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Phase relations in the Me2MoO4–In2(MoO4)3–Hf(MoO4)2 
systems, where Me = Li, K, Tl, Rb, Cs

The Me2MoO4–In2(MoO4)3–Hf(MoO4)2 systems where Me = Li, K, Tl, Rb, Cs were 
studied in the subsolidus region using an X-ray powder diffraction. Quasi-binary 
joins were revealed, and triangulation carried out. The formation of ternary mo-
lybdates Me5InHf (MoO4)6 for Me = K, Tl, Rb, Cs and Мe2InHf2(MoO4)6.5 for Me = 
Rb, Cs was established.
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Introduction
Ternary molybdates attract atten-

tion due to their catalytic and ionexchange 
properties and the diversity of their crystal 
structures. The MoO6 octahedra are usually 
highly distorted because of the relatively 
small effective radius of the Mo6+ ion in the 
oxygen environment, which is favorable 
for the formation of low-symmetry crystal 
structures.

Systematic studies of multicomponent 
systems allow obtaining the large amount 

of data which make it possible to iden-
tify regularities of  the phase formation 
in related systems. In our previous works, 
the phase equilibria in the Me2MoO4–R2 
(MoO4)3–Hf(MoO4)2 (Me = Rb, Cs; R — 
trivalent metals) systems were studied  
[1, 2].

The purpose of this work was to estab-
lish the phase formation in the Me2MoO4–
In2(MoO4)3–Hf (MoO4)2 systems where 
Me = Li, K, Tl, Rb, Cs.

Experimental
Subsolidus phase relations in  the 

Me2MoO4–In2(MoO4)3–Hf(MoO4)2 (Me = 
Li, K, Tl, Rb, Cs) systems were studied 
within the temperature range 450–550 °C 
using the intersecting joins method.

The correspondent molybdates of lithi-
um, potassium, thallium, rubidium, ces-

ium, indium and hafnium were used 
as  starting components for  studying 
the phase equilibria in  the Me2MoO4–
In2(MoO4)3–Hf(MoO4)2 (Me = Li, K, Tl, 
Rb, Cs) systems. In order to avoid MoO3 
losses due to the sublimation, annealing 
was started at 400 °C. Synthesis of thal-
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lium molybdate Tl2MoO4 was performed 
according to the following reaction:

Tl2O3+MoO3 → Tl2MoO4+O2↑

while the temperature was gradually in-
creased in the range of 400–550 °С for 50 h.

Binary alkali molybdates Me2MoO4 
(Me  = Li, K, Rb, Cs) were synthesized 
by  the solid-state reaction using stoi-
chiometric mixtures of alkali carbonates 
or  nitrates with molybdenum trioxide 
for 80–100 h.

Hafnium molybdate was prepared 
by step annealing of stoichiometric mix-

tures of HfO2 and MoO3 within the tem-
perature range 400–700 °C for 100–150 h. 
Indium molybdate was synthesized from 
indium oxide (III) In2O3 and molybdenum 
oxide (VI) MoO3 by solid-state reaction 
at 500–700 °C.

X-ray powder diffraction (XRD) mea-
surements were performed using a Bruk-
er D8 Advance diffractometer (Bragg — 
Brentano geometry, Cu Kα radiation, 
secondary monochromator, maximum 
angle 2θ = 100°, scan step 0.02°).

Results and discussion
Information about the known phases 

in the side quasi-binary systems, which 
formed studied quasi-ternary Me2MoO4–
In2(MoO4)3–Hf(MoO4)2 (Me = Li, K, Tl, 
Rb, Cs) systems, required for triangulation, 
was taken from the literature. According 
to Solodovnikov et al. [3], the Li2MoO4–
Hf(MoO4)2 system contains a lithium haf-
nium molybdate Li10–4xHf2+x(MoO4)9 (0.21 ≤ 
x ≤ 0.68). Two types of double molyb-
dates, Me8Hf(MoO4)6 and Me2Hf(MoO4)3 
(Me = K, Tl, Rb, Cs), are formed inside 
the Me2MoO4–Hf(MoO4)2 systems [4–6]. 
An existence of the double molybdates, 
namely: Li3In(MoO4)3, MeIn(MoO4)2 (Me = 
Li, K, Tl, Rb, Cs), and Me5In(MoO4)4 (Me = 
Tl, Rb) was confirmed in the Me2MoO4–
In2(MoO4)3 systems [7–10]. No interme-
diate compounds were found inside the 
In2(MoO4)3–Hf(MoO4)2 system [11].

Taking into account the aforementioned 
data, the phase formation in the Me2MoO4–
In2(MoO4)3–Hf(MoO4)2 (Me = Li, K, Tl, Rb, 
Cs) systems were studied by means of so-
called “intersection joins method”. Within 
this approach, we analyzed the XRD results 
for the samples representing the intersec-
tion points of the joins that connect the 

starting components and phases inside the 
quasi-binary systems. This makes it pos-
sible to establish the quasi-binary joins 
and, as a result, to implement the trian-
gulation of  the system. Since the phase 
relations in the K2MoO4–In2(MoO4)3 and 
Cs2MoO4–In2(MoO4)3 systems enriched 
by either potassium molybdate or by ce-
sium molybdate were found to be non-
quasibinary, the studies of the Me2MoO4–
In2(MoO4)3–Hf(MoO4)2 (Me  = K, Cs) 
systems were limited to the Hf(MoO4)2–
Me8Hf(MoO4)6–MeIn(MoO4)2–In2(MoO4)3 
(Me = K, Cs) regions. The results obtained 
are presented in Fig. 1 and Fig. 2.

All systems under investigation can 
be categorized into three groups depend-
ing on the phase compositions of the bi-
nary subsystems and triple molybdates. 
The first group comprises the Li2MoO4–
In2(MoO4)3–Hf(MoO4)2 simple eutec-
tic system without intermediate phases 
inside. The second group consists of the 
Me2MoO4–In2(MoO4)3–Hf(MoO4)2 sys-
tems where Me = K and Tl, with one in-
termediate phase, denoted in  Fig.  1 as 
S — Me5InHf(MoO4)6 (5:1:2 mole ratio). 
The third group includes the Me2MoO4–
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In2(MoO4)3–Hf(MoO4)2 systems where 
(Me  = Rb, Cs), with two intermediate 
phases: S1 − Me5InHf(MoO4)6 (5:1:2 mole 

ratio) and S2 — Me2InHf(MoO4)6 (2:1:4 
mole ratio).

S i n g l e - p h a s e  s a m p l e s  o f 
Me5InHf(MoO4)6 (Me  = K, Tl, Rb, Cs) 

Fig. 1. Subsolidus phase relations in the Me2MoO4–In2(MoO4)3–Hf (MoO4)2 (Me = Li, K, Tl) 
systems: S − Me5InHf(MoO4)6 (5:1:2 mole ratio)

Fig. 2. Subsolidus phase relations in the Me2MoO4–In2(MoO4)3–Hf(MoO4)2 (Me = Rb, Cs) 
systems: S1 − Me5InHf (MoO4)6 (5:1:2 mole ratio); S2 — Me2InHf(MoO4)6 (2:1:4 mole ratio)
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and Me2InHf(MoO4)6 (Me = Rb, Cs) were 
prepared by annealing the stoichiomet-
ric mixtures of quasi-binary molybdates 
at 450–600 °C for 80–100 h. Ternary mo-
lybdates Me5InHf(MoO4)6 (Me = K, Tl, 
Rb, Cs) and Me2InHf(MoO4)6 (Me = Rb, 
Cs) are insoluble in water and usual or-
ganic solvents, but were found to be soluble 
in HCl aqueous solution.

T h e  t e r n a r y  m o l y b d a t e s 
Me5InHf(MoO4)6 (Me = K, Tl, Rb, Cs) are 
located inside the triangle that is formed 
by the double molybdates MeR(MoO4)2, 
Me8Hf (MoO4)6 and Me2Hf(MoO4)3 in its 
vertices.

The number of phases formed in the 
systems under consideration increases 
as  the size of  the singly charged alkali 
cation increases. The only exception is 
thallium-containing system. A distinctive 
feature of thallium is that it combines pro-
perties of alkali metals, such as potassium, 
rubidium, and cesium, together with those 
related to heavy metals, such as copper (I), 
silver, and lead [12].

