

Electrochemical Materials and Technologies

elSSN: 2949-0561

Cite this: Electrochem. Mater. Technol. 1 (2022) 20221003

Received: 02 July 2022 Accepted: 25 September 2022

DOI: 10.15826/elmattech.2022.1.003

Recent advances in heteroatom substitution $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ oxide as a more promising electrode material for symmetrical solid-state electrochemical devices: A review

Natalia Porotnikova^{a*}, Denis Osinkin^{bc}

In recent years, the interest in solid state electrochemical devices has significantly increased due to the various cases of their use in the energy field. The first case is the solid oxide fuel cells with both oxygen-ion and proton-conducting membranes. The second case is the electrolysis cells for hydrogen production. As a rule, in both cases, electrochemical cells consist of an ion-conducting membrane and two different electrodes. The present review is focused on structural, physicochemical, and electrochemical properties of a complex oxide based on strontium ferrite with partial replacement of iron by molybdenum. This complex oxide has a number of unique characteristics: in particular, it is able to function effectively as an electrode in oxidizing and strongly reducing atmospheres, which makes it a promising material for electrochemical devices based on solid electrolytes with symmetrical electrodes. Doping with elements in A-, B- and O-sublattices and surface modification increases electro-catalytic activity of Sr₂Fe_{L5}Mo_{0.5}O₆₋₆ porous oxide material, which increases competitiveness of the electrode material for application in solid oxide electrochemical devices. Mechanisms for improving electro-catalytic activity are outlined stepwise by doping of different sublattices of double perovskite, by level of doping, and by different types of dopants. In conclusion, the data on material conductivity, power densities of both symmetric and fuel cells are systematized, and the remaining problems and prospects for future developments and upgrades of $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ oxide electrode material are described.

keywords: Sr₂Fe_{1.5}Mo_{0.5}O_{$6-\delta$}, IT-SOFCs, anode materials, cation doping, conductivity, anion doping, polarization resistance, symmetrical electrode

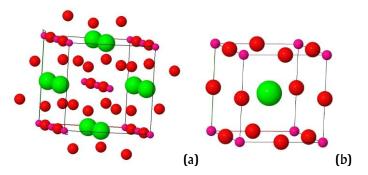
© 2022, the Authors. This article is published in open access under the terms and conditions of the Creative Commons Attribution (CC BY) license http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Methods of production, storage, transportation, and use of hydrogen are among the main directions of science and technology development [1-3]. A good trend in this area is the development of solid oxide fuel cells

- a: Laboratory of Cross-Cutting Technologies in Distributed Power Generation, Institute of High-Temperature Electrochemistry, Yekaterinburg 620066, Russia
- b: Laboratory of Solid State Oxide Fuel Cells, Institute of High-Temperature Electrochemistry, Yekaterinburg 620066, Russia
- c: Department of Environmental Economics, Graduate School of Economics and Management, Ural Federal University, Yekaterinburg 620002, Russia
- * Corresponding author: porotnikova@ihte.uran.ru

(SOFCs) and power generation system based on them. SOFCs are direct converters of fuel chemical energy into electricity and have a series of undeniable advantages over traditional methods of generating electricity [4]. Classical SOFC is an ion-conducting membrane (solid zirconium oxide electrolyte) and two electrodes separated by this membrane, cathode is an oxygen electrode and anode is a fuel electrode. Traditionally, solid oxide fuel cell electrodes are cathode, which consists of oxides with mixed oxygen-electron conductivity [5–8]; and anode, which is a composite material based on nickel and ceramics (Ni cermets) [9–11]. Such fuel cells have proven to perform well with hydrogen as a fuel in the temperature range of 800–900°C. However, lower operating temperatures and/or the use of gaseous hydrocarbons (methane, propane, etc.) and natural or synthesis gas in such SOFCs is difficult because of the increase in the ohmic resistance of the zirconium electrolyte and the formation of carbon on the nickelcontaining anode [12-14]. Another disadvantage of nickel-containing anodes is their rapid degradation in atmospheres with high water content [15, 16]. A new direction in the field of SOFC development is the research of electrochemical cells with identical, i.e., symmetrical electrodes [17–19]. Any complex oxides with high stability in a hydrogen atmosphere, such as manganites, chromites, and titanates of alkali earth metals and lanthanides, can theoretically be used as symmetric electrodes [20, 21]. However, these systems do not have the necessary properties for their practical application in the symmetrical SOFCs.


Of particular note is strontium ferrite, which, due to its electronic structure, is highly stable in reducing gas environments, even at high temperatures [22-25]. In addition, strontium ferrite has a thermal expansion comparable to traditional electrolyte materials [22]. A few years ago, papers were published on the use of doped strontium ferrite as electrodes for symmetric SOFCs. For example, the partial replacement of iron ions by molybdenum ions allows the electrical properties to be significantly increased due to the formation of the redox couple $Fe^{2+}+Mo^{6+}\rightarrow Fe^{3+}+Mo^{5+}$ and the formation of oxygen vacancies in the crystal lattice. Substitution of 25% of iron ions with molybdenum leads to the formation of oxide Sr₂Fe_{1.5}Mo_{0.5}O₆₋₆ (SFM). SFM is singlephase after synthesis in air and has a sufficient level of conductivity and electrochemical activity. It is chemically stable when in contact with the highly conductive lanthanum gallate-based electrolyte and can be considered as the main candidate for electrodes of symmetric electrochemical cells.

2. Properties and modification of the oxide

2.1. Structure and aspects of synthesis

The structure of strontium ferrite-molybdate can be considered as FeO_6 and MoO_6 octahedra alternating along the three directions of the crystal, with strontium cations occupying the space between the octahedra. Depending on the ordering of iron, molybdenum atoms, occupied and vacant oxygen atoms, the oxide has either a cubic Pm-3m or tetragonal *A*/*mmm* crystal structure [26, 27], Figure 1.

The Goldschmidt tolerance factor can be useful for determining the stability of the perovskite phase for a certain array of anions and cations [28]. Cations A are

Figure 1 Schematic structure of $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ presented in space group *A/mcm* #140 (a) and *Pm-3 m* #221 (b), where Sr (green), Fe/Mo (red), O (magenta) [27] Copyright ©, Springer Materials.

coordinated with XII oxygen ions, and cations B and B' are coordinated with VI oxygen ions in the perovskite structure. The oxygen anions are coordinated by II cations of site B and IV cations of site A. For perovskites ABO₃, the equation is as follows:

$$t = \frac{R_A + R_O}{\sqrt{2}(R_B + R_O)} \tag{1}$$

where R_A , R_B , R_O are ionic radii for ions in A, B, O sites. The tolerance factor for hexagonal or tetragonal structures has the value t>1, for cubic structure the value is 0.9–1, for orthorhombic or rhombohedral structures – 0.71–0.9. When the B-cation is doped with another cation, the radii are substituted depending on the concentration of the ion in the structure.

The tolerance factor can be used to estimate the stability of the perovskite phase during doping in both cation and anion sublattices. Often the structure can differ with the same group of ions, which may be due to the non-stoichiometric nature of the compound. This can be observed for $Sr_2Fe_{1.5}Mo_{0.5}O_{6-6}$, where the oxygen content in the structure can vary from 5.50 to 6.0 depending on the sintering conditions [27].

The ordering and occupancy of the B-sublattice in A₂BB'O₆ is controlled by the synthesis technique, and the occupancy has a significant influence on the material properties. The earliest studies of double perovskites date from the 1960s. Longo J. and Ward R. [29] showed that complex oxides can be obtained by solid-phase synthesis, where A = Ba, Sr, Ca, B = Fe, B'=Re. Grinded mixtures of simple oxide reagents were heat-treated in evacuated quartz capsules at 900–1000°C for 24 h. Compounds with barium and strontium were described by the tetragonal structure with cell parameters a = 5.70 Å, c = 8.05 Å for Ba₂FeReO₆₋₆ and a = 5.57 Å, c = 7.89 Å for Sr₂FeReO₆₋₆. The calcium compound Ca₂FeReO₆ was

described by the orthorhombic structure with cell parameters a = 5.41 Å, b = 5.53 Å, c = 7.69 Å.

Later, Galasso F.S. et al. [30] were first to describe the structure of A_2 FeMoO_{6- δ} type compounds, in which oxygen and large metal cations were tightly packed in the direction (III) with iron and molybdenum ions alternating in octahedral coordination between the oxygen layers, so that Fe-O-Mo bonds were at 180° and represented half an edge of the unit cell. Solid solutions of the ordered perovskite phases $Ba_2FeMoO_{6-\delta}$ and $Sr_2FeMoO_{6-\delta}$ were prepared by high-temperature annealing (1035°C) of the milled mixture in appropriate amounts of SrO, BaO, CaO, Fe₂O₃, Mo and MoO₃ reagents. The authors claimed that the compositions were not single-phase at heat treatment in air. All compounds contained additional phases of SrMoO₄ and BaMoO₄. Ba₂FeMoO_{6- δ} oxide had the cubic cell with a unit cell size a = 8.0665 Å. The authors recorded deviations from the 180° bond angle resulting in a distortion of the cubic lattice; the crystal structure of $Sr_2FeMoO_{6-\delta}$ was described as a tetragonal unit cell. Nakagawa T. [31] confirmed that it was not possible to obtain single-phase material at ambient air, only in full vacuum silica capsules at temperature above 1100°C. Another method of producing oxides is sintering in a reducing atmosphere of $5\%H_2/95\%Ar$ (N₂) [32–35]. The very easy formation of SrMoO₄ during processing should also be a key difficulty in the complete synthesis of this phase. In a humid atmosphere, the double oxide decomposes predominantly to form simple oxide FeO and hydroxide Sr(OH)₂ and SrMoO₄ [33]. Using a nonclassical solid-phase method, such as spark plasma sintering [36], microwave sintering [37], pulsed laser deposition [38], sol-gel method [39–42], and Pechini [43] methods, makes it possible to achieve single-phase at reduced temperatures in vacuum or a humid atmosphere. Consequently, $Sr_2FeMoO_{\delta-\delta}$ in air is thermodynamically unstable due to insufficient Mo and Fe solubility in SrFeO_{3- δ} and SrMoO₄, respectively.

One of the most promising directions in the study of compounds with double perovskites $Sr_2FeMoO_{6-\delta}$ is the reduction of molybdenum in the B-sublattice, which makes such compositions more thermodynamically stable. A homogeneous solid solution of $Sr_2Fe_{2-y}Mo_yO_{6-\delta}$ is formed at 1200°C in air with the addition of molybdenum to y = 0.6 in the double perovskite structure [33, 44]. The SrMoO₄ and SrFeO_{3- δ} phases are formed at high molybdenum concentrations, which are formed at an excess of y>0.6. The composition with y = 0.5 is the most popular because of its ability to be REVIEW

synthesized in air, its stability and good conductivity characteristics.

Mostly $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ phase was synthesized by solid-phase method by mixing initial oxides and/or carbonates [27, 45-48], or by sol-gel synthesis where nitrate salts and complexes were used as initial reagents followed by dissolution in deionized water with addition glycine and citric acid [45, 49–54]. of The $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ oxide has a primitive cubic *Pm*-3*m* structure [20, 38, 49, 55, 56] after sintering in air, cubic face-centered Fm-3m structure [45, 52, 57-59] also after sintering in air, and tetragonal A/mcm or A/mstructure [27, 47, 50] after treatment in hydrogen. The unit cell parameters, synthesis methods and conditions are given in Table 1. The gas environment during annealing significantly affects the occupancy of the oxygen sublattice, resulting in structural distortions and changes in the crystal lattice.

The introduction of aliovalent ions into the Aand/or B-sublattices also leads to changes in the crystal structure [52, 60–62]. The increase of Ba content in Sr_{2-x}Ba_xFe_{1.5}Mo_{0.5}O_{6-δ} leads to lattice expansion due to the larger ion radius of Ba²⁺ (1.61 Å) compared to Sr²⁺ (1.44 Å). The stability of the perovskite crystal structure gradually worsens according to the calculations of the tolerance factor; the single-phase oxide is retained up to x = 0.8, phase separation occurs above this value, with the formation of BaMoO₄, Fe, SrO and BaO [52, 60]. The reduction of Fe oxidation degree at partial heterovalent substitution of Sr²⁺ by La³⁺ and Fe³⁺ by Co²⁺ in Sr_{2-x}La_xFe_{1-y}Co_yMo_{0.5}O_{6-δ} leads to the increase of perovskite phase stability in H₂ at 1100°C; phase stability is kept at x = 0.4, y = 0.5 [62].

Substitution of A- or B-sublattice ions with other types of cations is a common practice to optimize the performance of perovskite oxide systems. To increase the electrocatalytic activity, it is necessary to stabilize the structure of strontium ferrite-molybdates and improve the durability of the material in redox environments. Several studies have been carried out by doping the strontium A-sublattice with cations of alkali element (K), alkaline-earth elements (Ca, Ba), and rare-earth elements (La, Sm), or by forming a deficient in the A-sublattice. For the same purpose the modification of the B-sublattice with transition metals (Co, Cu, Ni, Nb, Mn, Ti, Sc, Ga, Zr, Bi, Al, Mg, Sb), noble metal (Ru), or O-sublattice anion doping (N, Cl, F) leads to a change in crystallinity and in electrochemical properties of the materials. The effects of $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ doping will be described in more detail in the following chapters.

2.2. Complex oxide $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$

Sr₂Fe_{1.5}Mo_{0.5}O_{6-δ} oxide demonstrates high electronic conductivity under reducing conditions due to the degeneration and hybridization of coexisting states Fe³⁺/Mo⁵⁺ \leftrightarrow Fe²⁺/Mo⁶⁺. Although the total concentration of Fe and Mo atoms is well controlled, it is much more difficult to control the distribution of Fe and Mo atoms in the two alternating lattices during synthesis [63]. In fact, all samples contain a certain amount of vacancy defects, where some Fe atoms exchange positions with Mo atoms. Usually, these defects are randomly distributed, and their number characterizes the degree of Fe/Mo ordering in the sample, which can be determined by X-ray diffraction [64]. The use of functional density

theory demonstrates that a higher concentration of oxygen vacancies is expected in $Sr_2FeMoO_{6-\delta}$ at the Fe/Mo>1 ratio, the presence of vacancies should accelerate the diffusion of oxide ions and can also improve the electronic conductivity based on electron delocalization during vacancy formation [65]. Vacancies along Fe–O–Fe are preferred with respect to those along Mo-O-Fe or Mo-O-Mo due to weaker Fe-O bonds and preferential delocalization of the extra charge left after vacancy formation (due to the driving force to retain a half-filled Fe d-shell), which also acts to preserve high electronic conductivity in Sr₂Fe_{1.5}Mo_{0.5}O_{6-δ} [66]. Density theory (DFT)-based functional firstprinciples calculations show that hydrogen molecule exhibits weak adsorption physical behavior,

