in synthesis of MCM-48 mesoporous silica as catalyst support for