The single crystals of  new ternary 
potassium indium hafnium molybdate 
K5InHf(MoO4)6 were grown by  fluxed-
melt crystallization with spontaneous nu-
cleation [13]. The composition and crys-
tal structure of as-grown single crystals 
were refined using X-ray diffraction data 
(a CAD-4 automated diffractometer, Mo 
Kα radiation, 1498 reflections, R = 0.0252). 
The crystal structure was solved as trigonal 
with the following unit cell parameters: a = 
10.564 (1) Å, c = 37.632 (4) Å, V = 3637.0 
(6) Å3, Z = 6, space group R3c. A three-
dimensional mixed framework of  the 
structure is formed by Mo tetrahedra and 
two independent (In, Hf) octahedra, which 
are connected through the shared vertices. 
Two types of potassium atoms occupy the 
large voids within the framework. The dis-

tribution of In3+ and Hf 4+ cations over two 
different sites was refined as  presented 
in the caption for Fig. 3.

Fig.  4 illustrates the IR and Raman 
spectra for  the triple rubidium indium 

Fig. 3. Mixed framework of MoO4 tetrahedra 
(blue color) and two types of octahedra 
(In, Hf)O6 in the K5InHf(MoO4)6 crystal 

structure. M(1) = 0.413(1)Hf + 0.587(1)In 
(olive color); M(2) = 0.587(1)Hf + 0.413(1)In 

(burgundy color)
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hafnium molybdate Rb2InHf2(MoO4)6.5. 
Since the oscillation frequencies in the IR 
and Raman spectra differ from each other, 

one can assume that ternary molybdate 
Rb2InHf2(MoO4)6.5 and its analogues are 
centrosymmetric.

Conclusions
The phase equilibria in quasi-ternary 

salt systems were studied; six new com-
pounds were identified inside the stu-
died systems. The phase relations in the 

Me2MoO4–In2(MoO4)3–Hf(MoO4)2 (Me = 
Li, K, Tl, Rb, Cs) systems are influenced 
by the size factor and the nature of the 
singly charged alkali cation.
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Synthesis, crystal structure and electrophysical 
properties of triple molybdates containing silver, 

gallium and divalent metals

A possibility of the triple molybdates formation with both NASICON-like and 
NaMg3In(MoO4)5 structures in the Ag2MoO4–AMoO4–Ga2(MoO4)3 (A = Mn, Co, Zn, 
Ni) systems was studied by powder X-ray diffraction analysis. It was established 
that NASICON-like phases Ag1−xA1−xGa1+x(MoO4)3 are not formed. The triple molyb-
dates AgA3Ga (MoO4)5 (A = Mn, Co, Zn) isostructural to triclinic NaMg3In(MoO4)5 
(sp. gr. P1, Z = 2) were synthesized and characterized. The structure of the 
obtained compounds was refined for AgZn3Ga(MoO4)5 according to the powder 
data by the Rietveld method. The structure consists of MoO4 tetrahedra, couples 
of edge-shared M(1)O6 octahedra, and trimers of edge-shared M(2)O6–, M(3)6– 
and M(4)O6 octahedra, which are linked by the common vertices to form a 3D 
framework. High-temperature conductivity measurements revealed that the 
conductivity of AgMn3Ga(MoO4)5 at 500 °С reaches 10–2 S / cm, which is close 
to one of the known NASICON-type ionic conductors.

Keywords: triple molybdates; silver; gallium; solid-state synthesis; powder X-ray diffraction; 
Rietveld refinement; ionic conductivity.
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Introduction
A synthesis and studying of com-

plex oxide compounds, the development 
of new materials with functionally sig-
nificant properties based on  those are 
among the main areas of  the materials 
science. An important place in the study 
and obtaining of new phases with valuable 
physicochemical properties belongs to mo-

lybdates, in particular triple ones, which 
are among the fastest-growing groups 
of complex oxide compounds containing 
a  tetrahedral anion and three different 
cations. One of the largest families of these 
compounds is molybdates containing  
1-, 2- and 3-charged cations. In particular, 
silver-containing NASICON-like phases 
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Ag1–xA1–xR1+x(MoO4)3 (A = Mg Co, R = Al; 
A = Mg, R = In) with different homoge-
neity range and triclinic AgA3R(MoO4)5 
(A = Mg, R = Cr, Fe, Ga; A = Mn, R = Al, 
Cr, Fe, Sc, In) having high ionic conduc-
tivity (10–3–10–2 S / cm) are of interest. For 
a  number of  phases: AgMg3R(MoO4)5 
(R  = Cr, Fe), AgMnII

3 (MnIII
0.26Al0.74)

(MoO4)5, Ag0.90Al1.06Co2.94(MoO4)5 and 
AgFeII

3FeIII(MoO4)5 single crystals were 

obtained and their crystal structures were 
determined [1–9].

The purpose of this work is to study 
the possibility of  forming triple mo-
lybdates Ag1–xA1–xGa1+x(MoO4)3 and 
AgA3Ga(MoO4)5 (A = Mn, Co, Zn, Ni) and 
investigate crystal structure and electro-
physical properties of the obtained com-
pounds.

Experimental
The initial materials were simple mo-

lybdates of silver, manganese, cobalt, zinc, 
nickel, MoO3 and Ga2O3 (reagent grade).

Ag2MoO4 and molybdates of divalent 
metals were obtained by the step annealing 
of stoichiometric mixtures of AgNO3 (ana-
lytical grade), MnO, Co(NO3)2·6H2O, 
ZnO, MoO3 (all chemically pure), NiO 
(reagent grade) at 350−450 °С (Ag2MoO4), 
400−750 °С (MnMoO4), 300−700 °С 
(CoMoO4), 500−700 °С (ZnMoO4), 
450−750 °С (NiMoO4) in  the air with 
intermittent grindings every 15 hours 
for better sample homogenization. Power 
X-ray diffraction (PXRD) patterns of the 
prepared compounds do not contain reflec-
tions of starting or impurity phases. PXRD 
and thermal characteristics of all prepared 
compounds agree well with corresponding 
data reported in [10−15].

Sample compositions Ag1–xA1–xGa1+x 
(MoO4)3 (0 ≤ x ≤ 0.7, Δx = 0.1) and 
AgA3Ga(MoO4)5 were prepared by  the 
annealing of appropriate stoichiometric 
mixtures of Ag2MoO4, АMoO4, MoO3 and 
Ga2O3. The initial mixtures were annealed 
starting at 300 °C followed by raising the 
temperature by 20–50 °C (in some cases, 
5–10 °C) with intermittent grindings every 
20–30 hours for sample homogenization. 
The calcination time at each temperature 
was 30–70 h. The phase composition of the 

obtained products was controlled by the 
PXRD analysis before each increasing 
of the annealing temperature.

PXRD patterns were collected at room 
temperature on a Bruker D8 ADVANCE 
diffractometer using Cu Kα radiation 
in the 2θ range from 5° to 100° with a step 
of 0.02076°. Possible impurity phases were 
checked by comparing their PXRD patterns 
with those in the Powder Diffraction File. 
The crystal structure refinement was car-
ried out with the GSAS [16] program suite 
using PXRD data. Lattice parameters and 
individual scale factors were established, 
and five common peak-shape parameters 
of the pseudo-Voigt function (No. 2), one 
asymmetry parameter and one parameter 
for the zero-point correction were used 
to describe the powder patterns. The back-
ground level was described by a combina-
tion of 15-order Chebyshev polynomials. 
Isotropic displacement parameters (Uiso) 
were refined, and grouped by chemical 
similarity by used constrains.

Thermoanalytic studies were carried 
out on a STA 449 F1 Jupiter NETZSCH 
thermoanalyser (Pt crucible, heating rate 
of 10 °С / min in Ar stream).