Oxide	Method of synthesis	Conditions of synthesis	Unit cell parameters	Space group, structure	Ref.
Sr ₂ Fe _{1.5} Mo _{0.5} O _{6-δ}	solid state reaction	1200°C, 12h in air	<i>a</i> = 5.5548(2) Å,	А / <i>тст</i> ,	27
			<i>c</i> = 7.8783(5) Å	tetragonal	
Sr ₂ Fe _{1.5} Mo _{0.5} O _{6-δ}	solid state reaction	1200°C, 12h in air, 850°C, 4%H ₂ /He	<i>a</i> = 3.9794(1) Å	<i>Pm</i> -3 <i>m</i> , cubic	27
Sr ₂ Fe _{1.5} Mo _{0.5} O _{6-δ}	solid state reaction	1200°C, 12h in air	<i>a</i> = 7.8717(1) Å	Fm-3m, Cubic	45
Sr ₂ Fe _{1.6} Mo _{0.4} O _{6-δ}	solid state reaction	1200°C, 12h in air	<i>a</i> = 3.905(1) Å	<i>Pm</i> -3 <i>m</i> , cubic	46
$Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$	microwave-combustion method	1200°C, 12h in air	<i>a</i> = 3.92874(6) Å	<i>Pm</i> -3 <i>m</i> , cubic	49
$Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$	sol-gel method	1250°C, 12h in air	<i>a</i> = 5.5430l(15) Å, <i>c</i> = 7.847l(4) Å	А/ <i>тст</i> , tetragonal	50
Sr ₂ Fe _{1.5} Mo _{0.5} O _{6-δ}	citrate method	1100°C, 5h in air	<i>a</i> = 3.92719 Å	Pm-3m, Cubic	51
$Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$	solution combustion method	1200°C, 6h in air	<i>a</i> = 7.8664 Å	<i>Fm</i> -3 <i>m</i> , Cubic	52
Sr _{2-x} Ba _x Fe _{1.5} Mo _{0.5} O _{6-δ} (x = 0.3-0.9)	solution combustion method	1200°C, 6h in air	<i>a</i> = 7.8664 Å content BaO	<i>Fm</i> -3 <i>m</i> , Cubic	52
$Sr_{2-x}Ba_{x}Fe_{1.5}Mo_{0.5}O_{6-\delta}$ (x = 0-0.8)	citrate combustion method	1100°C, 5h in air, 800°C, 2h in H ₂	<i>a</i> = 7.8664 - 7.9309 Å	<i>Fm</i> -3 <i>m</i> , Cubic	60
Sr ₂ Feo.75Tio.25MoO ₆₋₆	solid state reaction	1350°C, in air	<i>a</i> = 5.3711 Å, <i>c</i> = 11.9823 Å	A/ <i>m</i> , tetragonal	61
Sr ₂ FeCo _{0.5} Mo _{0.5} O _{6-δ}	sol–gel method	1100°C, 5h in air	<i>a</i> = 7.80824(8) Å	Fm-3m, Cubic	62
Sr _{1.8} La _{0.2} FeCo _{0.5} Mo _{0.5} O _{6-δ}	sol-gel method	1100°C, 5h in air	<i>a</i> = 7.82224(9) Å	Fm-3m, Cubic	62

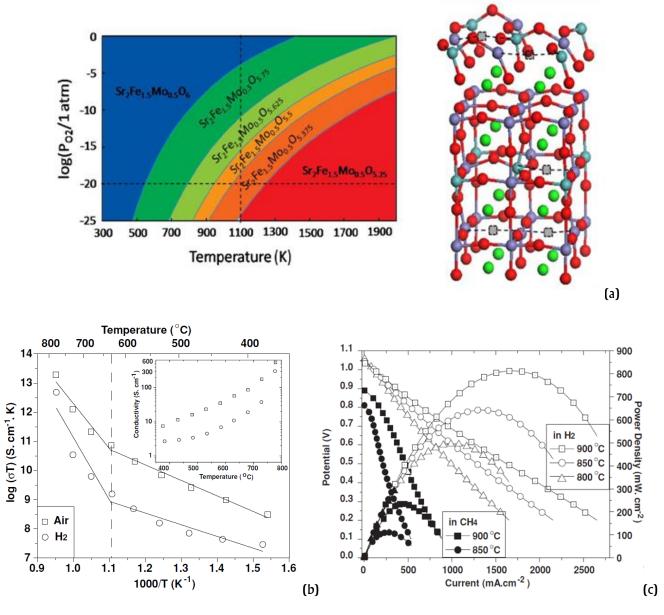
while hydrogen atom strongly chemisorbed on SFM (OOI) surface [67, 68]. Hydrogen molecule preferably dissociates at surface (Fe)–Fe–(Fe) site with an activation barrier of 0.69 eV. Hydrogen oxidation on Sr₂Fe_{1.5}Mo_{0.5}O_{6- δ} (OOI) surface is favourable both in kinetics and thermodynamics, and the resulting desorption of H₂O molecules requires overcoming an energy barrier of 0.22–0.24 eV. Diffusion of oxygen atoms from volume to the surface prefers to follow the path from sub-surface (Fe)–O–(Fe) site to outer-surface (Fe)–Vo–(Mo) vacancy site, which requires crossing an energy barrier of 0.49 eV. The rate-limiting step of hydrogen conversion on the Sr₂Fe_{1.5}Mo_{0.5}O_{6- δ} surface is

determined to be hydrogen dissociation at temperature below 775°C and the hydrogen adsorption at temperature above 775°C. Stochastic surface models with different Fe/Mo ratios and oxygen vacancies in the gas surface layer are described to determine the active site and electro-oxidation mechanism for CO and a mixture of CO and H₂ [69]. The calculated current densities demonstrate that Sr₂Fe_{1.5}Mo_{0.5}O₆₋₆ anodes exhibit lower efficiency for CO compared to H₂ fuel, and the surface with a higher concentration of Mo in the upper layer exhibits higher activity for both fuels.

As described above, the iron-enriched system can be obtained in air at 1000°C in a cubic structure, with

a = 7.8447(1) Å, V = 482.759(3) Å³, and space group Fm-3m [70]. According to the results of photoelectron spectroscopy, the major oxidation states are of Sr^{2+} , Fe^{2+} , and Mo⁶⁺. However, there should be an accompanying small portion of Fe³⁺/Mo⁵⁺ [70, 71]. Therefore, the calculated oxygen atoms in the $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ lattice should be between 5 and 5.75. Consequently, $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ is an oxygen deficient system with substantial oxygen vacancies. Model calculations of oxygen nonstoichiometry from temperature and oxygen pressure are shown in Figure 2(a), as well as a model of vacancy formation in the structure [72]. Three surface models with different Fe/Mo ratios in the outer layer, identified by *ab initio* thermodynamic analysis, are used to investigate the H_2 oxidation mechanism. A microkinetic analysis, which takes into account the influence of the anode bias potential, suggests that a higher Mo concentration in the surface increases the activity of the surface toward H_2/H_2O oxidation [73,74] and has a high tolerance to sulfur poisoning [75, 76]. Figure 2(b) demonstrates the temperature dependence of

conductivity of $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ in hydrogen and air [70]. At a maximum temperature of 780°C, the conductivity values are 550 S/cm in air and 310 S/cm in hydrogen, which are high values for a mixed conductor. The addition of CuO, NiO makes it possible to significantly increase the electrical conductivity of $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ -based anode materials in moist hydrogen by improving the grain boundary conductivity [77, 78]. The introduction of Fe₂O₃ slightly changes the overall conductivity of the material, but significantly affects the oxygen diffusion in the nearsurface area by reducing the oxygen diffusion coefficient [79]. Electrical conductivity relaxation measurement demonstrates that the surface exchange coefficient of SFM is significantly improved by Ce_{0.8}Sm_{0.2}O_{1.9} nanoparticles, from 10^{-5} to 10^{-3} cm/s at 750° [80].


 $Gd_{0.2}Ce_{0.8}O_{1.9}$ nanoparticles were infiltrated onto the SFM surface to construct a composite GDC-SFM cathode and improve the CO₂RR performance in SOEC [81]. The current density over the GDC infiltrated SFM cathode with a GDC loading of 12.8 wt% reaches 0.446 A/cm² at 1.6 V and 800°C, which is much higher than that over the SFM cathode (0.283 A/cm²). Temperature-programmed desorption of CO₂ measurements suggest that the infiltration of GDC nanoparticles significantly increases the density of surface-active sites and three phase boundaries, which are beneficial for CO₂ adsorption and subsequent conversion.

The performance of a La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O₃ electrolyte supported symmetrical fuel cell with the

configuration of SFM|LSGM|SFM was tested in wet H₂ (3 vol% H₂O) and CH₄ fuels [70]. The open circuit voltage (OCV) of the cell was 1.07 V at 900°C using wet H₂, close to the value calculated from the Nernst equation. The OCV of the cell using wet (3 vol.% H₂O) CH₄ as fuel was 0.90 V at 900°C. The maximum power densities, Figure 2(c), at 900°C in wet H₂ and CH₄ are 835 and 230 mW/cm², respectively. The kinetics of hydrogen oxidation on Sr₂Fe_{1.5}Mo_{0.5}O₆₋₆ electrode in contact with electrolyte La0.85Sr0.15Ga0.85Mg0.15O3 was investigated in [82]. The hydrogen oxidation rate is determined by the low rate of oxygen heterogeneous exchange and slow dissociation of hydrogen on the $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ surface. At 800°C, the rates of these processes are comparable; with temperature decrease the rate of hydrogen oxidation is mainly limited by hydrogen dissociation. Decorating the $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ electrode with Ni-particles significantly increases the rate of hydrogen dissociation and increases the activity of the electrode more than two-fold.

There is an improving technique for fabricating a symmetrical cell, which increases power density and cell performance. The technique consists of fabricating a trilayer porous/dense/porous LSGM structure with open pores, which are impregnated with a paste containing nanoscale particles [83-85]. The resulting symmetrical fuel cells produce maximum power densities of 703, 602, 521 and 401 mW/cm² at 800, 750, 700 and 650°C, respectively [84]. The subsequent impregnation of the electrodes with nanoscale Pr_6O_{II} catalyst allows for an increase in the electrochemical performance [86]. After the impregnation of electrodes Pr-SFM|GDC|YSZ|GDC|Pr-SFM in the symmetrical fuel cell, the polarization resistance is reduced by 47% to 0.10 S/cm² for the anode and by 80% to 0.021 S/cm² for the cathode; the maximum power density improves by 51% at 800°C. There is also a simple one-step cosintering method for making symmetrical solid oxide fuel cells from Sm0.2Ce0.8O1.9 electrolyte and Sr2Fe1.5M00.5O6-6 electrodes [87]. The single cell co-sintered at 1200°C possesses the highest peak power density of 216 mW/cm² at 700°C.

 $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ (SFM) also has good reductionoxidation (redox) stability [48, 49, 88–90]. Symmetrical electrolyzers with a cell configuration of 60wt%SFM-40wt%Smo_2Ceo_8O_{1.9} | Lao_8Sro_2Gao_8Mgo_2O_{3-\delta} are almost stable at a constant electrolysis current density of -0.060 A/cm² in 35h testing at 800°C, when the fuel electrode and oxygen electrode are exposed to 23%H₂O-77%N₂ and ambient air, respectively [88]. In [89] the electrochemical stability of Sr₂Fe_{1.5}Mo_{0.5}O_{6-\delta}

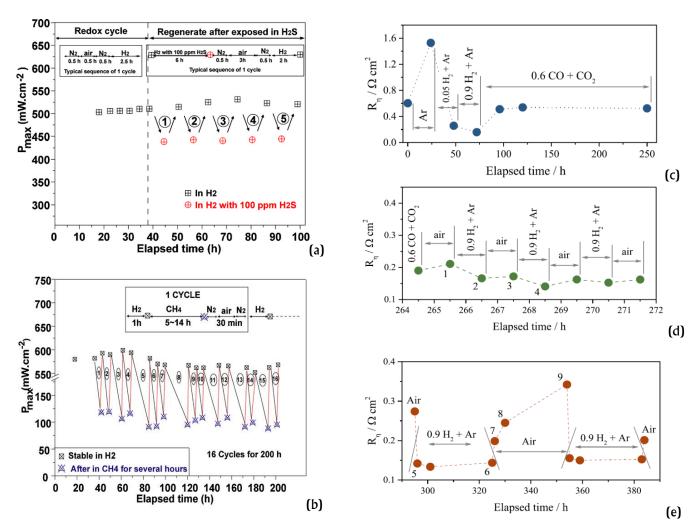


Figure 2 a) Theoretical non-stoichiometric phase diagram and presentation of oxygen vacancies in the structure of $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ [72]; b) Temperature dependencies of total conductivity of $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ in air and H_2 [70]; c) Performance of a symmetrical fuel cell SFM|LSGM|SFM with wet (3 vol. % H₂O) H₂ or CH₄ as fuel [70] Copyright © 2010 WILEY-VCH Verlag Gmbh & Co. KGaA, Weinheim.

electrode was tested at 850 °C and 60 vol.% absolute symmetrical humidity. Α cell with SFM | Lao.9Sro.1Gao.8Mgo.2O3 | SFM configuration was fabricated and operated at a constant cell voltage of 1.2 V. The cell current was recorded to evaluate the cell performance stability. After reaching the steady-state operation condition, no notable electrode passivation was observed during the subsequent 90 h electrolysis operations, indicating that SFM is relatively stable under high temperature and high humidity environment.

The regenerating characteristics of the SFM|LSGM|SFM symmetrical cell in H₂/H₂+H₂S, Figure 3(a), and H₂/CH₄, Figure 3(b), have been evaluated using

cyclic tests [49]. After operation in H_2 with 100 ppm H_2S for 6 h at 800°C, a reduction of 10% in performance was observed, indicating slight sulfur poisoning of the anode. After this regeneration treatment, the operability of the cell was almost completely restored. The process of sulfur poisoning and oxidative regeneration was repeated 5 times, and no obvious signs of permanent deactivation were observed. Prior to conducting the anode regenerative test in CH₄, the fuel cell was operated using H_2 (with 3vol% H_2O) as the fuel for 15 h at 850°C, and the stability of the cell performance was confirmed under these operating conditions. After operating the cell using H_2 as the fuel for 40 h, the anode regenerating

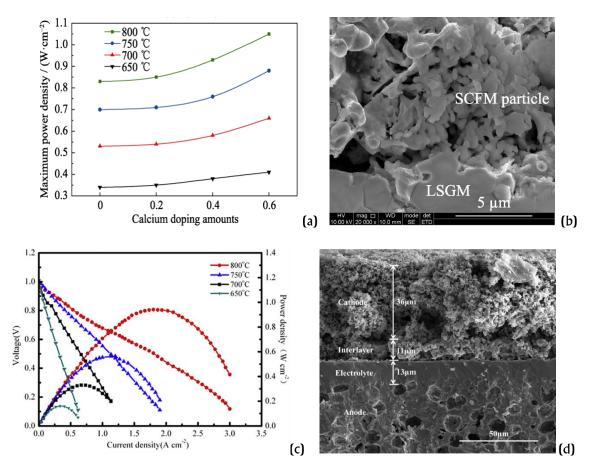
Figure 3 a) Stability of the SFM | LSGM | SFM symmetric cell with Sr₂Fe_{1.5}Mo_{0.5}O₆₋₆ anode at 800°C versus the time of stream after 10 cycles in H₂/CH₄ and b) after 16 cycles, in H₂, air and CH₄ [49] Copyright © 2011 Elsevier B.V.; Long-term tests of the polarization resistance of the SFM | LSGM | SFM symmetric cell at 800°C in c) H₂/Ar-CO/CO₂, d) CO/CO₂-H₂/Ar-air, e) H₂/Ar-air [90] Copyright © 2019 Elsevier B.V.

test was started, and the maximum power output of the cell did not change significantly after 16 regeneration cycling tests that lasted for 200 h.

The redox cycling of the $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ electrode in contact with the LaGaO₃-based electrolyte was performed at 800°C in air-CO/CO₂-Ar/H₂ [90]. A long-term exposure in 0.6CO+0.4CO₂ did not have any noticeable effect on the polarization resistance of SFM electrode, Figure 3(c). The fast redox cycling had little effect on the activity of the SFM electrodes, the resistance values were satisfactory; after each exposure in air for 1h, the electrode polarization resistance increased slightly, whereas after an atmosphere of 0.9H₂+Ar the polarization resistance decreased, Figure 3(d). In the case of 0.9H₂+Ar atmospheres, Figure 3(e), a significant increase in polarization resistance over time was observed after switching the 0.9H₂+Ar mixture to an oxidizing atmosphere. The value of polarization resistance decreased significantly within 1h when switching from air to $0.9H_2$ +Ar and remained almost unchanged during long-term exposure. In [91–93], the analysis of electrochemical impedance spectrum and relaxation time distribution showed that the kinetics of surface/interface oxygen exchange and CO/CO₂ activation process in Sr₂(Fe,Mo)₂O₆₋₆ oxide can be accelerated by the formation of epitaxially endogenous NiFe alloy nanoparticles on the surface.

In [94], it is shown that the introduction of 500ppm H₂S into the fuel caused degradation of $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ anode material in a symmetrical cell with BaZr_{0.8}Ce_{0.1}Y_{0.1}O_{3-\delta} electrolyte during 137h; the anode material degraded by 50% of the maximum power density. The SFM material was reacted with H₂S to form metal sulfides SrS, Fe₃S₄, Fe₉S₁₀ and MoS₂.