Ceramic disks for dielectric investi-
gations were prepared by the calcination 
of pressed powder at 600 °С for 2 h. The 
disks were of 9–10 mm in diameter and 
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1–2 mm thick, the electrodes were depo-
sited by painting the disk bases with col-
loid platinum followed by subsequent one 
hour annealing at about 580 °С. The di-
rect current (DC) electric conductivity was 
measured with a V7–38 microammeter. 
To study the ion transfer, electrical con-
ductivity was measured on an alternating 
current (AC) by the two-contact method 

in the frequency range 1 Hz–1 MHz in the 
temperature range 25–560 °C at the rate 
of 4 °C / min at both heating and cooling 
using a Novocontrol Beta-N impedance 
analyzer. The activation energy of electrical 
conductivity was calculated from the slope 
of the straight lines corresponding to the 
Arrhenius dependence in lg (σT) – (103 / T) 
coordinates.

Results and discussion
PXRD characteristics
The presence of NASICON-like phases 

in the Ag2MoO4–AMoO4–Ga2(MoO4)3 sys-
tems was determined according to PXRD 
analysis of samples Ag1−xA1−xGa1+x(MoO4)3 
(0 ≤ x ≤ 0.7, Δх = 0.1) which were annealed 
in  the temperature range from 300 °C 
to melting point. The final annealed tem-
perature was 550–700 °C and depended 
on both the composition of the reaction 
mixtures and the nature of the divalent 
metal. It was established that, despite the 
close values of  the Al3+ (0.53) and Ga3+ 
(0.62 Å [17]) radii, gallium containing 
triple molybdates with NASICON-like 
structure, apparently, do not exist. All our 
attempts to obtain rhombohedral phases 
Ag1−xA1−xGa1+x(MoO4)3 by solid state syn-
thesis did not lead to  a  positive result, 
probably this is due to the low reactivity 
of gallium in the molybdate systems. Thus, 
the simple gallium molybdate Ga2(MoO4)3 
has not yet been obtained by  ceramic 
techno logy, and only recently it was syn-
thesized by the sol-gel method [18]. Be-
sides, silver-gallium double molybdate is 
not synthesized either by ceramic tech-
nology or by co-precipitation. In [19] this 
compound was obtained by the calcining 
of mixtures of AgNO3, Ga2O3, MoO3 (in ra-
tio 2:1:4) at 350–400 °C for 8–10 h, fol-
lowed by cooling, homogenization, and the 
repeated 12–20 hours annealing at 500–

550 °C, but the PXRD data of the product 
are not given by the authors. It should be 
noted that in none of the later publications 
(including those of the same authors) ad-
ditional information about this compound 
was found.

At the same time, in  the Ag2MoO4–
AMoO4–Ga2(MoO4)3 systems triple mo-
lybdates of composition AgA3Ga(MoO4)5 
were found. These compounds were syn-
thesized by the solid-state reactions at 550–
600 °С (A = Mn), 540–550 °С (A = Zn), 
500–530 °С (A = Co) for 80–100 h. How-
ever, nickel-containing compound was not 
obtained in the single-phase state, even after 
sintering at temperatures as high as 600–
650 °C for 250–300 hours. This may be due 
to the smallest radius of Ni2+ cation (0.69 Å 
for  CN = 6 [17]) in  the studied series 
of simple molybdates of divalent metals.

The triple molybdates AgA3Ga(MoO4)5 
(A = Zn, Mn, Co) were found to melt in-
congruently at temperatures of 644, 727, 
and 739 °C, respectively.

The powder XRD patterns of  as-
prepared single-phase compounds 
AgA3Ga(MoO4)5 are similar and show that 
these oxides are isostructural to triclinic 
NaMg3In(MoO4)5 (sp. gr. P1, Z = 2) [20]. 
The diffractograms of the AgA3Ga(MoO4)5 
(A = Mn, Co, Zn) were indexed with tak-
ing into account our data obtained earlier 
in the course of single-crystal structure de-
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termination of AgMg3R(MoO4)5, R = Fe, 
Cr [7]. The result of indexing the PXRD 
patterns for AgA3Ga (MoO4)5 (A = Mn, 
Co, Zn) are given in Table 1. Unit-cell para-
meters are listed in Table 2.

Crystal structure of AgZn3Ga(MoO4)5

T h e  c r y s t a l  s t r u c t u r e 
of  AgZn3Ga(MoO4)5 was refined ac-

cording to  the Rietveld method [21], 
starting with the atomic coordinates 
of AgMg3Fe(MoO4)5 structure [7]. Crystal 
data, data collection and structure refine-
ment details are summarized in Table 3. 
Experimental, theoretical, and difference 
PXRD patterns for the AgZn3Ga(MoO4)5 
are shown in  Figure 1. The fractional 

Table 1
The calculated and observed values of PXRD data for AgA3Ga(MoO4)5 (A = Mn, Zn, Co)

 h k l
AgMn3Ga(MoO4)5 AgZn3Ga(MoO4)5 AgCo3Ga(MoO4)5

I / I0 2θobs.,°
 2θcal.,° I / I0 2θobs.,° 2θcal.,° I / I0 2θobs.,° 2θcal.,°

 0 0 2 3 9.861 9.850 2 9.981 9.991 2 10.006 10.019
 0 1 0 1 12.782 12.767 1 12.954 12.945 1L 12.956 12.943
 1 0 0 9 12.903 12.894 9 13.058 13.064 9 13.112 13.108
 0 1 1 1L 13.769 13.750
 1 0 1 1L 13.654 13.637 1 13.778 13.808 1L 13.853 13.849
 0 –1 1 1L 14.021 13.998 1L 14.005 14.017
 –1 0 1 1L 13.974 13.977 2 14.170 14.175 1 14.231 14.226
 0 0 3 1L 14.805 14.798 1 15.010 15.011 1L 15.061 15.052
 1 0 2 1 15.924 15.959 1L 16.154 16.157 1 16.177 16.200
 0 –1 2 1L 16.388 16.393 1L 16.577 16.576 1 16.625 16.619
 –1 0 2 1L 16.529 16.538 1L 16.799 16.783 1L 16.819 16.844
 1 1 1 1L 17.079 17.075
 –1 –1 1 1L 17.541 17.562 1L 17.596 17.610
 1 1 2 1L 18.728 18.728
 1 0 3 1L 19.304 19.310
 –1 –1 2 2 19.638 19.630 3 19.826 19.822 3 19.892 19.891
 0 0 4

1 19.780
19.774

1L 20.127
20.115

 –1 1 0 19.792 1L 20.115 20.122 20.154
 –1 0 3 1L 20.025 20.033 1L 20.340 20.336
 –1 1 1 1L 20.406 20.425 1L 20.774 20.790 1L 20.819 20.817
 1 1 3 3 21.572 21.577 4 21.846 21.856 5 21.861 21.864
 1 –1 2 6 22.117 22.117 10 22.419 22.427 10 22.483 22.482
 –1 –1 3 1 22.959 22.996 1L 23.048 23.085
 1 0 4

3 23.267
23.270 3 23.569 23.573 3 23.646 23.631

 0 1 4 23.265 2 23.662 23.668 1 23.695 23.675
 0 –1 4 1 23.959 23.944 10 24.193 24.222 3 24.313 24.306
 –1 0 4 1 24.086 24.078 2 24.441 24.445 1 24.511 24.529
 0 0 5 100 24.793 24.787 100 25.145 25.148 86 25.221 25.218
 –1 1 3 6 24.869 24.848 16 25.307 25.312 16 25.344 25.346
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 h k l
AgMn3Ga(MoO4)5 AgZn3Ga(MoO4)5 AgCo3Ga(MoO4)5

I / I0 2θobs.,°
 2θcal.,° I / I0 2θobs.,° 2θcal.,° I / I0 2θobs.,° 2θcal.,°

 1 1 4 3 25.122 25.119 5 25.459 25.465 6 25.480 25.478
 0 2 0 3 25.701 25.697 2 26.072 26.058 2 26.055 26.054
 2 0 0 73 25.959 29.954 83 26.307 26.302

100 26.396
26.392

 0 2 1 23 26.036 26.025 38 26.417 26.422 26.403
 2 0 1 10 26.255 26.250 20 26.596 26.590 18 26.679 26.676
 0 –2 1 6 26.337 26.333 22 26.664 26.674 7 26.697 26.690
 –1 –1 4 4 26.483 26.488 7 26.780 26.782

7 26.888
26.890

 1 2 0
8 26.613

26.601 3 26.883 26.881 26.892
 –2 0 1 26.614 7 26.984 26.984 7 27.079 27.081
 1 2 1 11 26.835 26.829 25 27.132 27.137 18 27.133 27.131
 2 1 1 2 27.007 27.001 5 27.283 27.278 3 27.350 27.345
 –1 –2 1

11 27.307
27.306 26 27.575 27.575 19 27.613 27.609

 0 2 2 27.285 4 27.712 27.731 3 27.705 27.703
 –2 –1 1 3 27.507 27.503 4 27.790 27.784 3 27.880 27.879
 0 1 5 6 27.622 27.611 10 28.081 28.084 8 28.109 28.105
 0 –2 2 3 27.874 27.873 6 28.208 28.210 5 28.255 28.250
 1 2 2 2 27.961 27.970 4 28.320 28.322 4 28.308 28.304
 1 –1 4 2 28.066 28.064 6 28.423 28.425 5 28.512 28.510
 2 1 2 2 28.114 28.121 28.423 3 28.454 28.481
 –2 0 2 2 28.164 28.167 1 28.567 28.573 2 28.672 28.678
 0 –1 5 6 28.342 28.336 16 28.678 28.676 13 28.782 28.778
 –1 0 5 1 28.893 28.900 1 29.000 28.997
 –1 –2 2 1 28.877 28.882 2 29.163 29.159 1 29.223 29.217
 –2 –1 2 4 29.081 29.082 10 29.391 29.390 9 29.499 29.501
 0 2 3 3 29.376 29.367 4 29.859 29.869 3 29.837 29.839
 2 0 3 1L 29.525 29.516 2 29.898 29.888 1 29.985 29.973
 0 0 6 1 29.860 29.850 1 30.300 30.287 1 30.383 30.372
 1 2 3 1L 29.929 29.927 1 30.365 30.334 1 30.324 30.310
 2 1 3 4 30.055 30.056 9 30.397 30.397 9 30.453 30.450
 0 –2 3 1L 30.175 30.189 1 30.527 30.539 1 30.590 30.603
 –2 0 3 1L 30.513 30.488

1 30.983
30.940 1L 31.055 31.055

–1 –1 5 1L 30.622 30.621 30.981 1 31.088 31.106
 –1 2 0 1 30.953 30.949 2 31.460 31.462 1 31.483 31.484
 –1 –2 3 2 31.213 31.207 4 31.501 31.509 4 31.594 31.592
 –2 1 0 1 31.618 31.616 1L 31.691 31.698
 –2 –1 3 2 31.748 31.755

18 31.865
31.883

 –1 2 1 8 31.303 31.304 22 31.849 31.854 31.865

Сontinuation of table 1
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atomic coordinates, isotropic atomic dis-
placement parameters, cation occupancies 
and main selected interatomic distances 
are presented in Tables 4 and 5. The popu-
lations of  four independent positions  
M = (Zn, Ga) and three incompletely occu-
pied Ag sites were refined with keeping the 
electrical neutrality of the chemical formu-
la. The final compositions of the crystals are 
close to stoichiometric AgZn3Ga(MoO4)5 
with a negligible silver deficiency.

In the structure AgZn3Ga(MoO4)5 all 
atoms are located in  general positions. 
Coordination polyhedra of Mo atoms are 

tetrahedra with Mo–O distances of 1.714–
1.824 Å, which are similar to the values 
found in other molybdates containing a tet-
rahedral anion. Cations Zn2+ and Ga3+ are 
statistically distributed on octahedral posi-
tions M1–M4 with the (Zn, Ga)–O bond 
lengths of 1.940–2.129 Å. Both Ag1 and Ag3 
cations are coordinated by four O atoms 
(Ag1–O 2.358 Å, Ag3–O 2.415 Å), while 
Ag2 cation has CN = 5 (Ag2–O 2.495 Å). 
The structure of AgZn3Ga(MoO4)5 con-
sists of MoO4 tetrahedra, couples of edge-
shared M(1)O6 octahedra, and trim-
ers of edge-shared M(2)O6, M(3)O6 and 

Сontinuation of table 1

 h k l
AgMn3Ga(MoO4)5 AgZn3Ga(MoO4)5 AgCo3Ga(MoO4)5

I / I0 2θobs.,°
 2θcal.,° I / I0 2θobs.,° 2θcal.,° I / I0 2θobs.,° 2θcal.,°

 1 –2 1 2 31.408 31.410
2 31.912

31.899 3 31.945 31.935
 2 –1 1 1 31.440 31.428 31.914 1 31.996 31.999
 1 –1 5 1 31.853 31.857 3 32.264 32.264 2 32.362 32.364
 –1 1 5 1L 31.974 31.980 1 32.590 32.619
 0 2 4 2 32.137 32.125

9 32.653
32.689 2 32.654 32.663

 2 0 4 4 32.239 32.238 32.647 6 32.741 32.736
 2 –1 2 1 32.512 32.535

11 33.027
33.015 1 33.127 33.106

 1 2 4 3 32.569 32.567 33.038 7 33.020 33.014
 1 –2 2 3 32.655 32.656 5 33.131 33.133 4 33.188 33.186
 0 –1 6 2 33.363 33.368
 0 –2 4 7 33.135 33.134

16 33.511
33.513 11 33.603 33.601

 2 2 0 1 33.214 33.200 33.510 1 33.551 33.568
 2 2 1 2 33.311 33.313 6 33.634 33.641 5 33.683 33.681
 –2 0 4 1 33.426 33.434

4 33.935
33.941 1 34.059 34.066

 1 1 6 1L 33.460 33.454 33.948
 –2 –2 1 3 33.847 33.852 11 34.158 34.160 8 34.239 34.239

Cu Kα1 radiation (l = 1.54056 Å)

Table 2
Unit-cell parameters for AgA3Ga(MoO4)5 (A = Mn, Zn, Co)

A a, Å b, Å c, Å α° β° γ° V, Å3

Mn 6.9844 (3) 7.0519 (4) 17.9700 (8) 87.796 (4) 87.529 (5) 79.386 (4) 868.71
Zn 6.9037 (3) 6.9639 (4) 17.7147 (8) 88.107 (4) 87.440 (4) 78.982 (4) 834.87
Co 6.8810 (4) 6.9657 (4) 17.669 (1) 87.895 (5) 87.344 (5) 78.976 (5) 830.04
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Table 3
Crystal data and structure refinement for AgZn3Ga(MoO4)5

Structural formula AgZn3Ga (MoO4)5

Formula weight, Mr (g mol−1) 1172.58
Temperature (K) 298(2)

Crystal system, space group (#) Triclinic, P1 (2)
Unit-cell parameters:

a (Å)
b (Å)
c (Å)
α (°)
β (°)
γ (°)

6.9035 (5)
6.9643 (5)

17.7160 (14)
88.1039 (11)
87.4338 (12)
78.9880 (9)

Unit-cell volume, V (Å3) 835.0 (2)
Formula unit, Z 2

Calculated density, ρcal (g cm−3) 4.66
Refinement R factors and goodness of fit:

wRp

Rp

Rexp

R(F2)
χ2

0.0511
0.0382
0.0152

0.05815
3.40

Table 4
Structural parameters for AgZn3Ga(MoO4) 5

Atom Occupancy x y z Uiso
Mo1 1 0.2722(8) 0.3095(8) 0.5282(3) 0.030(2)
Mo2 1 0.2129(8) 0.8293(9) 0.2856(3) 0.028(2)
Mo3 1 0.6843(8) 0.2187(8) 0.3109(3) 0.023(2)
Mo4 1 0.2811(9) 0.0522(9) 0.9044(3) 0.029(2)
Mo5 1 0.2520(8) 0.5491(8) 0.0863(3) 0.021(2)
M1 0.788(1)Zn+0.212(1)Ga 0.1834(12) 0.8241(11) 0.4938(5) 0.0126(3)
M2 0.901(1)Zn+0.099(1)Ga 0.1704(14) 0.0855(16) 0.1145(5) 0.045(4)
M3 0.798(1)Zn+0.202(1)Ga 0.7829(12) 0.4310(13) 0.1239(4) 0.014(3)
M4 0.505(1)Zn+0.495(1)Ga 0.2546(12) 0.3014(13) 0.7370(4) 0.023(3)
Ag1 0.323(3)Ag 0.149(3) 0.339(3) 0.2857(12) 0.062(5)
Ag2 0.328(3)Ag 0.122(4) 0.308(4) 0.3155(13) 0.062(5)
Ag3 0.342(3)Ag 0.097(3) 0.370(3) 0.3445(11) 0.062(5)
O1 1 0.511(5) 0.194(5) 0.5163(18) 0.015(1)
O2 1 0.289(4) 0.366(4) 0.6238(17) 0.015(1)
O3 1 0.171(4) 0.545(5) 0.4601(18) 0.015(1)
O4 1 0.130(5) 0.126(5) 0.4978(18) 0.015(1)
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M(4)O6 octahedra, which are linked by the 
common vertices to form a 3D framework 
(Fig. 2). In the large framework cavities, 
the silver cations are disordered on three 
close positions with the distances Ag–Ag 
0.595(4) Å and 1.101(2) Å.