2.3. Modifying the A-sublattice in $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$

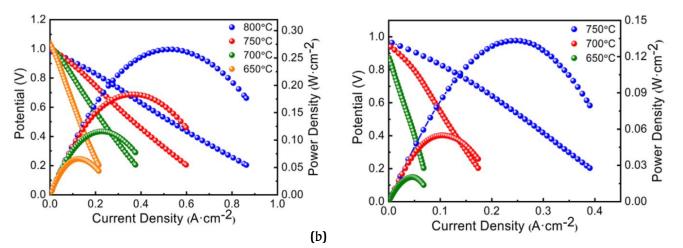

Modification of the divalent strontium sublattice by single- and double-charged cations is well known, and the cations must be close in radius to penetrate the matrix to form a stable single-phase compound. Alkali metals have a lower valence +1 and a smaller size than the Asublattice cation, which can increase the number of oxygen vacancies or modify the oxidation degree of the B-sublattice active centers due to charge compensation.

In [95–97], theoretical calculations were carried out to predict the promising use of K-doped Sr₂Fe_{1.5}Mo_{0.5}O_{6-δ} as an electrode material for oxygen extraction and reduction reactions (ORR). The catalytic capabilities of Fe/Mo-O₂ terminated (001) surfaces of K-doped $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ were investigated using state-of-the-art density functional theory calculations. The surface reconstruction occured after the formation of oxygen vacancies along the Mo-O-Fe bonds, where MoO₄ tetrahedra were formed. It was assumed that the highly under-coordinated Fe ions adjacent to such molecules had a very low over-potential for the ORR reaction. In this case, iron ions presented an ideal d-occupancy for ORR catalysis. Cowin P.I. et al. [98] synthesized a series of potassium substituted $Sr_{1.6}K_{0.4}Fe_{1+y}Mo_{1-y}O_{6-\delta}$ (y = 0.2, 0.4, 0.6) to increase the formability and ionic conductivity of compounds. Synthesis was achieved above 700 °C in 5 % H_2/Ar , albeit with the formation of some impurity phases. Phase stability upon redox cycling was observed for the sample $Sr_{1,6}K_{0,4}Fe_{1,4}Mo_{0,6}O_{6-\delta}$. Redox cycling demonstrated a strong dependence on high temperature reduction to achieve high conductivities, with re-reduction at lower temperatures attaining between 0.1 and 58.4 % of the initial conductivity observed after high temperature reduction. The reliance of these compounds on high-temperature reduction is expected to limit their utility as SOFC anode materials, as the vulnerability to oxidation can have disastrous consequences for fuel cell durability.

The substitution of strontium for alkaline-earth elements in the double perovskite oxide has been investigated. In [99–102], $Sr_{2-x}Ca_{x}Fe_{1.5}Mo_{0.5}O_{6-\delta}$ compounds were investigated by characterizing the structural properties, electrical properties, electrochemical characteristics. The limit of formation of single-phase solid solution was determined by no more than x = 1.0 per formula unit of the compound. Qiao]. et al. [80] recorded the onset of SrMoO₄ impurity formation starting with calcium doping exceeding x > 0.8. The Ca substitution caused a 32.4° [99] and 67.5° [101] peak-shift towards higher angles. This implies that the unit cell shrinks due to the smaller ionic radius of Ca2+ (0.99 Å) compared to Sr²⁺ (1.18 Å), and Pnma space group does not change. Xu Z. et al. [100] showed that the single-phase nature of the materials was preserved at $x \le 0.75$ under oxidizing conditions, and the SrMoO₄ and Ca₂Fe₂O₅ phases were detected with increasing calcium concentration. Under reducing conditions at temperature above 800 °C starting from the base, the compound formed a small impurity of metallic iron up to x = 0.5 and recorded phases SrMoO₄, SrFe₂O₅ and Fe with increasing strontium concentration [100, 102]. The space group was identified as *Pm*-3*m* in both oxidizing and reducing environments. CaFeO₂ could be formed in a hydrogen atmosphere from x = 0.2 [101]. Thermal expansion coefficients (TECs) were found to decrease from 16.33×10-6 K-1 to 15.08×10-6 K-1 when the Ca-doping increased from 0 to 0.6 [99]. Total conductivity increased as the dopant concentration increased with a value of about 33 S/cm maximum for Sr_{1.85}Ca_{0.15}Fe_{1.5}Mo_{0.5}O₆₋₆ at 800°C in humid (3% H₂O) With further increase in calcium hydrogen. concentration, a slight decrease in conductivity was observed [102]. The authors [99] also reported a nonlinear dependence of $Sr_{2-x}Ca_{x}Fe_{1.5}Mo_{0.5}O_{6-\delta}$ conductivity with increasing calcium content, but only in an oxidizing atmosphere. The maximum conductivity in an oxidizing atmosphere was obtained for a doping level x=0.4; the conductivity reached 18.9 S/cm at 550°C, which was considerably higher than that of SFM (11.1 S/cm). These results may be explained by the changes observed in the redox couples proportion by the conductivity being influenced by the electronic conductivity via the Fe³⁺+Mo⁵⁺=Fe²⁺+Mo⁶⁺ process. Fuel cell of the symmetrical $Sr_{2-x}Ca_xFe_{1.5}Mo_{0.5}O_{6-\delta}$ electrode performances were measured both in humidified hydrogen fuels and dry air oxidants at a flow rate [101].

Figure 4(a) summarized the maximum power densities for all symmetrical fuel cells with different Ca²⁺ substitutions at 650–800°C. The samples with x = 0.6 exhibited the highest power densities at all temperatures, in agreement with the observed total polarization impedance. In [99], the Sr_{1.6}Ca_{0.4}Fe_{1.5}Mo_{0.5}O_{6-δ} sample showed the lowest interface polarization, the highest conductivity, and a maximum power density of 1.26 W/cm² at 800°C. Figure 4(b) presents the power density and voltage as a function of the current density for NiO–YSZ|YSZ anode-supported cells with a SDC interlayer and a Sr_{1.6}Ca_{0.4}Fe_{1.5}Mo_{0.5}O_{6-δ} cathode.

The solubility threshold of barium is x = 0.6, so the formation of SrMoO₄ and BaO impurities is found at x = 0.8 [103]. Replacing the A position with Ba leads to a change in the crystal lattice parameters, so that the 32.4°


Figure 4 a) Maximum power densities of the symmetrical Sr_{2-x}Ca_xFe_{1.5}Mo_{0.5}O₆₋₆ electrode cells at different Ca²⁺ substitutions [I0I], b) Cross-section SEM image of the LSGM | Sr_{2-x}Ca_xFe_{1.5}Mo_{0.5}O₆₋₆ interface [I0I] Copyright © 20I9 Editorial Board of Journal of Inorganic Materials; c) I–V and I–P curves of the single cell with Sr_{1.6}Ca_{0.4}Fe_{1.5}Mo_{0.5}O₆₋₆ cathode at 650–800°C [99], d) Crosssection SEM image of the NiO-YSZ | YSZ | SDC | Sr_{1.6}Ca_{0.4}Fe_{1.5}Mo_{0.5}O₆₋₆ interface [99] Copyright © 20I6 Elsevier B.V.

peak is shifted to a smaller angle due to the increase of ionic radius Ba²⁺ (1.35 Å) by Sr²⁺ (1.18 Å). The conductivity of $Sr_{2-x}Ba_xFe_{1.5}Mo_{0.5}O_{6-\delta}$ ceramics reaches its maximum at ~450°C, and the conductivity decreases with the increasing temperature due to oxygen evolving out of the lattice with the formation of oxygen vacancies [52]. The conductivity for x = 0.3-0.7 is approximately comparable, the maximum value is 18.5 S/cm at 450°C for x = 0.7. For Sr_{1.1}Ba_{0.9}Fe_{1.5}Mo_{0.5}O_{6- δ}, the conductivity decreases, and the maximum is 12 S/cm at 400°C. The Ba-doping is observed to significantly reduce the oxygen vacancy formation energy of the host perovskite while increasing the active reaction sites, which leads to a significant decrease in polarization resistance [60]. The anode demonstrates the best catalytic activity when the Ba-doping attains x = 0.6. By constructing the BaCe_{0.7}Zr_{0.1}Y_{0.2}O₃₋₆supported single cells with the configuration $Sr_{1.4}Ba_{0.6}Fe_{1.5}Mo_{0.5}O_{6-\delta} | BCZY | La_{0.58}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$

 $_{\delta}$ +Sm_{0.2}Ce_{0.8}O_{2- δ}, the power densities in hydrogen and ethane atmosphere can achieve 205 and 138 mW/cm² at 750°C, respectively, Figure 5. At the same time, the conversion rate of ethane reaches 38.4% while maintaining the selectivity of ethylene at **95%**. Three-electrode half-cell with $Ba_{0.2}Sr_{1.8}Fe_{1.5}Mo_{0.5}O_{6-\delta}$ oxide was used to evaluate its electrochemical performance under various steam contents in hydrogen atmosphere both under fuel cell mode and electrolysis mode in [104]. Polarization study showed the monotonously decreased current density in SOFC mode with the increase in the steam content, however, it displayed the opposite trend in the current density in SOEC mode with the suitable steam content at 20%.

When replacing strontium with alkaline-earth elements, it can be concluded that introduction of Ca leads to a reduction of unit cell volume (240.73 Å³ to 237.09 Å³ from x = 0 to 0.6, accordingly); and introduction of Ba has the opposite effect (60.54 Å³ to 62.44 Å³ from x = 0 to 0.6, accordingly), which is connected to the difference in radii of elements in a row Ca–Sr–Ba.

The solubility limit does not exceed x = 0.8 regardless of the acceptor impurity. Introduction of

(a)

Figure 5 I–V curves and corresponding I–P curves a) in pure hydrogen and b) in dry ethane of the BCZY-supported single cells with the configuration Bao.₆SFM/BCZY/LSCF-SDC [60] Copyright © 2022 The American Ceramic Society.

Table 2 – Total conductivity of A-doped $Sr_{2-x}A_xFe_{1.5}Mo_{0.5}O_{6-\delta}$ oxides at 800°C.

Oxide	σ, S/cm	Ref.
$Sr_{2-x}Ca_xFe_{1.5}Mo_{0.5}O_{6-\delta} x = 0.2; 0.4; 0.6 in air$	11; 13; 10.5	99
Sr _{2-x} Ba _x Fe _{1.5} Mo _{0.5} O ₆₋₆ x = 0.3; 0.5; 0.7; 0.9 in air	11.5; 10.2; 9; 5.5	52
$Sr_{2-x}La_xFe_{1.5}Mo_{0.5}O_{6-\delta} x = 0; 0.05; 0.1 in CO-CO_2$	12; 11; 8	106
Sr _{2-x} La _x FeCo _{0.5} Mo _{0.5} O _{6-δ} , x = 0; 0.2; 0.4 in air	3.62; 3.60; 3.59	62
Sr _{2-x} La _x FeCo _{0.5} Mo _{0.5} O _{6-δ} , x = 0; 0.2; 0.4 in H ₂ /Ar	3.57; 3.57; 3.59	62
Sr _{2-x} Sm _x Fe _{1.5} Mo _{0.5} O ₆₋₆ , x = 0; 0.1; 0.2; 0.3; 0.4 in H ₂	15.9; 22.8; 23.6; 21.7; 21.4	47
Sr _{2-x} Fe _{1.5} Mo _{0.5} O ₆₋₅ x = 0; 0.025; 0.05; 0.075; 0.1 in air	11; 13; 25; 16; 7.5	111
$Sr_{2-x}Fe_{1.4}Ni_{0.1}Mo_{0.5}O_{6-\delta}$ $x = 0.025; 0.05; 0.075; 0.1$ in	25; 26.5; 23.5; 21	113
5%H ₂ /Ar		

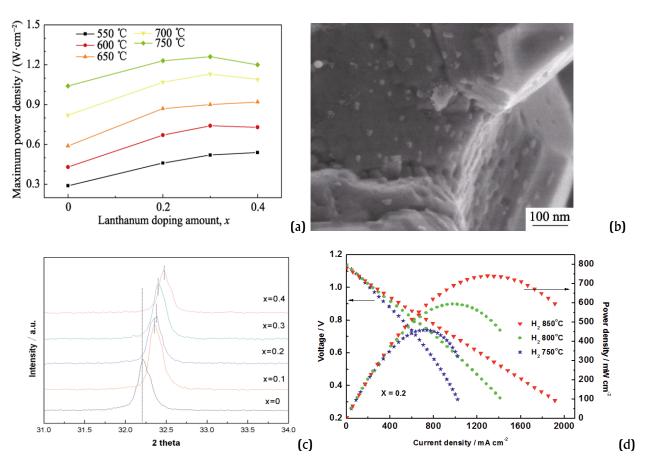
calcium leads to an increase of total conductivity; maximum is reached at x = 0.4, and maximum conductivity for barium is at x = 0.3 at temperature 800°C (Table 2).

The A-substitution of $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ by rareearth elements such as La, Pr and Sm has been reportedin [47, 62, 105–108]. Sun et al. [106] declared single-phase compositions with La at substitution levels of x = 0.05 and 0.1 in the Sr_{2-x}La_xFe_{1.5}Mo_{0.5}O_{6- δ} structure. The unit parameter increases from 7.8446 Å for $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ to 7.8546 Å for $Sr_{1.9}La_{0.1}Fe_{1.5}Mo_{0.5}O_{6-\delta}$ implying that the substitution of Sr with La increases the unit parameter. However, shrinkage of unit volume should be expected in terms of the ionic size effect, because the radius of La³⁺ is slightly smaller than that of Sr²⁺ (1.36 Å and 1.44 Å, respectively). The content of Fe²⁺/Mo⁵⁺ might increase after La³⁺ doping at Srsubstitution, leading to expansion of unit parameters, because the radius of Fe^{2+}/Mo^{5+} is higher than that of Fe³⁺/Mo⁶⁺. Lanthanum- and nickel- substituted La_xSr₂₋ $_{3x/2}$ Fe_{1.5}Ni_{0.1}Mo_{0.4}O_{6- δ} (La_xSFNM) at x = 0, 0.1, 0.2, 0.3, 0.30.4 are single perovskite structure with cubic symmetry [105]. Both XRD and SEM observations confirm the dissolution of nanosized FeNi3 particles on the oxide

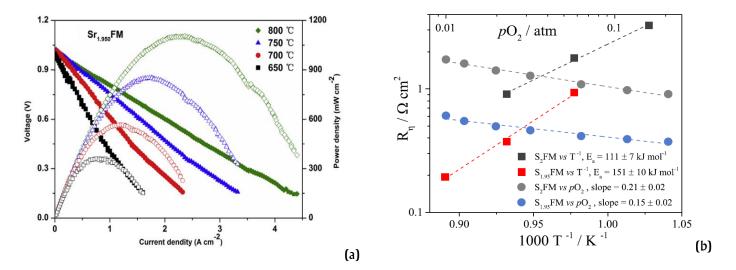
surface after thermal treatment in H₂. Increasing the La³⁺ content increases the structural stability of these oxides and prevents the dissolution of FeNi₃ nanoparticles. Codoping of lanthanum and cobalt in the structure of double perovskite $Sr_{2-x}La_xFeCo_{0.5}Mo_{0.5}O_{6-\delta}$, x = 0.0, 0.2, and 0.4 results in the formation of stable single-phase solutions in *Fm*-3*m* space group; the sample with x = 0.4contains a small amount of an impurity phase, which crystallizes in the orthorhombically distorted perovskitetype single-phase structure. The sintering of Sr1.5La0.5Fe1.5Mo0.5O6- δ in air, 5%H2-95%N2 and N2 has been analyzed [109]. In the N₂ environment, the powder is single-phase with *Pm-3m* space group and a = 3.93584(2) Å; in 5%H₂-95%N₂, the synthesized material is far from the perovskite structure. According to the XRD data analysis, the powder after $5\%H_2$ - $95\%N_2$ is composed of pure metal iron Fe, LaSrFeO₄, Sr₃Fe₂O₆ and SrMoO₃. The crystal structure of the powder calcined in air showed more similarity to a cubic perovskite structure, except for several impurity peaks corresponding to SrMoO₄ and LaFeO₃.

Doping with lanthanum [IO6] slightly reduces the conductivity at 800°C in a 30%CO–CO₂ atmosphere from 12 S/cm for Sr₂Fe_{1.5}Mo_{0.5}O_{6- δ} to 8 S/cm

Sr1.9Lao.1Fe1.5M00.5O6-6 (Table 2). La-doping $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ significantly increases the surface oxygen exchange rate (k) and the bulk diffusion coefficient (D) in $CO-CO_2$ mixture. Thus, at 700°C, the *k* values for Sr_{2-x}La_xFe_{1.5}Mo_{0.5}O_{6- δ} x = 0, 0.05 and 0.1 are 9.71·10⁻⁶, 2.03·10⁻⁵ and 3.39·10⁻⁵ cm/s, respectively; and the D values are 6.66·10-7, 7.87·10-7 and 1.18·10-5 cm²/s, respectively. Perovskite oxides La_xSr_{2-x}Fe_{1.5}Ni_{0.1}Mo_{0.4}O_{6-δ} (La_xSFNM, x = 0.1, 0.2, 0.3 and 0.4) are prepared and evaluated as symmetrical electrodes in solid oxide electrolysis cells for electrochemical reduction of pure CO_2 in [110]. The polarization resistances are 0.07 S·cm² in air and 0.62 S·cm² in 50% CO-50% CO₂ for La_{0.3}SFNM electrode at 800°C. An electrolysis current density of 1.17 A/cm² under 800°C at 1.5 V is achieved for the symmetrical SOECs in pure CO_2 .


The temperature dependence of the total conductivity of $Sr_{2-x}La_xFeCo_{0.5}Mo_{0.5}O_{6-\delta}$, x = 0.0; 0.2; 0.4 ceramic samples in air and in the reducing atmosphere Ar/H₂ (8%) is presented in Table 2 [71]. It is observed that the conductivity in air decreases with increasing La³⁺ content. In a reducing atmosphere the conductivity x = 0.0 and 0.2 of the oxides is similar and lower than that observed in air, which is due to the significantly lower concentration of charge carriers (Fe⁴⁺) under these conditions. The highest catalytic activity of Sr1.7Lao.3Fe1.5Moo.4Nio.1O6-6 (Lao.3SFNM) toward electro-oxidation of hydrogen fuels could be ascribed to the synergy between the exsolved FeNi₃ alloy nanoparticulates and the supporting La_xSFNM oxides, Figure 6(a) and 6(b) [105]. The cell consisting of thin Lao.9Sro.1Gao.8Mgo.2O3 (LSGM) electrolyte with Lao.3SFNM anode and SmBa0.5Sr0.5Co2O6-6 (SBSC) + LSGM cathode exhibit the highest power densities, 1.26, 0.90 and 0.52 W/cm² at 750, 650 and 550°C, respectively.

Modifying Sr₂Fe_{1.5}Mo_{0.5}O_{6-δ} structure with samarium leads to a reduction of the unit cell parameters with 7.843 Å for Sr₂Fe_{1.5}Mo_{0.5}O_{6-δ} to 7.796 Å for Sr_{1.6}Sm_{0.4}Fe_{1.5}Mo_{0.5}O_{$6-\delta$} [47]; and a 32.2° peak shift on the XRD patterns, Figure 6(c). The sample without Sm displays a pure perovskite structure with no detectable impurity peaks, while for samples doped with different contents of Sm, peaks of impurity SrMoO₄ are observed, and the intensities of impurity peaks become stronger with the increase of Sm content. The conductivity of $Sr_{2-x}Sm_xFe_{1.5}Mo_{0.5}O_{6-\delta}$ ($0 \le x \le 0.4$) measured in hydrogen environment passes through a maximum at x = 0.2, Table 2, demonstrates the conductivity data at 800°C. The maximum value of 25 S/cm is reached at x = 0.2 at 850°C. The XPS data show that the Fe²⁺/Mo⁵⁺


concentration increases for $Sr_{1.8}Sm_{0.2}Fe_{1.5}Mo_{0.5}O_{6-\delta}$. EIS analysis proves that Sm-doping into $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ helps improve the catalytic activity. The single cell with $Sr_{1.8}Sm_{0.2}Fe_{1.5}Mo_{0.5}O_{6-\delta}$ as the anode demonstrates a performance of 459, 594, and 742 mW/cm² at 750, 800, and 850°C, respectively, which is better than that of $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ as the anode, Figure 6(d).

Yang et al. [III] obtained a single-phase series of $Sr_{2-x}Fe_{1.5}Mo_{0.5}O_{6-\delta}$ solid solutions x = 0, 0.025, 0.05,0.075, 0.1. Creation of deficit in the strontium sublattice led to a positive effect on the total conductivity of the oxides, Table 2. The maximum conductivity was observed for $Sr_{1.95}Fe_{1.5}Mo_{0.5}O_{6-\delta}$ (Sr_{1.95}FM) in the temperature range 300-850°C, so the maximum was 33 S/cm at 550°C, which was twice higher than for the deficit-free oxide. More vacancies occured as Sr-site deficiency increased in the Sr_{2-x}Fe_{1.5}Mo_{0.5}O_{6-δ} materials, which enhanced the oxygen ion conductivity at some extent. However, the excess oxygen vacancies would produce the association with B-site cations, which could result in the decrease of conductivity. The maximum power densities of a single cell S1.95FM | SDC | ScSZ | SDC | S1.95FM at 800°C increased from 896 to 1083 mW/cm² in H₂, Figure 7(a), and the area specific resistance value with $Sr_{1.95}Fe_{1.5}Mo_{0.5}O_{6-\delta}$ cathode was 0.17 S/cm² at 800°C. Polarization resistance of Sr₂Fe_{1.5}Mo_{0.5}O_{6-δ} electrode was higher than that of S_{1.95}FM in temperature range 700–900°C, Figure 7(b). However, a higher value of the effective activation energy was observed for the deficient oxide [112], approximately 150 k]/mol against III k]/mol for the basic composition. This indicates that the creation of a strontium deficit leads either to a change in the mechanism of the oxygen reduction reaction and/or to a redistribution of the contributions of stages of the electrode reaction.

A-site deficient $Sr_{2-x}Fe_{1.4}Ni_{0.1}Mo_{0.5}O_{6-\delta}$ (x = 0-0.1) perovskites have been synthesized and characterized as anode materials for solid oxide fuel cells [II3]. With increasing Sr deficiency, the conductivity in 5% H₂/Ar increases significantly, reaching a peak value of 26.6 S/cm at x = 0.05, while further increasing of xreduces the conductivity by affecting the mobility of electronic charge carriers. The La_{0.9}Sr_{0.1}Ga_{0.8}Mg_{0.2}O₃ electrolyte-supported cell with La_{0.6}Sr_{0.4}Fe_{0.8}Co_{0.2}O_{3- δ} cathode and Sr_{1.95}Fe_{1.4}Ni_{0.1}Mo_{0.5}O_{6- δ} anode demonstrates a maximum power density of 606 mW/cm² at 800°C operating in H₂.

Figure 6 a) Peak power densities at different temperatures for single cells with varied La_xSFNM anodes in 97vol% H₂–3vol% H₂O [I05], b) High magnification view of Sr_{1.7}La_{0.3}FeCo_{0.5}Mo_{0.5}O₆₋₆ anode impregnated Fe-Ni alloy nanoparticles [I05] Copyright © 2020 Editorial Board of Journal of Inorganic Materials; c) Angle shift on XRD patterns for Sr_{2-x}Sm_xFe_{1.5}Mo_{0.5}O₆₋₆ with the increasing Sm content [47], d) Sr_{1.8}Smo_{.2}Fe_{1.5}Mo_{0.5}O₆₋₆ | LSGM | BSCF cell voltage and power density as functions of current density [47] Copyright © 2014 John Wiley & Sons, Inc.

Figure 7 a) I–V and I–P curves of the single cells with Sr_{1.95}FM cathode [III] Copyright © 2016 Elsevier B.V.; b) Temperature (squares, at $pO_2 = 0.21$ atm) and concentration (circuits, at 800°C) dependencies of the polarization resistance for Sr₂Fe_{1.5}Mo_{0.5}O₆₋₆ (S₂FM) and Sr_{1.95}Fe_{1.5}Mo_{0.5}O₆₋₆ (Sr_{1.95}FM) electrodes [II2] Copyright © 2022 Elsevier B.V.

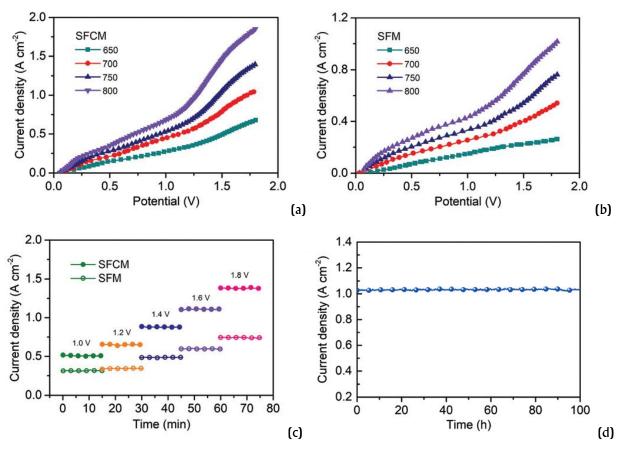
2.4. Modifying the B-sublattice in $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$

The incorporation of cobalt into the iron sublattice is possible in a large concentration range because of the proximity of the ionic radii and the nature of the elements. Pan X. et al. [114] obtained single-phase solutions of $Sr_2Fe_{1.5-y}Co_yMo_{0.5}O_{6-\delta}$ at doping y = 0, 0.5, 1by the citrate-nitrate method. However, the introduction of dopant increased the thermal expansion coefficient from 15.8.10-6 to 19.8.10-6 K-1. The total conductivity continuously increased to the maximum value at a temperature range 450–650°C and then decreased when the temperature was increased further. The maximum conductivity was determined for the Sr₂Fe_{0.5}CoMo_{0.5}O_{6-δ} composition of 120 S/cm at 450°C. The trend of a linear threefold increase in conductivity at 800°C is shown in Table 3. The conductivity increase may be due to Co/Fe mixed valence, which was analyzed by XPS method. This means that the small polaron hopping conductivity mechanism exists in $Sr_2Fe_{1.5-y}Co_yMo_{0.5}O_{6-\delta}$ materials.

In-situ exsolved CoFe nanoparticles on perovskite matrixes with abundant defects are developed as bifunctional fuel electrocatalysts for reversible solid oxide cells from the $Sr_2FeMo_{1-x}Co_xO_{6-\delta}$ [115, 116]. Increase of Co doping promotes CoFe alloy exsolution and the formation of more defects in the remaining perovskite matrix under reducing atmosphere at high temperatures. Consequently, increasing Co dopant content significantly enhance both the electrocatalytic activity towards CO₂ electrolysis and the hydrogen fuel oxidation for the reduced $Sr_2FeMo_{1-x}Co_xO_{6-\delta}$.

Solid solutions with copper $Sr_2Fe_{1.5-y}Cu_yMo_{0.5}O_{6-\delta}$ y = 0, 0.05, 0.1, 0.2, 0.3 were obtained in [117-119]. The 32.5° diffraction peaks shifted slightly towards a smaller angle as the Cu content increased. This was due to the difference in ionic radius between Cu²⁺ (0.73 Å) and Fe³⁺ (0.645 Å). Therefore, the unit cell of the material expands with increasing amount of Cu doping. The conductivity of $Sr_2Fe_{1.5-y}Cu_yMo_{0.5}O_{6-\delta}$ first increases and then decreases with the increasing Cu doping, and it reaches the maximum value of 49.3 S/cm at 450°C for $Sr_2Fe_{1.4}Cu_{0.1}Mo_{0.5}O_{6-\delta}$. The trend of the conductivity as a function of the copper content at 800°C is shown in Table 3. It is evident that the value increases by a factor of five at y = 0.1. Hu Ch. et al. [117] showed that the introduction of copper $Sr_2Fe_{1.3}Cu_{0.2}Mo_{0.5}O_{6-\delta}$ increased the amount of oxygen vacancies, which significantly improved the chemical adsorption capacity of carbon dioxide at 750°C and its long-term stability, Figure 8. The increased concentration of oxygen vacancies gave additional space for CO₂ adsorption and enhanced the interaction between CO₂ molecules and oxygen vacancies. The higher CO₂ adsorption capacity and desorption temperature improved the high-temperature electrolysis process in SOECs remarkably. The impedance analysis confirmed that the interfacial polarization resistance of the $Sr_2Fe_{1.3}Cu_{0.2}Mo_{0.5}O_{6-\delta}$ electrode was significantly lower than that of the SFM electrode, which implies that the intermediate-frequency ion diffusion process has been optimized and has led to improved CO₂ reduction

Table 3 – Total conductivity of B-doped $Sr_2Fe_{1.5-y}A_yMo_{0.5}O_{6-\delta}$ oxides at 800°C.

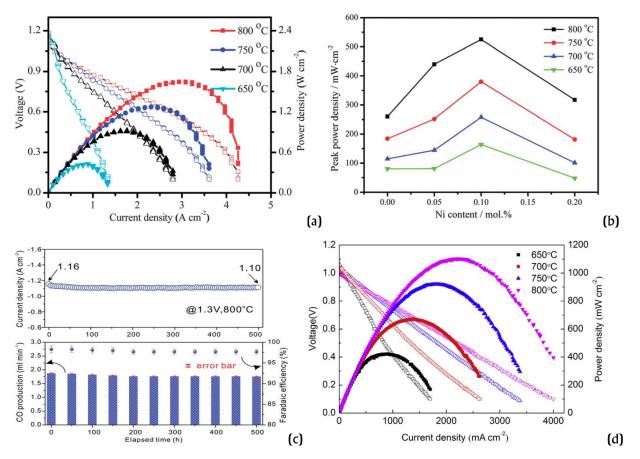

Oxide	σ, S/cm	Ref.
$Sr_2Fe_{1.5-y}Co_yMo_{0.5}O_{\delta-\delta}$ y = 0; 0.5; 1 in air	18; 32; 56	114
Sr ₂ Fe _{1.5-y} Cu _y Mo _{0.5} O ₆₋₅ y = 0; 0.05; 0.1; 0.2; 0.3 in air	5; 7; 25; 23; 10	118
Sr ₂ Fe _{1.5} Mo _{0.5-y} Cu _y O ₆₋₅ y = 0; 0.1; 0.2; 0.3; 0.4; 0.5 in air	23.4; 34.7; 41.7; 45.7; 71.6; 70.8	119
Sr ₂ Fe _{1.5-y} Ni _y Mo _{0.5} O ₆₋₆ y = 0; 0.05; 0.1; 0.2; 0.4 in air	11; 16; 32; 31; 20	120
Sr ₂ Fe _{1.5-y} Ni _y Mo _{0.5} O ₆₋₆ y = 0; 0.05; 0.1; 0.2; 0.3 in H ₂	15.9; 16.4; 20.4; 15.2; 11	121
$Sr_2Fe_{1.5-y}Nb_yMo_{0.5}O_{6-\delta}$ y = 0; 0.1 in air	10.3; 22.5	57
$Sr_2Fe_{1.5-y}Nb_yMo_{0.5}O_{6-\delta}$ y = 0; 0.1 in H ₂	16; 25	57
$Sr_2Fe_{1.5}Mo_{0.5-y}Nb_yO_{6-\delta}$ y = 0; 0.05, 0.10, 0.15, 0.20	15;18; 20; 13.5; 14	130
Sr ₂ Fe _{1.5-y} Sc _y Mo _{0.5} O _{6-δ} y = 0; 0.05; 0.1 in air	12; 22; 9	131
Sr ₂ Fe _{1.4} Bio.1Moo.5O ₆₋₆ in 5%H ₂ /Ar	38	134
Sr2Fe1.4Alo.1M00.5O6-6 in 5%H2/Ar	17	134
Sr ₂ Fe _{1.4} Mg _{0.1} Mo _{0.5} O ₆₋₆ in 5%H ₂ /Ar	10	134
$Sr_2Fe_{I-y}TiMo_yO_{6-\delta} y = 0.1; 0.2$ in air	0.92; 0.75	138
$Sr_2Fe_{1-y}TiMo_yO_{6-\delta} y = 0.1; 0.2 \text{ in } H_2$	0.4; 2.2	138
Sr ₂ Fe _{1.5-y} Mn _y Mo _{0.5} O _{6-δ} y = 0; 0.5 in 5%H ₂ /Ar	63;10	141
$Sr_2Fe_{1.5-y}Mn_yMo_{0.5}O_{6-\delta}$ y = 0; 0.5 in air	10; 3	141

kinetics of the $Sr_2Fe_{1.3}Cu_{0.2}Mo_{0.5}O_{6-\delta}$ electrode.