Such a  disordering is also typical 
of other compounds of this isostructural 
series [7, 9], suggesting a possible mobility 
of the Ag+ cations in the compounds. This 
is favored not only by defects in Ag posi-
tions along with their irregular coordina-

Сontinuation of table 4

Atom Occupancy x y z Uiso
O5 1 0.189(4) 0.872(4) 0.3866(18) 0.015(1)
O6 1 0.477(5) 0.719(4) 0.2580(17) 0.015(1)
O7 1 0.140(5) 0.053(5) 0.2220(19) 0.015(1)
O8 1 0.098(5) 0.641(5) 0.2687(18) 0.015(1)
O9 1 0.419(5) 0.280(4) 0.3590(17) 0.015(1)

O10 1 0.804(5) 0.191(4) 0.3830(18) 0.015(1)
O11 1 0.681(5) 0.995(5) 0.2696(17) 0.015(1)
O12 1 0.774(4) 0.370(5) 0.237(2) 0.015(1)
O13 1 0.198(4) 0.121(4) 0.997(2) 0.015(1)
O14 1 0.468(5) 0.040(4) 0.0841(15) 0.015(1)
O15 1 0.831(5) 0.202(5) 0.1174(16) 0.015(1)
O16 1 0.238(4) 0.305(5) 0.8544(17) 0.015(1)
O17 1 0.249(4) 0.546(4) 0.987(2) 0.015(1)
O18 1 0.485(5) 0.488(5) 0.1153(17) 0.015(1)
O19 1 0.171(4) 0.778(5) 0.1292(18) 0.015(1)
O20 1 0.097(4) 0.410(5) 0.1173(18) 0.015(1)

Fig. 1. Observed (black line) and calculated 
(red line) XRD patterns of AgZn3Ga(MoO4)5. 

Vertical bars indicate the positions of the 
Bragg peaks. The lower trace depicts the 
difference between the experimental and 

calculated intensity values

Fig. 2. Projection views of the structure 
of AgZn3Ga(MoO4)5 along the a axis. The 

blue spheres and small red spheres indicate 
Ag and oxygen atoms, respectively
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Table 5
Selected interatomic distances(Å) in AgZn3Ga(MoO4) 5

Mo1‑tetrahedron Mo2‑tetrahedron
Mo1–O1

–O2 
–O3 
–O4 

<Mo1–O> 

1.696(3)
1.764(3)
1.726(3)
1.858(3)

1.761

Mo2–O5
–O6 
–O7 
–O8

<Mo2–O> 

1.819(3)
1.889(3)
1.891(3)
 1.698(3)

1.824
Mo3‑tetrahedron Mo4‑tetrahedron

Mo3–O9
–O10
–O11
–O12

<Mo3–O> 

1.961(3)
 1.739(3)
1.747(4)
 1.812(3)

1.815

Mo4–O13
–O14 
–O15
–O16

<Mo4–O>

1.749(3)
1.726(2)
 1.922(3)
1.760(3)

1.789
Mo5‑tetrahedron M1‑octahedron

Mo5–O17
–O18 
–O19
–O20

<Mo5–O>

1.758(4)
1.683(3)
1.773(3)
 1.640(3)

 1.714

M1–O1
–O3
–O10
–O4
–O5
–O4

<M1–O> 

2.092(3)
2.068(3)
2.186(3)
2.070(2)
1.918(3)
2.124(3)

2.076
M2‑octahedron M3‑octahedron

M2–O7
–O13
–O19
–O20
–O14
–O15

<M2–O>

1.918(3)
2.096(3)
2.144(3)
2.224(3)
2.066(3)
2.325(3)

 2.129

M3–O18
–O17
–O15
–O16
–O12
–O20

<M3–O> 

2.030(3)
1.99(4)

1.572(3)
1.869(3)
2.038(3)
2.143(3)

1.940
M4‑octahedron Ag1‑polyhedron

M4–O8
–O11
–O2
–O6
–O16
–O12

<M4–O> 

2.398(4)
2.033(4)
2.053(3)
1.837(3)
2.079(3)
2.320(3)

2.120

Ag1–O9
–O8
–O7
–O12

<Ag1–O>

2.29(4)
2.080(3)
2.33(4)
2.73(4)
2.358

Ag2‑polyhedron Ag3‑polyhedron
Ag2–O9

–O10
–O8
–O7
–O12

<Ag2–O> 

2.19(4)
2.70(4)
2.41(4)
2.45(4)

2.725(3)
2.495

Ag3–O9
–O8
–O10
–O3

<Ag3–O>

2.22(4)
2.28(4)
2.62(4)

2.540(3)
2.415

Ag1–Ag2
Ag1–Ag3

0.595(4)
1.101(2)



141

tion, but also a rather flexible polyhedral 
framework of the NaMg3In(MoO4)5 struc-
ture type, which involves interconnected 
cavities.

Electrophysical properties
As was noted in the previous section, 

the structural features of  the obtained 
molybdates allow us to expect these com-
pounds to have the increased ionic con-
ductivity. This was already confirmed 
by us in the case of AgMg3Al(MoO4)5 (σ = 
= 2.5 × 10−2 S / cm) and AgMn3Al(MoO4)5 
(σ = 7.1 × 10−3 S / cm) at 500 °C [7]. In this 
work as an example, the results of studying 
electrophysical properties for AgMn3Ga 
(MoO4) 5 are presented.

It was found that the DC conductivity 
of ceramic sample AgMn3Ga(MoO4)5, mea-
sured with the V7–38 device, is negligible 
as compared to the ac conductivity (Fig. 3) 
in temperature region of 100–560 °C. As the 
platinum electrodes are blocking in the DC 
conductivity measurement mode, the DC 
conductivity of AgMn3Ga(MoO4)5 corres-
ponds to the electronic one. Therefore, it 
can be concluded that the AC conductivity 
is almost equal to the ionic one.

It is seen that near room temperature 
the conductivity is as small as 10–7 S / cm 

but quickly rises with temperature to va lues 
of about 10–2 S / cm. It is noteworthy that the 
conductivity in AgMn3Ga(MoO4)5 increases  
with temperature in non-monotonic way 
showing distinct breaks on lgσ = f(1 / T) 
curves at 310 °C. Above these temperature 
the lgσ = f(1 / T) dependences are almost 
linear with the small activation ener gy va lue 
Еа = 0.26 eV. Above 310 °С, the ionic con-
ductivity of AgMn3Ga(MoO4)5 increases  
up to 2.03∙10–2 S / сm at 500 °С, which is 
close to the corresponding characte ristics 
of the known ionic conductors.