Dissolution of nickel in the iron sublattice $Sr_2Fe_{1.5-y}Ni_yMo_{0.5}O_{6-\delta}$ (SFNM) y = 0; 0.05; 0.1; 0.2; 0.4 leads to the formation of a single-phase solid solution in a cubic structure with the space group Pm3m after sintering at 950°C in air [120]. Minor amounts of secondary NiO phases are formed when the Ni content reaches 0.5 in air [121]. When the nickel content exceeds y = 0.2 in a reducing atmosphere in 3 vol% H₂O humidified hydrogen at 800°C, the secondary phases Sr₃FeMoO_{6.5} and Ni are formed. The Fe³⁺/Mo⁵⁺ ion pair achieves the maximum value at y = 0.1, which promotes electron transfer between two ion pairs and improves the reduction/oxidization reaction rate. However, Dai et al. [120] note a linear decrease in the Fe^{2+}/Mo^{6+} ion pair in the range of nickel concentrations from 0 to 0.4 in the double perovskite structure. The equilibrium reaction between Fe³⁺/Mo⁵⁺ and Fe²⁺/Mo⁶⁺ is disturbed by nickel, which directly affects the conductivity of $Sr_2Fe_{1.5-y}Ni_yMo_{0.5}O_{6-\delta}$ materials. The conductivity of oxides both in air and in hydrogen environment has the same tendency, namely, it increases with introduction of nickel, and maximum conductivity is reached at the introduction of y = 0.1 nickel into Fe-sublattice [120, 121].

A further increase in Ni concentration leads to a decrease in conductivity, Table 3, and the conductivity of $Sr_2Fe_{1.4}Nio_{.1}Mo_{0.5}O_{6-6}$ (SFNo.1M), which is more than twice the conductivity of $Sr_2Fe_{1.5}Mo_{0.5}O_{6-6}$. Namely, the conductivity of $Sr_2Fe_{1.4}Nio_{.1}Mo_{0.5}O_{6-6}$ at 800°C is 32 and 20.4 S/cm in air and hydrogen environment, respectively.

The introduction of nickel y = 0.1 and the formation of a strontium deficiency further increases the conductivity of the $Sr_{1,9}Fe_{1,4}Nio_{1,1}Mo_{0,5}O_{6-\delta}$ [122]. In an air atmosphere, the maximum conductivity is 30 S/cm at 550°C. Further increases in temperature result in a reduction of the conductivity to 18 S/cm at 800°C. In a hydrogen atmosphere, the conductivity increases linearly in the temperature range 400-800°C, the maximum conductivity is 30 S/cm at 800°C. Since Nidoping and Sr deficiency can be considered as p-type doping for $Sr_2Fe_{1.5}Mo_{0.5}O_{\delta-\delta}$, the improvement in conductivity of Sr1.9Fe1.4Nio.1Moo.5O6-6 is observed below 500°C, when the doping is mainly compensated by electron holes; at higher temperatures, ionic charge compensation by oxygen vacancies starts to take effect. $Sr_{1.95}Fe_{1.4}Ni_{0.1}Mo_{0.5}O_{6-\delta}$ phase is not stable in the reducing atmosphere [123]. At 800°C, after 10 hours in 5%vol.

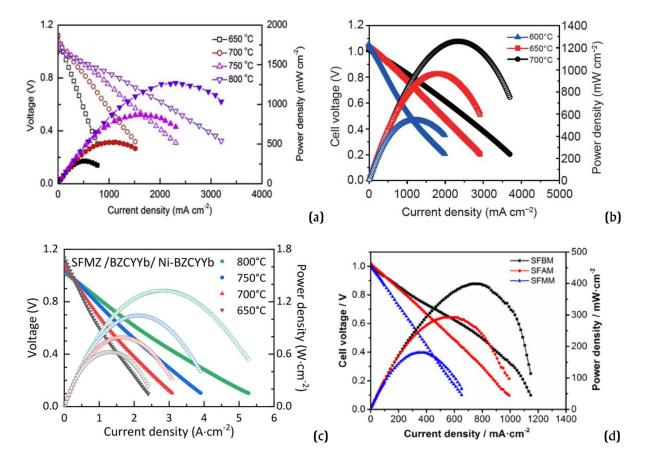

Figure 8 I–V curves of CO₂ electrolysis for (a) $Sr_2Fe_{1.3}Cu_{0.2}Mo_{0.5}O_{6-\delta}$ and (b) $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ electrodes; (c) short-term stability 80 h of CO₂ electrolysis at 750°C; and (d) long-term stability 100 h of CO₂ electrolysis cell with $Sr_2Fe_{1.3}Cu_{0.2}Mo_{0.5}O_{6-\delta}$ cathode at 1.5 V, 750 °C [II7] Copyright © 2019 Royal Society of Chemistry.

a small amount of Fe in the structure. The Fe-Ni alloy and the $Sr_3FeMoO_{6.5}$ phase were detected on X-ray in a humid H₂ atmosphere after 10 hours of exposure.

Power density data are available for $Sr_2Fe_{1.4}Ni_{0.1}Mo_{0.5}O_{6-\delta}$ as cathode and anode material [120, 121, 124, 125]. The maximum single cell power density of $SFN_{0.1}M|SDC|YSZ|NiO-YSZ$ is 0.92 and 1.27 W/cm² at 700 and 750°C, respectively [120], where $SFN_{0.1}M$ is the cathode material, Figure 9(a). The maximum power densities of single cells $SFNM|LSGM|SFN_{0.1}M$ are demonstrated in Figure 9(b), with SFNM (y = 0-0.2) anodes and $Sr_2Fe_{1.4}Ni_{0.1}Mo_{0.5}O_{6-\delta}$ cathode [121].

In [126], a stoichiometric double perovskite $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ with metal nanoparticles dissolved in situ on the surface without reducing phase transition treatment was investigated with the aim of using it as a SOEC cathode for CO₂ reduction reaction (CO₂RR). Nickel was introduced into the B-sublattice during synthesis to obtain a stoichiometric $Sr_2Fe_{1.35}Mo_{0.45}Nio_2O_{6-\delta}$. The FeNi₃ alloy nanoparticles were exsolved *in situ* and homogeneously fixed on the

perovskite surface via a high-temperature reduction treatment. The interface between the in situ dissolved FeNi₃ nanoparticles and the Sr₂Fe_{1.35}Mo_{0.45}Ni_{0.2}O₆₋₆ substrate with many oxygen vacancies not only chemically accommodated the CO₂ molecules, but also improved the CO₂RR efficiency. Cells with the Ni modified ceramic anodes demonstrated relatively good stability in short-term operations when using CH₄ as the fuel [101, 127, 128]. The YSZ-supported electrolyte with (NiFe+SFM)-SDC fuel electrode and LSM-YSZ oxygen electrode showed a significant increase in performance compared to SFM-SDC and other conventional fuel electrodes for direct CO_2 electrolysis [129]. The improvement of the cell performance in direct CO_2 electrolysis could be attributed to the favourable conditions for the chemical adsorption and surface kinetics of CO₂ on the (NiFe+SFM)–SDC fuel electrode. The Faraday efficiency was close to 100%, indicating a high selectivity of CO_2 reduction to CO_2 , Figure 9(c). SOEC achieved a long-term stability of 500 hours of high current operation due to the excellent sintering and


Figure 9 a) I–V and I–P curves of the single cell with the $Sr_2Fe_{1.4}Nio_1Mo_{0.5}O_{6-\delta}$ cathode at 650–800°C [I20] Copyright © 2013 Royal Society of Chemistry; b) Peak power densities of single cells with SFNM|LSGM| $Sr_2Fe_{1.4}Nio_1Mo_{0.5}O_{6-\delta}$ configuration as a function of Ni content in a SFM anode [I21] Copyright © 2014 Royal Society of Chemistry; c) Long-term stability test of (NiFe+SFM)–SDC fuel electrode during 500 h for CO₂ electrolysis at 800°C [I29] Copyright © 2017 Royal Society of Chemistry; d) I–V and I–P curves of the single cell with the $Sr_2Fe_{1.5}Mo_{0.4}Nb_{0.10}O_{6-\delta}$ cathode at 650–800°C [I30] Copyright © 2014 Elsevier B.V.

coking resistance of the (NiFe+SFM) fuel electrode.

Nb-doped double perovskite oxide $Sr_2Fe_{1.4}Nb_{0.1}Mo_{0.5}O_{\delta-\delta}$ had a stable cubic phase with *Fm-3 m* space group and unit parameter a = 7.86(2) Å in air and 7.87(5) Å in hydrogen atmospheres [57]. Good conductivity values were demonstrated in both air (22.5 S/cm) and wet H₂ atmospheres (25 S/cm), Table 3. The maximum power density of a symmetrical cell with Lao.8Sro.2Gao.83Mgo.17O3 electrolyte was estimated to be 531.5 mW/cm² at 800°C in H₂.

More importantly, the symmetrical cell based on $Sr_2Fe_{1.4}Nb_{0.1}Mo_{0.5}O_{\delta-\delta}$ exhibited superior redox stability compared to the $Sr_2Fe_{1.5}Mo_{0.5}O_{\delta-\delta}$ material. Among the series of $Sr_2Fe_{1.5}Mo_{0.5-y}Nb_yO_{\delta-\delta}$ (y = 0.05, 0.10, 0.15, 0.20) samples [I30], $Sr_2Fe_{1.5}Mo_{0.4}Nb_{0.1}O_{\delta-\delta}$ (SFMNb0.10) exhibited the highest conductivity value of 30 S/cm at 550°C, and the lowest area specific resistance of 0.068 S/cm² at 800°C. Figure 9(d) shows that the anode-supported single cell with $Sr_2Fe_{1.5}Mo_{0.4}Nb_{0.1}O_{\delta-\delta}$ cathode presented a maximum power density of 1102 mW/cm² at 800°C.

 $Sr_2Fe_{1.5-y}Sc_yMo_{0.5}O_{6-\delta}$ (SFScM) solid solutions, where y = 0, 0.05 and 0.10, were obtained by a glycine-nitrate combustion method [131, 132]. The formation of scandium oxide impurity phase was found at y = 0.2. Scandium doping changed the Fe²⁺/Fe³⁺ and Mo⁶⁺/Mo⁵⁺ ratio, which caused a shift in the chemical equilibrium and led to an increase in the electrical conductivity. The electrical conductivity maximum was for $Sr_2Fe_{1.45}Sc_{0.05}Mo_{0.5}O_{6-\delta}$ and amounted to 22 S/cm at 800°C in air, which was twice as high as the undoped oxide, Table 3. Analysis of the impedance spectra in [131] shows that the dissociation of adsorbed oxygen at high frequency and the migration of oxygen ions into the TPB at low frequency are the rate limiting stages in the oxygen reduction reaction using SFSc0.05M cathodes. The power density obtained in a single cell with SFSc_{0.05}M cathode (SFSc0.05M|SDC|YSZ|NiO-YSZ) is found to be 1.23 W/cm² at 800°C, which significantly exceeds the value of 0.91 W/cm² for Sr₂Fe_{1.5}Mo_{0.5}O_{6- δ} cathode with the same cell design [131], Figure 10(a). The theoretical calculation results, which are supported by

Figure 10 I–V and I–P curves of a) the single cells with the $Sr_2Fe_{1.45}Sc_{0.05}Mo_{0.5}O_{6-\delta}$ cathode [I31] Copyright © 2017 Elsevier B.V.; b) $Sr_2Fe_{1.25}Sc_{0.05}Mo_{0.5}O_{6-\delta}$ cathode [I32] Copyright © 2022 Springer Nature Switzerland AG.; c) $Sr_2Fe_{1.5}Mo_{0.4}Zr_{0.1}O_{6-\delta}$ cathode [I33] Copyright © 2020 American Chemical Society; d) $Sr_2Fe_{1.4}Bi_{0.1}Mo_{0.5}O_{6-\delta}$ (SFBM), $Sr_2Fe_{1.4}Al_{0.1}Mo_{0.5}O_{6-\delta}$ (SFAM), and $Sr_2Fe_{1.4}Mg_{0.1}Mo_{0.5}O_{6-\delta}$ (SFBM) anodes [I34] Copyright © 2017 Elsevier B.V.

experimental studies, demonstrate that the Sr₂Fe_{1.25}Sc_{0.25}Mo_{0.5}O_{6- δ} (SFSc_{0.25}M) cathode has a higher proton diffusion rate and a lower polarization resistance than the Sc-free cathode [I32]. To evaluate the effectiveness of SFSc_{0.25}M as a cathode for H-SOFCs, BaCe_{0.7}Zr_{0.1}Y_{0.2}O_{3- δ} (BCZY) anode-supported half-cells were fabricated using a NiO-BCZY composite anode and BCZY electrolyte. The high performance of the SFSc_{0.25}M cell was demonstrated, Figure IO(b), with maximum power densities of 545, 966 and 1258 mW/cm² at 600, 650 and 700°C, respectively.

Zr⁴⁺ doped Sr₂Fe_{1.5}Mo_{0.5}O_{6-δ} is considered as a promising cathode material for proton conducting fuel cells, as it can absorb H₂O. It has been reported [133] that co-regulation of the concentration and basicity of oxygen vacancies can lead to fast proton transport. $Sr_2Fe_{1.5}Mo_{0.4}Zr_{0.1}O_{6-\delta}$ (SFMZ) has a large concentration of oxygen vacancies and a strong hydration capacity, which can stimulate the formation of proton defects. SFMZ exhibits improved proton diffusion kinetics, with a value of 8.71×10^{-7} cm²/s at 700°C, comparable to that of the widely used proton electrolyte BaZro. Ceo. 7Yo. Ybo. O3 1.84×10-6 cm²/s. A low polarization resistance of 0.169 S/cm² and a peak power density, Figure 10(c), of 1.35 W/cm² were achieved at 800°C with the $Sr_2Fe_{1.5}Mo_{0.4}Zr_{0.1}O_{6-\delta}$ cathode.

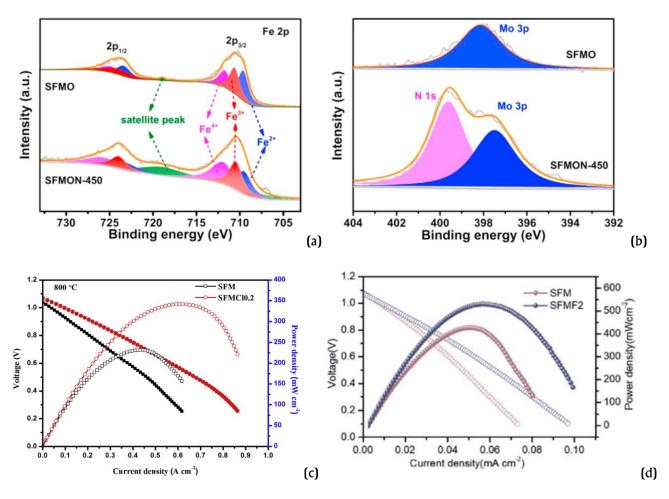
 $Sr_2Fe_{1.4}X_{0.1}Mo_{0.5}O_{6-\delta}$ (SFXM, X = Bi, Al and Mg) are considered as anode materials for direct carbon hybrid fuel cells [134]. SFXM powders synthesized by the nitrate combustion method in air at 1050°C are single-phase after 5 hours of exposure. After treatment in 5% H₂/Ar at 800°C for 20 h, the pure SFXM perovskite phase is transformed into Sr₃FeMoO_{6.5}, followed by an emission of metallic Fe. X-doping significantly changes the Fe³⁺/Fe²⁺ and Mo⁶⁺/Mo⁵⁺ ratio towards an increase in Fe³⁺ and Mo⁵⁺, which favours the intrinsic conductivity of SFXM, Table 3. The conductivity, catalytic activity, and electrochemical characteristics obey the order $Sr_2Fe_{1.4}Bi_{0.1}Mo_{0.5}O_{6-\delta}$ Sr₂Fe_{1.4}Alo.1Moo.5O_{6-δ} > > Sr₂Fe_{1.4}Mg_{0.1}Mo_{0.5}O_{6-δ}. Figure 10(d) demonstrates the dynamic curves for current density versus voltage and current density versus power of а SFXM | LSGM | Lao, Sr0, 4Feo, 8Coo, 2O3-6 cell with SFXM anodes at 800°C. The maximum power densities of the Lao.8Sro.2Gao.8Mgo.2O3 electrolyte supported single cell with $Sr_2Fe_{1.4}Bi_{0.1}Mo_{0.5}O_{6-\delta}$ as the anode reach 399, 287 and 141 mW/cm² at 800°C, 750°C and 700°C, respectively. According to experimental investigations and density functional theory calculations [135], Bidoping could effectively increase the physicochemical properties for CO₂RR, including oxygen vacancy concentration, CO_2 adsorption capacity, conductivities in $CO-CO_2$ atmospheres, oxygen bulk diffusion coefficient, as well as surface exchange coefficient. Du et al. [136] showed that during doping, the Mg and Mo cations are located separately in two different positions B (B and B' in A₂BB'O₆), whereas Fe occupies both positions B and B ', forming a lattice structure with the form of Sr₂(Mg_{1/3}Fe_{2/3})(Mo_{2/3}Fe_{1/3})O₆₋₆. Doping with the inactive element Mg not only gives the material excellent redox structural stability, but also causes the creation of antinodule defects in the crystal lattice, which give the material excellent electrochemical activity.