Conclusions
The possibility of  the formation 

of silver-containing gallium triple mo-
lybdates with Mn, Co, Zn, Ni, analogous 
to the phases Ag1–xA1–xR1+x(MoO4)3 and 
AgA3R(MoO4)5 obtained by  us in  the 
Ag2MoO4−AMoO4−R2(MoO4)3 (A = Mg, 
Co; R = Al; A = Mg, R = In) systems, was 
studied. It was shown that in the Ag2MoO4−
AMoO4−Ga2(MoO4)3 (A = Mn, Co, Zn, Ni) 
systems the NASICON-like phases of the 
composition Ag1–xA1–xR1+x(MoO4)3 are 
not formed. The triple molybdates of the 
composition AgA3Ga(MoO4)5 (A = Mn, 

Co, Zn) were synthesized and characte-
rized. AgNi3Ga(MoO4)5 was not obtained 
in the single-phase state. It was established 
that the obtained compounds incongru-
ently melt and belong to the structural 
type of triclinic NaMg3In(MoO4)5 (sp. gr. 
P1, Z = 2). The structure of the obtained 
compounds was refined by the Rietveld 
method using the powder diffraction data 
for AgZn3Ga(MoO4)5. The structural fea-
tures of the obtained molybdates allow us 
to expect these compounds to have the 
increased ionic conductivity. This was 

Fig. 3. Temperature dependences of the 
ionic conductivity on heating and cooling 

for AgMn3Ga(MoO4)5
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confirmed by  studying electrophysical 
properties of AgMn3Ga(MoO4)5. It was 
shown that the high-temperature electri-
cal conductivity of this compound reaches 

10–2 S / cm at Ea = 0.26 eV, which is close 
to the corresponding characteristics of the 
known ionic conductors.
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Arsenate and Arsenite Reaction Kinetics with Ferric 
Hydroxides Using Quantum Chemical Calculations

The knowledge of the mechanism involved in the process of adsorption and 
desorption of arsenate and arsenite with ferric hydroxides is important to address 
the water toxicity problems and to tackle the adverse effect of these substances in 
nature. An essential outcome of previous studies on the kinetics of the arsenate 
adsorption on aluminum and iron oxide was that the adsorption is a two-phase 
(bi-phase) process. Quantum mechanical calculations using density functional 
theory were used to determine the thermodynamic variables governing the 
adsorption process to get an insight into the stability of the complexes formed. 
The previous investigation showed that the positively charged ferric hydroxide 
cluster had better stability at neutral pH. The chemisorbed charged monoden-
tate complexes had Gibbs free energy of reaction –55.97 kcal/mol where the 
bidentate complex formation had Gibbs free energy of reaction –62.55 kcal/mol. 
The bidentate complex having a negative charge had more Gibbs free energy 
of reaction compared to uncharged one. The results of the study indicate that 
Gibbs free energy for the reaction has a significant role in controlling the kinetics 
of the adsorption and sorption process of arsenate on ferric hydroxide clusters.
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Introduction
Arsenic is a significant contami-

nant present in the groundwater due to 
natural processes like weathering of rocks, 
discharge of effluents and waste disposal 
from industries, arsenical herbicides and 

pesticides used in agricultural activities 
and many other sources [1]. The various 
oxidation states arsenic exhibits are –3, 0, 
+3, and +5, where the inorganic forms +3 
(arsenite) and +5 (arsenate) states of As are 
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predominant depending on the reducing 
and oxidizing conditions, respectively. The 
relatively strong adsorption affinity of As 
shown towards ferric hydroxides has a vi-
tal role in the detoxification of As, thereby 
controlling the arsenic water pollution and 
employed in techniques for purification of 
drinking water.

Several works were done on the struc-
tural determination of arsenate-ferric 
hydroxide complex. The studies of arse-
nic (III) stability on goethite using X-ray 
absorption spectroscopy and batch tech-
niques indicated that there is inner sphere 
bidentate complexation through ligand 
exchange [2]. Monodentate and bidentate 
complexes are observed in the adsorption 
of arsenate on goethite [3–5]. The models 
produced by molecular modeling and the 
X-ray absorption fine structure spectros-
copy (EXAFS) results are compared, and 
the nature of the chemisorption complex 
is determined [6, 7]. An essential outcome 
of previous studies on the kinetics of the 
arsenate adsorption on aluminum and iron 
oxide was the two-phase adsorption pro-
cess constituting a fast phase of the time 
order of a minute or less and slow phase 
which attains an equilibrium within a time 

scale greater than 162 hours [5, 8–10]. The 
factors responsible for this phenomenon 
are considered to be slow diffusion mass 
transport [9, 11, 12], availability of hetero-
geneous sites, monodentate to bidentate 
complex conversions, the surface precipi-
tate formation and the rearrangement of 
surface complexes. Further, the studies on 
the arsenate desorption by use of different 
extractants like phosphate or high pH so-
lutions indicate a slow release of arsenate 
from the adsorbed complexes. The conclu-
sion from these studies implies that only 
a small portion of arsenate is released by 
the use of extractants like phosphate or 
hydroxide ions. This leads to the interesting 
fact that a part of arsenate-ferric hydroxide 
complex may be irreversible in nature.

Despite the studies done on arsenate-
ferric hydroxide complex formation, a little 
is known about the mechanism of this re-
action. In this regard, the motive of this 
theoretical study is to get an insight into 
the mechanism governing the arsenate-
ferric hydroxide complex formation. The 
thermodynamic parameters and reaction 
rates governing the mechanism are deter-
mined by quantum chemical calculations.

Materials and Methods
All calculations were carried out using 

the Gaussian 09 software [13]. Full geo-
metry optimizations and corresponding 
harmonic vibrational frequency compu-
tations, to confirm their minima on the 
potential energy surface, were carried out 
using the Austin-Frisch-Petersson func-
tional with dispersion (APFD) [14] and 
M06 hybrid functional of Truhlar and Zhao 
[15] suite of density functional theories 
(DFT) as implemented in Gaussian 09. AP-
FD functional has been used as a primary 
method in Gaussian 09 for its best trade-off 

between accuracy and computational cost 
for the largest range of molecular systems 
and chemical problems. M06 functional 
perform better for a model system with 
dispersion and ionic hydrogen-bonding 
interactions. For both structural optimiza-
tions and frequency calculations the ba-
lanced basis set of triple zeta valence from 
Ahlrichs and coworkers (DEF2TZVP) [16] 
was employed. For all calculations, solvent 
effects of water were introduced using the 
polarizable continuum model (PCM) us-
ing the integral equation formalism variant 
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(IEFPCM) with APFD functional and the 
SMD variation of IEFPCM of Truhlar and 
workers with M06 functional.

Quantum-chemical calculations involv-
ing DFT were used to calculate the heat of 
formation of reactants and products and 
their corresponding Gibbs free energies. 
The ferric hydroxides clusters were mo-
deled following the previous studies. The 
ferric hydroxides clusters consisted of two 
iron atoms, ten oxygen atoms which were 
octahedrally coordinated to the iron atoms. 
The clusters can be represented by the ge-
neral formula Fe2O3 (H2O)7. The numbers 
of the protons were varied to calculate the 
effect of binding of arsenate with the cation 
and anion cluster’s binding sites.

To minimize the effect of gross dis-
tortions of the di-octahedral geometry 
observed in previous studies [17], the co-
ordinates of six peripheral oxygen atoms 
which were not part of the binding reac-
tion was fixed to simulate the binding sites 
of the iron hydroxide clusters also includ-
ing bound arsenic species. The enthalpies 
of the reaction are determined by calculat-
ing the heats of formation. The equation 
used is as follows:

∆r H0(298K) =  
= Σ(E0 + Hcorr)products – (E0 + Hcorr)reactants

Similarly, Gibbs free energy change of 
the reaction is computed by the key equa-
tion:

∆r G0(298K) =  
= Σ(E0 + Gcorr)products − (E0 + Gcorr)reactants

Results and Discussion
The heat of formation of the clusters at 

0K was determined and is given in Table 1.
Table 1

Calculated heat of formation  
for three different possible species

Cluster Charge Heat of Formation 
(kcal/mol)

Fe2O10H13
– –1 –1261.64

Fe2O10H14 0 –1186.33

Fe2O10H15
+ +1 –1087.94

The results indicate that the heat of 
formation of the positive charged fer-
ric hydroxide has the least value at 0K, 
whereas the other clusters are more stable 
than Fe2O10H15

+. The previous investigation 
showed that the positively charged ferric 
hydroxide cluster had better stability at 
neutral pH [17]. This may be possible due 
to the better stabilization of the Fe2O10H15

+ 
at neutral pH and hence increase in the 
heat of formation at the neutral pH. The 
optimized geometry of the Fe2O10H15

+ is 
represented by Fig. 1.

The reaction of Fe2O10H15
+ with HAsO4

2– 
resulted in the formation of charged (–1 
charge) monodentate (Fig. 2) and bidentate 
complex (Fig. 3).

Meanwhile, the reaction of Fe2O10H15
+ 

with H2AsO4
- resulted in the formation 

of uncharged monodentate (Fig. 4) and 
bidentate complex (Fig. 5).

The corresponding Gibbs free energy 
for the reaction was determined for the 
monodentate and bidentate complexes 
formed. The values are in given in table 
two and three, respectively.

The mono- and bidentate complex bear-
ing a negative charge showed higher stabi-
lity than the uncharged complexes formed. 
This indicates that the charge on the species 
improved the stability of the complex. The 
chemisorbed charged monodentate com-
plexes had Gibbs free energy of reaction 
–55.97 kcal/mol, whereas the bidentate 
complex formation had Gibbs free ener-
gy of reaction –62.55 kcal/mol. Thus, the 
desorption process of arsenate with com-
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petitive ligands would depend on Gibbs 
free energy of the reaction. The process is 
feasible only when the higher Gibbs free 
energy values are attained. The results of 
the study indicate that Gibbs free energy 
for the reaction has a significant role in 
controlling the kinetics of the adsorption 
and sorption process of arsenate on ferric 
hydroxide clusters.

Fig. 1. Structure of Fe2O10H15
+ complex 

carrying a net positive charge

Fig. 3. Structure of negatively charged 
bidentate complex

Fig. 2. Structure of negatively charged 
monodentate complex

Fig. 4. Structure of uncharged  
monodentate complex

Fig. 5. Structure of uncharged  
bidentate complex
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Two mutually complementary synthetic approaches 
towards 3‑substituted 3,4‑disubstituted and 

1‑(2‑pyridyl)‑substituted isoquinolines

Two mutually complementary synthetic approaches towards 3- and 3,4-disub-
stituted 1-(2-pyridyl) isoquinolines were studied. The aryne-based method was 
successfully used for the obtaining of the corresponding the 3-cyano-1-(2-pyri-
dyl)isoquinolines in one step / pot reaction, while it is unacceptable for the 
obtaining of other 1-(2-pyridyl)isoquinolines. The enamine-based approach was 
successfully applied for the synthesis of other 1-(2-pyridyl)isoquinolines, while 
it was unacceptable for the obtaining of 3-cyano-1-(2-pyridyl)isoquinolines.

Keywords: 1,2,4-triazines; arynes; enamines; isoqunolines; aza-Diels-Alder reaction; domino-
transfrormation.
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Results and Discussion
Aryne intermediates, generated 

in situ, are currently attracting more and 
more attention from the point of  view 
of  their use in  organic synthesis, since 
practically useful products of various pur-
poses can be obtained [1–3]. Recently, we 
have demonstrated the possibilities of their 
successful use in reactions with substituted 
1,2,4-triazines for obtaining both the ex-
pected aza-Diels-Alder reaction products, 
namely the corresponding isoquinolines, 
and the domino transformations, for ex-
ample, 10-(1H- 1,2,3-triazol-1-yl) pyrido 

[1,2-a] indoles. The direction of the reac-
tion depends on the nature of the 1,2,4-tri-
azines (or aryns) introduced into the com-
position of the substituents [4].

This article analyzes the two synthetic 
approaches we have developed for the syn-
thesis of 1- (2-pyridyl) isoquinolines with 
different substituents in the C3 and C4 po-
sitions, which are of interest, in particular, 
as ligands for transition metal cations [5], 
as well as from the point of view of creat-
ing OLED [6].
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Thus, the reaction of  3-(2-pyridyl)   
-1,2,4-triazines 1a, having an aromatic 
substituent or a hydrogen atom at the C5 
position, with aryne results in  the cor-
responding pyrido [1,2-a] indoles 2 [7] 
(scheme 1), while the synthesis of target 
1-(2-pyridyl) isoquinolines 3a in  this 
way is impossible. To solve this problem, 
we developed an alternative synthetic 
approach, which was based on  the use 
of 3-(2-pyridyl)-1,2,4-triazines 1 as start-
ing compounds. The approach involves 
the preparation of 5,6,7,8-tetrahydroiso-
quinolines 4a as a result of the reaction 
of aza-Diels-Alder (Boger) with enamine 
followed by oxidative aromatization of the 
isoquinoline system [8]. 1-Morpholinocy-
clohexene was used as a dienophile for the 
first stage. Subsequent aromatization using 
DDQ as an oxidizing agent made it possible 
to successfully synthesize isoquinolines 3a.

It should be noted that in the reaction 
of  3-(2-pyridyl)-1,2,4-triazine-5-carbo-
nitriles 1b with arynes, the corresponding 
isoquinolines 3b were also obtained as main 
products, whereas the products of domino 
transformation were the minor products 
(the yield is not more than 3 %) [9].

We also investigated the possibility 
of obtaining isoquinolines 3b as a result 

of two-stage synthesis through the prepa-
ration of tetrahydroisoquinolines 4b. The 
first step was performed by the same pro-
cedure as in the case of synthesis 4a, and 
afforded the compound 4b. However, sub-
sequent aromatization of tetrahydrocya-
noisoquinoline under various conditions, 
such as boiling in o-xylene or 4-chloro-
toluene with oxidants, such as  DDQ 
or chloranil, as well as prolonged boiling 
in the same high-boiling solvents in the 
pre sence of Pd / C did not lead to the forma-
tion of the desired isoquinolines 3b. In all 
cases the initial tetrahydroisoquinoline 4b 
was isolated. Thus, the application of this 
method is not acceptable for the obtaining 
the target 3-cyanoisoquinolines 3b.

Thus, it was demonstrated that two mu-
tually complementary synthetic metho-
dologies can be used to synthesize 3-aryl, 
3,4-diaryl-, as well as 3-cyano-1-(2-pyri-
dyl)isoquinolines. Thus, in the case of R = 
CN (Scheme 1), the synthesis using aryne 
intermediates makes it possible to efficient-
ly obtain the corresponding isoquinolines 
3b, while the method based of the prepa-
ration tetrahydroisoquinolines 4b does 
not allow this because of the impossibility 
of subsequent aromatization by using the 
common methods. At the same time, in the 

Scheme 1. Reagents and conditions: i) Anthranilic acid, isoamylnitrile, toluene — 1,4-dioxane 
(4: 1), boiling, 1.5 h; ii) 1-morpholinocyclohexene, without solvent, 200 °C, 4 h; iii) DDQ, 

o-xylene, 143 °C, 10 h
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case of R = H or Ar, the opposite situation 
is observed: the synthesis of isoquinolines 
3a is possible with the use of a two-step 
pathway by using the corresponding enam-

ine, and in the case of using aryl interme-
diates, the reaction leads mainly to rear-
rangement products 2.