There are several papers [61, 137–140] on Tisubstituted double perovskites. Sr₂Fe_{0.75}Ti_{0.25}MoO_{6-δ} has a tetragonal symmetry in the I4/m space group with cell parameters a = 5.3711 Å, c = 11.9823 Å [61]. The electrical conductivity was found to be 3.78×10-5 S/cm at 800°C with activation energy of 0.142 eV. Increasing the concentration of titanium leads to a change of the space group from A/m to Pm3m. Sr₂FeTi_{0.75}Mo_{0.25}O_{6- δ} has a cubic perovskite structure with space group *Pm*3*m* and cell parameters a = 3.913(1) Å, V = 59.923(0) Å³ [139]. The electrical conductivity Sr₂FeTi_{0.75}Mo_{0.25}O₆₋₆ passes through a maximum of 2.31 S/cm at 500°C. The polarization resistance of a $Sr_2FeTi_{0.75}Mo_{0.25}O_{6-\delta}$ cathode on a SDC electrolyte reaches a value of 0.14 V·cm² at 800°C, and peak power density of the electrolyte supported cell with the configuration as NiO-SDC | SDC | SFTM reaches 394 mW/cm² at 800°C.

Sr₂FeMn_{0.5}Mo_{0.5}O_{6-δ} material possesses cubic lattice [141], B-site cation-disordered *Pm*-3*m* structure with unit cell parameters a = 3.9127(1) Å in air up to high temperatures, and transforms to a B-site cation-ordered structure after reduction in 5 vol%H₂/Ar at 1100°C. The conductivity dependence on the oxygen partial pressure pO_2 shows that oxide has p-type conductivity in air and *n*-type conductivity under reducing conditions. The Mnmodified oxide shows lower conductivity values than the unmodified compound, thus the conductivity in air and in a hydrogen environment decreases at 800°C, Table 3. In [142], the effectiveness of perovskite-structured $Sr_2Fe_{1.4}Mn_{0.1}Mo_{0.5}O_{6-\delta}$ for use as cathode material for CO_2 electrolysis has been investigated. The faster CO_2 which reduction kinetics, is observed for $Sr_2Fe_{1.4}Mn_{0.1}Mo_{0.5}O_{6-\delta}$ relative to SFM, is reflected in a lower polarization resistance when both materials are used as single-phase electrodes in symmetrical cells. The polarization resistance in 50% CO/CO₂ at 800°C decreases from 1.15 S·cm² for SFM to 0.60 S·cm² for $Sr_2Fe_{1.4}Mn_{0.1}Mo_{0.5}O_{6-\delta}$.

SFM-based perovskite materials are also being

studied as cathode materials in solid oxide electrolytic cells for direct electrolysis of CO₂, rendering splendid chemical stability under CO₂ atmosphere. A new mixed ionic conductor based on a double perovskite Sr₂Fe_{1.3}Ga_{0.2}Mo_{0.5}O_{6-δ} is considered as cathode material tolerant to CO₂ atmosphere due to its excellent CO₂ adsorption resistance [143]. The maximum power density of $Sr_2Fe_{1.3}Ga_{0.2}Mo_{0.5}O_{6-\delta}$ cathode with anode-supported flat-tube (NiO-YSZ) was analyzed in the temperature range 650-800°C, where the anode and cathode were supplied with humidified H₂ (97% H₂+3% H₂O) and air, respectively. At 750°C, the maximum power density of $Sr_2Fe_{1.3}Ga_{0.2}Mo_{0.5}O_{6-\delta}$ cathodes reached 482.4 mW/cm². In [144, 145], it is demonstrated that the *in situ* grown RuFe alloy nanoparticles on the Sr₂Fe_{1.4}Ru_{0.1}Mo_{0.5}O_{6-δ} surface collectively show high and stable electrochemical activity for CO₂ electrolysis in a solid oxide electrolyzer cell.


Sb-doping in SFM improves the anode performance through decreasing the area specific interfacial polarization resistance from 0.184 to 0.075 S·cm² at 800°C [146]. Sb doping greatly improves fuel cell performance, such as increasing the peak power density from 681 to 920 mW/cm² at 800°C with H₂ as the fuel. Meanwhile, improvement is also achieved with syngas and ethanol fuels, generating peak power densities of 765 and 557 mW/cm², respectively.

2.5. Modifying the O-sublattice in $Sr_2Fe_{1.5}Mo_{0.5}O_{\delta-\delta}$

Recent research [147-149] has shown that nonmetallic elements can be incorporated into the $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ perovskite lattice to modify the surface properties and electronic/phase structure, which is seen as a promising approach to improve the catalytic activity of perovskite-based catalysts. Gao J. et al. [147] show the synthesis of N-doped $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}$ (SFMON) by ammonolysis, i.e. heat treatment in a continuous ammonia flow of initial SFM powder. By varying the temperature of the powder treatment, it was possible to achieve a nitrogen saturation of up to 11.61 atom% at 550°C, as confirmed by photoelectron spectroscopy. The introduction of N³⁻ into the perovskite lattice due to charge compensation led to an increase in oxygen vacancies and iron concentration in the Fe³⁺/Fe⁴⁺ high valence state, which enhanced the catalytic activity, Figure II(a) and II(b). The content of adsorbed H_2O and hydroxyl groups/adsorbed oxygen was significantly increased in SFMON samples compared to SFM, indicating an improved hydrophilic nature, which may contribute to the adsorption of H₂O and OH- groups on the catalyst surface.

Zhang Y. et al. [148] synthesized chlorine doped oxide $Sr_2Fe_{1.5}Mo_{0.5}O_{6-x-\delta}Cl_x$ (SFMCl_x, x = 0, 0.1, 0.2, 0.3, 0.3) 0.4). Cl-doping led to an expansion of the crystal lattice $(a = 7.8267 \text{ Å for SFM and } a = 7.8549 \text{ Å for SFMCl}_{0.4})$, weakened the Coulomb force between metal ions and oxygen ions and increased the oxygen mobility of the lattice, thereby improving the electrochemical performance. SFMCl_{0.2} oxide exhibited the best electrochemical performance with the lowest polarization resistance value. The conductivity of SFM and SFMClo.2 oxides was 24 and 15 S/cm at 800°C, respectively. The conductivity of SFMClo.2 was lower than SFM oxide; the introduction of Cl weakened the Fe–O bonds, resulting in an increase in electron localization and a decrease in conductivity. The peak power density of a single cell fabricated with SFMClo.2 cathode increased from 231.5 mW/cm² to 342.2 mW/cm² at 800°C, Figure II(c). These results show that Cl-doping in SFM is an effective strategy of modifying the electrochemical properties.

Zhang L. et al. [149] investigated the F-doped $Sr_2Fe_{1.5}Mo_{0.5}O_{6-x-\delta}F_x$ (SFMF_x, x = 0, 0.1, 0.2, 0.3, 0.4). The introduction of x = 0.2 fluorine enhanced the symmetry of the crystal structure; consequently, the bulk oxygen diffusion and surface oxygen exchange characteristics of the SFM cathode were improved. Electrochemical impedance spectroscopy confirmed that the polarization resistance of the SFM cathode was significantly reduced by F-doping from 0.246 to 0.107 S/cm², respectively. Fdoping weakened the bonding between metal cations and oxygen anions, promoting the diffusion process and surface adsorption of oxygen on the cathode. Consequently, the reaction kinetics at the limiting stages was significantly improved. The open-circuit voltage of both single-cells was found to be 1.09 V at 800°C. The peak power density of SFM- and SFMF_{0.2}-based singlecells was found to be 534 and 418 mW/cm², respectively, Figure 11(d). Hence, F-doping significantly enhanced the electrochemical performance of SFM-based cathodes for IT-SOFCs. F-doping and Ni–Fe exsolution enhance CO₂ adsorption and increase the surface reaction rate constant for CO₂RR from $6.79 \cdot 10^{-5}$ to $18.1 \cdot 10^{-5}$ cm/s, as well as the oxygen chemical bulk diffusion coefficient from 9.42·10-6 to 19.1·10-6 cm²/s at 800°C [150]. Meanwhile, the interfacial polarization resistance decreases by 52%, from 0.64 to 0.31 S·cm². At 800°C and 1.5 V, an extremely high current density of 2.66 A/cm² and a stability test over 140 h are achieved for the direct CO₂ electrolysis in the SOEC. Li Y. et al. [151] also confirm a twofold decrease in polarization resistance when the O-sublattice of $Sr_2Fe_{1.5}Mo_{0.5}O_{6-\delta}F_{0.1}$ is doped with fluorine.

Figure 11 a) High-resolution XPS spectra of Fe 2*p* and b) N 1*s*, Mo 3*p* for Sr₂Fe_{1.5}Mo_{0.5}O₆₋₆ and N-doped Sr₂Fe_{1.5}Mo_{0.5}O₆₋₆ at 450°C [147] Copyright © 2021 Elsevier B.V.; c) I–V and I–P curves of the SFM|LSGM|SFMCl_x single cell with the SFMCl_x cathode at 800°C [148] Copyright © 2020 Elsevier B.V.; d) the NiO-GDC|GDC|LSGM|GDC|SFMF_x single cell with the SFMF_x cathode at 800°C [149] Copyright © 2020 Royal Society of Chemistry.

3. Conclusions

The review describes transport properties of double perovskite as a promising material for symmetrical solid state electrochemical devices. Sr₂Fe_{1.5}Mo_{0.5}O_{6-δ} oxide has a good combination of properties, including electrical conductivity, stability, and catalytic activity in oxidizing and reducing atmospheres. The effect of elemental doping in the A-, B- and O-sublattices on the crystal lattice, conductivity, electrochemical properties, and stability of the materials is considered. Elemental codoping leads to changes in the valence of iron and molybdenum, thereby increasing catalytic performance and stability and decreasing the thermal expansion coefficient. Today, the knowledge on the nature of the materials based on Sr₂Fe_{1.5}Mo_{0.5}O_{6-δ} has been obtained, which confirmed their great potential as promising oxides for the fabrication of symmetric solid oxide cell electrodes. Further development and research in this direction could be useful for the improvement of electrodes, their stability, and stability in different atmospheres of solid oxide fuel cell operation.

Supplementary materials

No supplementary materials are available.

Funding

This research had no external funding.

Acknowledgments

None.

Author contributions

Natalia Porotnikova: Conceptualization; Writing – original draft. Denis Osinkin: Supervision; Writing – review & editing.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Natalia Porotnikova; Ph.D., Lab head;

Laboratory of Cross-Cutting Technologies in Distributed Power Generation (InEnergy); Institute of High Temperature Electrochemistry Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russia. https://orcid.org/0000-0001-

5284-4553; Web of Science J-7625-2016

Denis Osinkin;

DSc (Chemistry); Leading research associate; Laboratory of Solid State Oxide Fuel Cells;

Institute of High Temperature Electrochemistry Ural Branch of Russian Academy of Sciences, Yekaterinburg, Russia.

https://orcid.org/0000-0001-6396-8551; Web of Science D-8913-2017

References

1. Filippov SP, Yaroslavtsev AB, Hydrogen energy: development prospects and materials, Russ. Chem. Rev., **90(6)** (2021) 627–643. <u>https://doi.org/10.1070/RCR5014</u>

2. Yakubson KI, Prospects for production and use of hydrogen as one of directions of the development of lowcarbon economy in the Russian Federation, Russ. J. Appl. Chem., **93** (2020) 1775–1795. https://doi.org/10.1134/S1070427220120010

3. Makaryan IA, Sedov IV, Market Potential of Industrial Technologies for Production of Synthetic Bases of Motor Oils, Russ. J. General Chem., **91(6)** (2021) 1243–1259. <u>https://doi.org/10.1134/S1070363221060414</u>

4. Peng J, Huang J, Wu X, Xu Y, et al., Solid oxide fuel cell (SOFC) performance evaluation, fault diagnosis and health control: A review, J. Power Sources, **505** (2021) 230058. https://doi.org/10.1016/j.jpowsour.2021.230058

5. Simonenko TL, Simonenko NP, Simonenko EP, Sevastyanov VG, et al., Synthesis of Ba0.5Sr0.5Co0.8Fe0.2O3– δ oxide promising as a cathode material of modern solid-oxide fuel cells, Russ. J. Inorg. Chem., **66(5)** (2021) 662–666. https://doi.org/10.1134/S0036023621050193

6. Gilev AR, Kiselev EA, Cherepanov VA, The Effect of Cobalt Doping on Physicochemical Properties of La1.5Sr0.5Nil-yCoyO4+d, Russ. J. Phys. Chem. A, **94** (2020) 2474–2481. https://doi.org/10.1134/S0036024420120110

7. Klyndyuk Al, Zhuravleva YaYu, Gundilovich NN, Crystal structure, thermal and electrotransport properties of

NdBal-xSrxFeCo0.5Cu0.5O5+ δ (0.02 \leq x \leq 0.20) solid solutions Chim. Tech. Acta, **8(3)** (2021) 20218301. <u>https://doi.org/10.15826/chimtech.2021.8.3.01</u>

8. Lyskov NV, Galin MZ, Napolskii PhS, Mazo GN, Increasing the Electrochemical Activity of the Pr1.95La0.05CuO4 Cathode by Laser Modification of the Electrode/Electrolyte Interface Profile, Russ. J. Electrochem., **58** (2022) 93–99. https://doi.org/10.1134/SI023193522020070

9. Liu Y, Shao Z, Mori T, Jiang SP, Development of nickel based cermet anode materials in solid oxide fuel cells – Now and future, Mater. Reports: Energy, **1(1)** (2021) 100003. https://doi.org/10.1016/j.matre.2020.11.002

10. Yue W, Li Y, Zheng Y, Wu T, et al., Enhancing coking resistance of Ni/YSZ electrodes: In situ characterization, mechanism research, and surface engineering, Nano Energy **62** (2019) 64–78. <u>https://doi.org/10.1016/j.nanoen.2019.05.006</u>

11. Jiang SP, Sintering behavior of Ni/Y2O3-ZrO2cermet electrodes of solid oxide fuel cells, J. Mat. Sci., **38** (2003) 3775–3782. <u>https://doi.org/10.1023/A:1025936317472</u>

12. Goodenough JB, Huang YH, Alternative anode materials for solid oxide fuel cells, J. Power Sources, **173** (2007) 1–10. <u>https://doi.org/10.1016/j.jpowsour.2007.08.011</u>

13. Sasaki K, Haga K, Yoshizumi T, Minematsu D, et al., Chemical durability of solid oxide fuel cells: influence of impurities on long-term performance, J. Power Sources, **196** (2011) 9130–9140.

https://doi.org/10.1016/j.jpowsour.2010.09.122

14. Skafte TL, Blennow P, Hjelm J, Graves C, Carbon deposition and sulfur poisoning during CO2 electrolysis in nickel-based solid oxide cell electrodes, J. Power Sources, **373** (2018) 54–60. <u>https://doi.org/10.1016/j.jpowsour.2017.10.097</u>

15. Khrustov AV, Ananyev MV, Bronin DI, Osinkin DA, et al., Characterisation of Ni-cermet degradation phenomena II. Relationship between connectivity and resistivity, J. Power Sources, **497** (2021) 229847. https://doi.org/10.1016/j.jpowsour.2021.229847

16. Osinkin DA, Long-term tests of Ni-ZrO.9ScO.1OI.95 anode impregnated with CeO2 in H2+H2O gas mixtures, Int. J. Hydrogen Energy, **41** (2016) 17577–17584. http://doi.org/10.1016/j.ijhydene.2016.07.136

17. Istomin SYa, Lyskov NV, Mazo GN, Antipov EV, Electrode materials based on complex d-metal oxides for symmetrical solid oxide fuel cells, Russ. Chem. Rev., **90(6)** (2021) 644–676. <u>https://doi.org/10.1070/RCR4979</u>

18. Zamudio-García J, Caizan-Juanarena L, Porras-Vazquez JM, Losilla ER, et al., A review on recent advances and trends in symmetrical electrodes for solid oxide cells, J. Power Sources, **520** (2022) 230852. https://doi.org/10.1016/j.jpowsour.2021.230852

19. Ebbesen SD, Jensen SH, Hauch A, Mogensen MB, High Temperature Electrolysis in Alkaline Cells, Solid Proton Conducting Cells, and Solid Oxide Cells, Chem. Rev., **114** (2014) 10697–10734 <u>https://doi.org/10.1021/cr5000865</u>

20. Shu L, Sunarso J, Hashim SS, Mao J, et al., Advanced perovskite anodes for solid oxide fuel cells: A review, Int. J. Hydrogen Energy, **44(59)** (2019) 31275–31304. https://doi.org/10.1016/j.ijhydene.2019.09.220

21. Zhu K, Luo B, Liu Z, Wen X, Recent advances and prospects of symmetrical solid oxide fuel cells, Ceram. Int.,

48(7) (2022) 8972–8986. https://doi.org/10.1016/j.ceramint.2022.01.258

22. Kuhn M, Hashimoto S, Sato K, Yashiro K, et al., Oxygen nonstoichiometry, thermo-chemical stability and lattice expansion of LaO.6SrO.4FeO3- δ , Solid State Ionics, **195** (2011) 7–15. <u>https://doi.org/10.1016/j.ssi.2011.05.013</u>

23. Mosleh M, Sogaard M, Hendriksen PV, Kinetics and Mechanisms of Oxygen Surface Exchange on La0.6Sr0.4FeO3-δ Thin Films, J. Electrochem. Soc., **156** (2009) B441. <u>https://doi.org/10.1149/1.3062941</u>

24. Hashimoto S, Fukuda Y, Kuhn M. Sato K, et al., Oxygen nonstoichiometry and thermo-chemical stability of LaO.6SrO.4Col-yFeyO3- δ (y = 0.2, 0.4, 0.6, 0.8), Solid State lonics, **181** (2010) 1713–1719. https://doi.org/10.1016/j.ssi.2010.09.024

25. Han Z, Wang Y, Yang Y, Li L, High-performance SOFCs with impregnated Sr2Fel.5Mo0.5O6– δ anodes toward sulfur resistance, J. Alloys and Compd., **703** (2017) 258–263. https://doi.org/10.1016/j.jallcom.2017.01.341

26. Liu GY, Rao GH, Feng XM, Yang HF, et al., Atomic ordering and magnetic properties of non-stoichiometric double-perovskite Sr2FexMo2–xO6, J. Phys.: Condens. Matter., **15** (2003) 2053–2060. <u>https://doi.org/10.1088/0953-8984/15/12/322</u>

27. Bugaris DE, Hodges JP, Huq A, Chance WM, et al., Investigation of the high-temperature redox chemistry of Sr2Fel.5Mo0.5O6– δ via in situ neutron diffraction, J. Mater. Chemistry A, **2** (2014) 4045–4054. https://doi.org/10.1039/C3TA14913G

28. Goldschmidt VM, Die Gesetze der Krystallochemie [The laws of crystallochemistry], Naturwiss., **14** (1926) 477– 485. <u>https://doi.org/10.1007/BF01507527</u>

29. Longo J, Ward R, Magnetic Compounds of Hexavalent Rhenium with the Perovskite-type Structure, J. Am. Chem. Soc., **83(13)** (1961) 2816–2818. https://doi.org/10.1021/ja01474a007

30. Galasso FS, Douglas FC, Kasper RJ, Relationship Between Magnetic Curie Points and Cell Sizes of Solid Solutions with the Ordered Perovskite Structure, J. Chem. Phys., **44** (1966) 1672. <u>https://doi.org/10.1063/1.1726907</u>

31. Nakagawa T, Magnetic and electrical properties of ordered perovskite Sr2(FeMo)O6 and its related compounds, J. Phys. Soc. Jpn., **24(4)** (1968) 806–811. https://doi.org/10.1143/JPSJ.24.806

32. Bartha C, Plapcianu C, Crisan A, Enculescu M, et al., Structural and magnetic properties of Sr2FeMoO6 obtained at low temperatures, Dig. J. Nanomater. Bios., **11(3)** (2016) 773– 780

33. Fang TT, Ko TF, Factors Affecting the Preparation of Sr2Fe2-xMoxO6, J. Am. Ceram. Soc., **86(9)** (2003)1453–1455. https://doi.org/10.1111/j.1151-2916.2003.tb03495.x

34. Alvarado-Flores JJ, Mondragón-Sánchez R, Ávalos-Rodríguez ML, Alcaraz-Vera JV, et al., Synthesis, characterization and kinetic study of the Sr2FeMoO6- δ double perovskite: New findings on the calcination of one of its precursors, Int. J. Hydrogen Energ., **46(51)** (2021) 26185–26196. https://doi.org/10.1016/i.iihydene.2021.01.191

35. Miao G, Yuan Ch, Chen T, Zhou Yu, et al., Sr2Fel+xMol-xO6-δ as anode material of cathode-supported solid oxide fuel cells, Int. J. Hydrogen Energ., **41(2)** (2016) 1104– 1111. <u>https://doi.org/10.1016/i.iihydene.2015.12.045</u> 36. Yang D, Yang T, Sun Q, Chen Yu, et al., The annealing effects on the crystal structure, magnetism and microstructure of the ferromagnetic double perovskite Sr2FeMoO6 synthesized via spark plasma sintering, J Alloy. Compd., **728** (2017) 337–342. https://doi.org/10.1016/j.jallcom.2017.09.027

37. Zhai YQ, Qiao J, Qiu MD, Research on Degradation of Dye Acid Red B by Sr2FeMoO6 Synthesized by Microwave Sintering Method, E-J. Chem., **9(2)** (2012) 818–824. https://doi.org/10.1155/2012/239305

38. Santosh M, Lacotte M, David A, Boullay Ph, et al., Pulsed laser deposition of Sr2FeMoO6 thin films grown on spark plasma sintered Sr2MgWO6 substrates, J. Phys. D Appl. Phys., **50(23)** (2017) 235301. <u>https://doi.org/10.1088/1361-6463/aa6e3e</u>

39. Valdés J, Reséndiz D, Cuán A, Nava R, et al., Sol-Gel Synthesis of the Double Perovskite Sr2FeMoO6 by Microwave Technique, Materials, **14(14)** (2021) 3876. https://doi.org/10.3390/mal4143876

40. Cernea M, Vasiliu F, Plapcianu C, Bartha C, et al., Preparation by sol-gel and solid state reaction methods and properties investigation of double perovskite Sr2FeMoO6, J. Eur. Ceram. Soc., **33(13–14)** (2013) 2483–2490. https://doi.org/10.1016/j.jeurceramsoc.2013.03.026

4I. Calleja A, Capdevila XG, Segarra M, Frontera C, et al., Cation order enhancement in Sr2FeMoO6 by water-saturated hydrogen reduction, J .Eur. Ceram. Soc., **31** (2011) 121–127. https://doi.org/10.1016/j.jeurceramsoc.2010.08.002

42. Retuerto M, Alonso JA, Martínez-Lope MJ, Martínez JL, et al., Record saturation magnetization, Curie temperature, and magnetoresistance in Sr2FeMoO6 double perovskite synthesized by wet-chemistry techniques, Appl. Phys. Lett., **85** (2004) 266. <u>https://doi.org/10.1063/1.1772857</u>

43. Raittila J, Salminem T, Suominem T, Schlesier K, et al., Nanocrystalline Sr2FeMoO6 prepared by citrate-gel method, J. Phys. Chem. Solids, **67(8)** (2006) 1712–1718. https://doi.org/10.1016/j.jpcs.2006.03.009

44. Xi X, Liu J, Luo W, Fan Y, et al., Unraveling the Enhanced Kinetics of Sr2Fel+xMol-xO6- δ Electrocatalysts for High-Performance Solid Oxide Cells, Adv. Energy Mater., 11(48) (2021) 2102845.

https://doi.org/10.1002/aenm.202102845

45. Mun oz-García AB, Bugaris DE, Pavone M, Hodges JP, et al., Unveiling Structure–Property Relationships in Sr2Fel.5Mo0.5O6– δ , an Electrode Material for Symmetric Solid Oxide Fuel Cells, J. Am. Chem. Soc., **134** (2012) 6826–6833. <u>https://doi.org/10.1021/ja300831k</u>

46. Markov AA, Leonidov IA, Patrakeev MV, Kozhevnikov VL, et al., Structural stability and electrical transport in SrFel–xMoxO3–δ, Solid State Ionics, **179(21–26)** (2008) 1050–1053. <u>https://doi.org/10.1016/j.ssi.2008.01.026</u>

47. Wang Y, Li P, Li H, Zhao Y, Li Y, Synthesis and enhanced electrochemical performance of Sm-doped Sr2Fel.5Mo0.5O6, Fuel Cells, **14** (2014) 973–978. https://doi.org/10.1002/fuce.201300250

48. Osinkin DA, Kolchugin AA, Bogdanovich NM, Beresnev SM, Performance and redox stability of a double–layer Sr2Fel.5Mo0.5O6– δ -based electrode for solid state electrochemical application, Electrochim. Acta, **361** (2020) 137058. <u>https://doi.org/10.1016/j.electacta.2020.137058</u>

49. Liu Q, Bugaris DE, Xiao GL, Chmara M, et al., Sr2Fel.5Mo0.5O6– δ as a regenerative anode for solid oxide fuel cells, J. Power Sources, **196(22)** (2011) 9148–9153. https://doi.org/10.1016/j.jpowsour.2011.06.085

50. Retuerto M, Li MR, Go YB, Ignatov A, et al., Magnetic and Structural Studies of the Multifunctional Material SrFe0.75Mo0.25O3-δ, Inorg. Chem., **5i(22)** (2012) 12273–12280. https://doi.org/10.1021/ic301550m

51. Osinkin DA, Lobachevskaya NI, Suntsov AYu, The electrochemical behavior of the promising Sr2Fe1.5Mo0.5O6- δ + Ce0.8Sm0.2O1.9- δ anode for the intermediate temperature solid oxide fuel cells,] Alloy. Compd., **708** (2017) 451-455. https://doi.org/10.1016/j.jallcom.2017.03.057

52. Wang P, Qian W, Xu R, Cheng J, Novel cathode material for solid oxide fuel cells based on Ba-doped Sr2Fel.5Mo0.5O6, Process. Appl. Ceram., **16(1)** (2022) 64–68. https://doi.org/10.2298/PAC2201064W

53. Li Ch, Zhang Q, Liu W, Tian X, et al., Tailoring the electrolyte and cathode properties for optimizing the performance of symmetrical solid oxide fuel cells fabricated by one-step cosintering method, J. Asian Ceram. Soc., (2022) I–IO. https://doi.org/10.1080/21870764.2022.2057640

54. Wright JH, Virkar AV, Liu Q, Chen F, Electrical characterization and water sensitivity of Sr2Fel.5Mo0.5O6– δ as a possible solid oxide fuel cell electrode, J. Power Sources, (2013) 13–18.

https://doi.org/10.1016/j.jpowsour.2013.02.079

55. Xiao G, Liu Q, Zhao F, Zhang L, et al., Sr2Fel.5Mo0.5O6 as cathodes for intermediate-temperature solid oxide fuel cells with LaO.8SrO.2GaO.87MgO.I3O3 electrolyte, J. Electrochem. Soc., **158** (2011) B455. https://doi.org/10.1149/1.3556085

56. Santos-Gómez L, León-Reina L, Porras-Vázquez JM, Losilla ER, et al., Chemical stability and compatibility of double perovskite anode materials for SOFCs, Solid State lonics, **239** (2013) 1–7. https://doi.org/10.1016/j.ssj.2013.03.005

57. Gou M, Ren R, Sun W, Xu C, et al., Nb-doped Sr2Fel.5Mo0.5O6– δ electrode with enhanced stability and electrochemical performance for symmetrical solid oxide fuel cells, Ceram. Int., **45** (2019) 15696–15704. https://doi.org/10.1016/j.ceramint.2019.03.130

58. Wang Y, Li P, Li H, Zhao Y, et al., Synthesis and enhanced electrochemical performance of Sm-doped Sr2Fel.5Mo0.5O6, Fuel Cells, **14(6)** (2014) 973–978. https://doi.org/10.1002/fuce.201300250

59. Li H, Zhao Y, Wang Y, Li Y, Sr2Fe2-xMoxO6– δ perovskite as an anode in a solid oxide fuel cell: Effect of the substitution ratio, Catal. Today, **259(2)** (2016) 417–422. https://doi.org/10.1016/j.cattod.2015.04.025

60. Fan Y, Xi X, Li J, Wang Q, et al., Barium-doped Sr2Fe2-xMoxO6- δ perovskite anode materials for protonic ceramic fuel cells for ethane conversion, J. Am. Ceram. Soc., **105(5)** (2022) 3613–3624. <u>https://doi.org/10.1111/jace.18329</u>

61. Karim AH, Abdalla AM, Absah HQHH, Kamis AAM, et al., Synthesis and characterization of Sr2Fe0.75Ti0.25MoO6-δ as anode for solid oxide fuel cell, ECS J. Solid State Sci. Technol., **26(1)** (2018) 100–106

62. Abdullaev MM, Istomin SYa, Sobolev AV, Presnyakov IA, et al., Synthesis and Study of (Sr,La)2FeCo0.5Mo0.5O6– δ

 Oxides
 with
 Double
 Perovskite
 Structure.
 Russ.
 J.
 Inorg.

 Chem.,
 64(6) (2019)
 696–704.

 https://doi.org/10.1134/S0036023619060032
 696–704.
 696–704.