Experimental
NMR 1H and 13C spectra were recorded 

on the spectrometer “Bruker-Avance-400” 
(400 MHz), internal standard is SiMe4. 
The melting points were measured on the 
“Boetius” device. Mass spectra (type 

of ionization is electrospray) were recorded 
on the device of series “MicrOTOF-Q II” 
of “Bruker Daltonics” (Bremen, Germany). 
Elemental analyses were performed on CHN 
analyzer PE 2400, series II by Perkin Elmer.
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Introduction
Concentration dependences 

of conductivity in different systems has 
already for a long time obtained the atten-
tion of researchers [1–3]. Such questions 
are often referred as percolation problems, 
including conductivity provided by polaron 
hopping between localization cen ters [2, 3]. 
 At the moment a big amount of equations 
were suggested for describing concentra-
tion dependences of conducti vity in vari-
ous systems. However, analytical solutions 
can not account all multiplicity of factors 
acting on conductivity: thermal motion 
of ions, their mobilities, sizes and etc. An 
attempt to consider all microscopic picture 
of the conductivity process can be made 
with numerical methods which began 
to develop with progress in computer en-
gineering. One of the most widespread me-

thods for studying of many-boded systems 
on a microscopic level is molecular dyna-
mics simulation (MD) [4, 5]. Unfortunately, 
classical MD can not deal with polaron 
hopping conductivity, because this phe-
nomenon has quantum-mechanical nature. 
Early we have suggested scheme which al-
lows including hopping conducti vity into 
MD [6]. This approximation is possibili-
ty of particles to change their oxidation 
degree (and, consequently, properties and 
interaction laws) runtime. Thus force field 
becomes variable and method can be called 
as “Non-constant force field molecular dy-
namics” (NCFFMD). The method is im-
plemented in “azTotMD” software which 
is available on website http://ncffmd.ru /   
[7]. In our previous work we have de-
monstrated possibilities of the method and 
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the software for simulation of redox pro-
cesses in liquid media [8]. The aim of the 
present paper is to study percolation be-

havior of a system with polaron hopping 
between localization centers placed accord-
ing to ZnS crystal lattice.

Simulation details
MD simulations were performed 

with “azTotMD” software [7] in canoni-
cal (NVT) ensemble. Newton’s equations 
of motion were integrated by Velocity Ver-
let algorithm [9] with timestep of 1 fs du-
ring 100’000 steps (0.1 ns). Equilibration 
time was 1 ps (1000 timesteps). Electro-
static interactions were accounted using 
the Ewald summation. Nosé-Hoover ther-
mostat [10] with relaxation time of 0.2 ps 
was used for maintaining the temperature 
around 298 K.  The considered system 
consists of electron donors (A+), electron 
acceptors (A2+) and counterions (X-). The 
number of X- ions was chosen equal to 500 
for all studied systems. Amounts of A+ and 
A2+ cations were given in such way to keep 
electroneutrality and obtain desired ratio 
of A+ / A2+ concentrations. Short range in-
teractions were given by pair potential sug-
gested for CuCl-CuCl2 binary system [11] 
since solid CuCl has a ZnS structure. Ini-
tial configurations were generated with the 
abovementioned site [7]. The starting ion 
coordinates correspond to ZnS crystalline 
structure with some vacant sites. The box 
was cubic with the edge length of 25.7 Å 
for all studied systems. This box length 
roughly corresponds to a cell parameter 
of CuCl. The sizes of boxes was the same 
for simplification and, in addition, ionic 
radii of Cu+ and Cu2+ (which are prototypes 
of ions A+ and A2+) are close to each other 
and equal to 0.77 and 0.73 Å, correspon-
dingly [12].

For activation of electron transfer rou-
tine during the simulation value of ejump 
directive was set as 1 in control.txt file (one 

of input files for the program). The pro-
gram performs electron transfer if the sys-
tem decreases energy by this transfer. The 
difference in system energy before and after 
electron transfer is determined according 
to formula [6]:
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(1)

where ∆Uij is energy difference after elec-
tron transfer from i-th particle to j-th par-
ticle, Vik is the Van der Waals energy of in-
teraction between i-th and k-th par ticles, 
provided by corresponding pair potentials, 
q is the electric charge of the particle, r is 
the distance between par ticles, C is the 
constants in Coulomb’s law, ε is the rela-
tive permittivity of the media, ΔEx is the 
voltage drop on the X axis, a is the box 
length and upper indices I and II mean 
states of particles before and after electron 
transfer, correspondingly. Electronic cur-
rent (I) was determined through a time 
derivative of  difference in  the number 
of electrons transferred in positive and 
negative directions:

I e
d n n

dt
�

�� �� �

,
  

(2)

where e is the electron’s charge, n+ and n- 
are the numbers of electron hops through 
Oyz edge in positive and negative direc-
tions along x-axis.
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Results and discussion
At first let us discuss a structure of the 

system. The numerical experiments showed 
that with the presented here force field the 
crystal lattice is stable only in  the case 
of the even numbers of both A+ and A2+ 
cations. In this case one can observe crys-
tal lattice with ZnS structure independent 
of the time of the system evolution, Fig. 1. 
One can see some vacant sites in cation 

sublattice, because every A2+ ion demands 
one cation vacancy to save electroneutra-
lity. Despite of this voids the system keeps 
own crystal lattice right up to composition 
of 0.2AX·0.8AX2.

Examples of radial distribution func-
tions (RDF) are given in Fig. 2. The RDFs 
are characteristic for crystalline systems; 
there are a number of well-resolved ma-
xima. Distance for  the first maximum 
determines more probable distance be-
tween ions in the first coordination sphere 
for a chosen pair. The position of the first 
maximum for A+–A2+ pair does almost 
not depend on  composition and elec-
tric field and equals to ~3.7 Å. The dis-
tance at which RDF for A+–A2+ pair starts 
to exceed 0.1 is also almost constant and 
equal to ~2.7 Å. This means that if length 
of electron hopping is lesser than 2.7 Å, 
the system will not have electronic con-
ductivity. For this reason, we set maximal 
hopping distance to be much higher than 
2.7 Å by specifying of rElec directive in the 
control.txt file.

Usually, the number of electron hops 
through some plane is a linear function 
of time, Fig. 3. Without external electric 
field these numbers are the same for posi-
tive and negative directions, but in the case 
of the field the slopes of these lines differs 
from each other (Fig. 3). The correspond-
ing value of current can be obtained from 
expression (2). Note that for observation 
of noticeable current we need to apply an 
external electric field with a colossal vol-
tage, because current density of 1 A·cm–2 is 
approximately equal to 0.625·10–9 single-
charged particles per picosecond, per 
square angstrom (in units more conve nient 
for MD). To see the noticeable number 
of particles for the simulation time we need 
to obtain high current which requires high 

Fig. 1. The structure of the simulated system 
0.5AX·0.5AX2 obtained after simulation 
under 1V electric field during 100 000 

timesteps. Big green spheres denote X- anions, 
small red and orange ones — A2+ and A+ 

cations, correspondingly

Fig. 2. The radial distribution functions, 
g(r), of the simulated system 0.5AX·0.5AX2 

for A+–X– and A2+–A+ ion pairs
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voltages. However, extremely high voltages 
can lead to the destruction of a system. In 
our simulations we used voltage of 1 V, 
higher voltages led to breaking of crystal lat-
tice and liquid-like structure of the system.

Electronic current as a function of com-
position for different values of the maxi-
mal hopping distance is presented in Fig. 4. 
As expected, the current grows with this 
parameter. At small values of the distance 
the current passes through the maximum 
around x = 0.5. From statistical point of view 
the current will be maximal if pro bability 
of finding the electron acceptor (A2+) near 
the electron donor (A+) is maximal. This 
probability is proportional to the product 

of their concentrations which is maximal 
at x = 0.5. The difference of observed posi-
tion of maximum from 0.5 can be caused 
by some reasons: asymmetry in pair po-
tentials, different mobility of A+ and A2+ 
ions and etc. At high values of the maximal 
hopping distance the current grows with 
concentration of A+ species. This implies 
that if electron can hop on enough long 
distances the conductivity will be limited 
by the concentration of electron donors. In 
other words, if there is an electron donor, 
an electron acceptor always can be found. 
So the maximal length of the electron hop 
determines the shape of the concentration 
dependence of the conductivity.

Conclusions
Non-constant force field molecular dy-

namics is able to simulate electron hops 
between electron donors and acceptors 
affected by thermal movement. Thus, it 
is possible to study polaron conductivity 
of a given system by this method. In this 

work concentration dependence of con-
ductivity was considered in the case of ZnS 
geometry for electron localization cen ters. 
It was shown that the position of the con-
ductivity maximum depends on the maxi-
mal hopping distance.

Fig. 3. The number of electron hops 
through the Oyz plane in positive and 

negative directions (and their difference) 
as a function of time. The simulated system is 
0.5AX·0.5AX2, the maximal hopping distance 

is 4.5 Å, the applied voltage is 1 V

Fig. 4. Electronic current (i) as a function 
of composition (x) in the xAX–(1–x)AX2 

system under external electric field of 1 V and 
different maximal hopping distance (re)
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