63. Qiu P, Sun Sh, Li J, Jia L., A review on the application of Sr2Fel.5Mo0.5O6-based oxides in solid oxide electrochemical cells, Sep. Purif. Technol., **298** (2022) 121581. https://doi.org/10.1016/j.seppur.2022.121581

64. Tomioka Y, Okuda T, Okimoto Y, Kumai R, et al., Magnetic and electronic properties of a single crystal of ordered double perovskite Sr2FeMoO6, Phys. Rev., **B61** (2000) 422. <u>https://doi.org/10.1103/PhysRevB.61.422</u>

65. Muñoz-García AB, Pavone M, Carter EA, Effect of Antisite Defects on the Formation of Oxygen Vacancies in Sr2FeMoO6: Implications for Ion and Electron Transport, Chem. Mater., **23(20)** (2011) 4525–4536. https://doi.org/10.1021/cm201799c

66. Muñoz-García AB, Pavone M, Ritzmann AM, Carter EA, Oxide ion transport in Sr2Fel.5Mo0.5O6– δ , a mixed ionelectron conductor: new insights from first principles modeling, Phys. Chem. Chem. Phys., **15** (2013) 6250–6259. <u>https://doi.org/10.1039/C3CP50995H</u>

67. Han Z, Dong H, Wu Y, Yang Y, Locating the ratelimiting step of hydrogen conversion on Sr2Fel.5Mo0.5O6 (OOI) surface: Implications for efficient SOFC anode design, Appl. Surf. Sci., **595** (2022) 153513. https://doi.org/10.1016/j.apsusc.2022.153513

68. Qi H, Lee YL, Yang T, Li W, et al., Positive Effects of H2O on the Hydrogen Oxidation Reaction on Sr2Fel.5Mo0.5O6–δ-Based Perovskite Anodes for Solid Oxide Fuel Cells, ACS Catal., **10[10]** (2020) 5567–5578. https://doi.org/10.1021/acscatal.9b05458

69. Ammal SCh, Heyden A, Reaction kinetics of the electrochemical oxidation of CO and syngas fuels on a Sr2Fel.5Mo0.5O6– δ perovskite anode, J. Mater. Chem., A3 (2015) 21618–21629. <u>https://doi.org/10.1039/C5TA05056A</u>

70. Liu Q, Dong X, Xiao G, Zhao F, et al., A Novel Electrode Material for Symmetrical SOFCs, Adv. Mater., **22(48)** (2010) 5478–5482. https://doi.org/10.1002/adma.201001044

71. Markandeya Y, Reddy YS, Bale S, REDDY CV, et al., Characterization and thermal expansion of Sr2FexMo2-xO6 double perovskites, Bull. Mater. Sci., **38(6)** (2015) 1603–1608. https://doi.org/10.1007/s12034-015-0972-2

72. Suthirakun S. Rational Design of Perovskite Based Anode Materials For Solid Oxide Fuel Cells: A Computational Approach [dissertation]. Columbia (USA): University of South Carolina; 2013. 193 p.

73. Suthirakun S, Ammal SCh, Muñoz-García AB, Xiao G, et al., Theoretical Investigation of H2 Oxidation on the Sr2FeI.5Mo0.5O6 (OOI) Perovskite Surface under Anodic Solid Oxide Fuel Cell Conditions, J. Am. Chem. Soc., **136** (2014) 8374–8386. <u>https://doi.org/10.1021/ja502629i</u>

74. Tian H, Li W, Ma L, Yang T, et al., Deconvolution of Water-Splitting on the Triple-Conducting Ruddlesden–Popper-Phase Anode for Protonic Ceramic Electrolysis Cells, ACS Appl. Mater. Interfaces, **12 (44)** (2020) 49574-49585. https://doi.org/10.1021/acsami.0c12987

75. Walker E, Ammal SC, Suthirakun S, Chen F, et al., Mechanism of Sulfur Poisoning of Sr2Fel.5Mo0.5O6– δ Perovskite Anode under Solid Oxide Fuel Cell Conditions, J. Phys. (2014)23545-23552. Chem. С, 118(41) https://doi.org/10.1021/jp507593k

76. Zhi C, Yang W, Improvement of Mo-doping on sulfurpoisoning of Ni catalyst: Activity and selectivity to CO methanation, Comput. Theor. Chem., 1197 (2021) 113140. https://doi.org/10.1016/j.comptc.2020.113140

77. Osinkin DA, Lobachevskaya NI, Bogdanovich NM, Effect of the Copper Oxide Sintering Additive on the Electrical and Electrochemical Properties of Anode Materials Based on Sr2Fel.5Mo0.5O6-δ, Russ. J. Appl. Chem., 90(10) (2017) 1686-1692. https://doi.org/10.1134/S1070427217100196

78. Osinkin DA, Precursor of Pr2NiO4– δ as a highly effective catalyst for the simultaneous promotion of oxygen reduction and hydrogen oxidation reactions in solid oxide electrochemical devices, Int. J. Hydrogen Energ., 46 (2021) 24546-24554.

https://doi.org/10.1016/j.ijhydene.2021.05.022

79. Porotnikova NM, Ananyev MV, Osinkin DA, Khodimchuk AV, et al., Increase in the density of Sr2Fel.5Mo0.5O6– δ membranes through an excess of iron oxide: The effect of iron oxide on transport and kinetic Surf., 29 (2022)101784 parameters, https://doi.org/10.1016/j.surfin.2022.101784

80. Zhang L, Liu Y, Zhang Y, Xiao G, et al., Enhancement in surface exchange coefficient and electrochemical performance of Sr2Fel.5Mo0.5O6-δelectrodes hv Ce0.8Sm0.2OI.9 nanoparticles, Electrochem. Commun., 13(7) (2011) 711-713. https://doi.org/10.1016/j.elecom.2011.04.017

81. Lv H, Zhou Y, Zhang X, Song Y, et al., Infiltration of nanoparticles on Sr2Fel.5Mo0.5O6-δ Ce0.8Gd0.2O1.9 cathode for CO2 electroreduction in solid oxide electrolysis cell,]. Energy Chem., 35 (2019)71-78. https://doi.org/10.1016/j.jechem.2018.11.002

82. Osinkin DA, Hydrogen oxidation kinetics on a redox stable electrode for reversible solid-state electrochemical devices: The critical influence of hydrogen dissociation on the electrode surface, Electrochim. Acta, 389 (2021) 138792. https://doi.org/10.1016/j.electacta.2021.138792

83. Xiao J, Han D, Yu F, Zhang L, et al., Characterization of symmetrical SrFe0.75Mo0.25O3-δ electrodes in direct carbon solid oxide fuel cells, J. Alloy. Compd., 688 (2016) 939-945. https://doi.org/10.1016/j.jallcom.2016.07.223

84. Gao J, Meng X, Luo T, Wu H, et al., Symmetrical solid oxide fuel cells fabricated by phase inversion tape casting with impregnated SrFe0.75Mo0.25O3 $-\delta$ (SFMO) electrodes, Int. J. Hydrogen Energ., 42 (2017)18499-18503. https://doi.org/10.1016/j.ijhydene.2017.03.205

85. Li Y, Zou Sh, Ju J, Xi Ch, Characteristics of nanostructured SFM infiltrated onto YSZ backbone for symmetrical and reversible solid oxide cells, Solid State Ion., 319 (2018) 98-104. https://doi.org/10.1016/j.ssi.2018.02.003

86. Zhu Z, Sun K, Xu D, Gu Y, et al., Enhancing the performance of symmetrical solid oxide fuel cells with Sr2Fel.5Mo0.5O6-δ electrodes via infiltration of Pr6Oll bifunctional catalyst, Electrochim. Acta, 402 (2022) 139569. https://doi.org/10.1016/j.electacta.2021.139569

87. Li C, Zhang Q, Liu W, Tian X, et al., Tailoring the electrolyte and cathode properties for optimizing the performance of symmetrical solid oxide fuel cells fabricated by one-step co-sintering method, J. Asian Ceram. Soc., 10(2)

(2022)

386-395. https://doi.org/10.1080/21870764.2022.2057640

88. Wang Y, Liu T, A highly active and stable Sr2Fel.5Mo0.5O6–δ–Ce0.8Sm0.2O1.95 ceramic fuel electrode for efficient hydrogen production via a steam electrolyzer without safe gas, Int. J. Coal Sci. Technol., 9 (2022) 4. https://doi.org/10.1007/s40789-022-00470-8

89. Liu Q, Yang Ch, Dong X, Chen F, Perovskite Sr2FeI.5Mo0.5O6– δ as electrode materials for symmetrical solid oxide electrolysis cells, Int.]. Hydrogen Energ., 35 (2010) 10039-10044. https://doi.org/10.1016/j.ijhydene.2010.08.016

90. Osinkin DA, Kinetics of CO oxidation and redox cycling of Sr2FeI.5Mo0.5O6– δ electrode for symmetrical solid state electrochemical devices, J. Power Sources, 418 (2019) 17-23. https://doi.org/10.1016/j.jpowsour.2019.02.026

91. Li Y, Li Y, Zhang S, Ren C, et al., Mutual Conversion of CO-CO2 on a Perovskite Fuel Electrode with Endogenous Alloy Nanoparticles for Reversible Solid Oxide Cells, ACS Appl. Mater. Interfaces, 14(7) (2022) 9138-9150. https://doi.org/10.1021/acsami.1c23548

92. Li Y, Chen X, Yang Y, Jiang Y, Mixed-Conductor Sr2Fel.5Mo0.5O6-bas Robust Fuel Electrode for Pure CO2 Reduction in Solid Oxide Electrolysis Cell, ACS Sustainable Chem. Eng., 5(12) (2017)11403-11412. https://doi.org/10.1021/acssuschemeng.7b02511

93. Zhang T, Zhal Y, Zhang X, Zhang H, Thermal Stability of an in Situ Exsolved Metallic Nanoparticle Structured Perovskite Type Hydrogen Electrode for Solid Oxide Cells, ACS Sustainable Chem. Eng., 7(12) (2019) 17834-17844. https://doi.org/10.1021/acssuschemeng.9b04350

94. Wachowski S, Li Z, Polfus JM, Norby T, Performance and stability in H2S of SrFe0.75Mo0.25O3 $-\delta$ as electrode in proton ceramic fuel cells, J. Eur. Ceram. Soc., 38 (2018) 163-171. https://doi.org/10.1016/j.jeurceramsoc.2017.08.020

95. Munoz-Garcia Μ, AB, Pavone K-doped Sr2Fe1.5Mo0.5O6–δpredicted as a bifunctional catalyst for air electrodes in proton conducting solid oxide electrochemical Mater. Chem., A5 (2017) cells,]. 12735-12739. https://doi.org/10.1039/C7TA03340K

96. Munoz-Garcia AB, Pavone M, First-Principles Design of New Electrodes for Proton-Conducting Solid-Oxide Electrochemical Cells: A-Site Doped Sr2Fel.5Mo0.5O6-δ Mater., **28(2)** (2016) 490-500. Perovskite, Chem. https://doi.org/10.1021/acs.chemmater.5b03262

97. Yang Y, Shi N, Xie Y, Li X, et al., K doping as a rational method to enhance the sluggish air-electrode reaction kinetics for proton-conducting solid oxide cells, Electrochim. Acta, 389 (2021) 138453. https://doi.org/10.1016/j.electacta.2021.138453

98. Cowin PI, Lan R, Petit CTGP, Wang H, Tao S, Conductivity and redox stability of new double perovskite oxide Sr1.6K0.4Fel+xMol-xO6-δ (x=0.2, 0.4, 0.6),]. Mater. Sci., 51 (2016) 4115-4124. https://doi.org/10.1007/s10853-016-9734-9

99. Qiao J, Chen W, Wang W, Wang Z, et al., The Ca element effect on the enhancement performance of Sr2Fel.5Mo0.5O6– δ perovskite as cathode for intermediatetemperature solid oxide fuel cells, J. Power Sources, 331 (2016) 400-407. https://doi.org/10.1016/j.jpowsour.2016.09.082

100. Xu Z, Hu X, Wan Y, Xue S, et al., Electrochemical performance and anode reaction process for Ca doped Sr2Fel.5Mo0.5O6– δ as electrodes for symmetrical solid oxide fuel cells, Electrochim. Acta, **341** (2020) 136067. https://doi.org/10.1016/j.electacta.2020.136067

101. Tian X, Xie M, Ting L, Zhong-Liang Z, Synthesis and Evaluation of Ca-doped Sr2Fel.5Mo0.5O6– δ as Symmetrical Electrodes for High Performance Solid Oxide Fuel Cells, J. Inorg. Mater., **34(IO)** (2019) 1109–1114. https://doi.org/10.15541/jim20190067

102. Osinkin DA, Beresnev SM, Khodimchuk AV, Korzun IV, et al., Functional properties and electrochemical performance of Ca-doped Sr2-xCaxFel.5Mo0.5O6- δ as anode for solid oxide fuel cells, J. Solid State Electr., **23** (2019) 627–634. <u>https://doi.org/10.1007/s10008-018-04169-2</u>

103. Dai N, Wang Z, Jiang T, Feng J, et al., A new family of barium-doped Sr2Fel.5Mo0.5O6– δ perovskites for application in intermediate temperature solid oxide fuel cells, J. Power Sources, **268** (2014) 176–182. https://doi.org/10.1016/j.jpowsour.2014.05.146

104. Kamlungsua K, Su PC, Moisture-dependent electrochemical characterization of BaO.2Sr1.8Fel.5MoO.5O6- δ as the fuel electrode for solid oxide electrolysis cells (SOECs), Electrochim. Acta, **355** (2020) 136670. https://doi.org/10.1016/j.electacta.2020.136670

105. Tian X, Xie M, Ting L, Zhong-Liang Z, La3+substituted Sr2Fel.5Ni0.1Mo0.4O6- δ as Anodes for Solid Oxide Fuel Cells, J. Inorg. Mater., **35(5)** (2020) 617–622. https://doi.org/10.15541/jim20190225

106. Sun C, Bian L, Qi J, Yu W, et al., An Boosting CO2 directly electrolysis by electron doping in Sr2Fe1.5Mo0.5O6 $-\delta$ double perovskite cathode, J. Power Sources, **521** (2022) 230984. <u>https://doi.org/10.1016/j.jpowsour.2022.230984</u>

107. Ma J, Tao Z, Kou H, Fronzi M, et al., Evaluating the effect of Pr-doping on the performance of strontium-doped lanthanum ferrite cathodes for protonic SOFCs, Ceram. Int., **46(3)** (2020) 4000–4005. https://doi.org/10.1016/j.ceramint.2019.10.017

108. Qi H, Thomas T, Li W, Li W, et al., Reduced Thermal Expansion and Enhanced Redox Reversibility of La0.5Sr1.5Fe1.5Mo0.5O6– δ Anode Material for Solid Oxide Fuel Cells, ACS Appl. Energy Mater., **2(6)** (2019) 4244–4254. https://doi.org/10.1021/acsaem.9b00494

109. Qi H, Exsolved nanoparticle decorated redox stable ceramic anode material with high performance for Solid Oxide Fuel Cells [dissertation]. Morgantown (USA): Statler College of Engineering and Mineral Resources; 2019. 135 p.

110. Yue W, Changsong C, Shiwei W, Zhongliang Z, Symmetrical La3+-doped Sr2Fel.5Ni0.1Mo0.4O6- δ Electrode Solid Oxide Fuel Cells for Pure CO2 Electrolysis, J. Inorg. Mater., **36(12)** (2021) 1323–1329. https://doi.org/10.15541/jim20210206

III. Yang G, Feng J, Sun W, Dai N, et al., The characteristic of strontium-site deficient perovskites $SrxFel.5Mo0.5O6-\delta$ (x = 1.9–2.0) as intermediate-temperature solid oxide fuel cell cathodes, J. Power Sources, **268** (2014) 771–777. https://doi.org/10.1016/j.jpowsour.2014.06.129

112. Osinkin DA, Khodimchuk AV, Antonova EP, Bogdanovich NM, Understanding the oxygen reduction kinetics on Sr2-xFe1.5Mo0.5O6– δ : Influence of strontium deficiency and correlation with the oxygen isotopic exchange data, Solid State Ion., **374** (2022) 115818. https://doi.org/10.1016/j.ssi.2021.115818 113. Feng J, Qiao J, Wang W, Wang Z, et al., Development and performance of anode material based on A-site deficient Sr2-xFel.4NiO.1MoO.5O6– δ perovskites for solid oxide fuel cells, Electrochim. Acta, **215** (2016) 592–599. https://doi.org/10.1016/j.electacta.2016.08.088

114. Pan X, Wang Z, He B, Wang S, et al., Effect of Co doping on the electrochemical properties of Sr2Fel.5Mo0.5O6–δ electrode for solid oxide fuel cell, Int. J. Hydrogen Energ., **38** (2013) 4108–4115. https://doi.org/10.1016/j.ijhydene.2013.01.121

115. Xi X, Wang XW, Fan Y, Wang Q, Efficient bifunctional electrocatalysts for solid oxide cells based on the structural evolution of perovskites with abundant defects and exsolved CoFe nanoparticles, J. Power Sources, **482** (2021) 228981. <u>https://doi.org/10.1016/j.jpowsour.2020.228981</u>

116. Li Y, Singh M, Zhuang Z, Jing Y, et al., Efficient reversible CO/CO2 conversion in solid oxide cells with a phase-transformed fuel electrode, Sci. China Mater., **64(5)** (2021) 1114–1126. <u>https://doi.org/10.1007/s40843-020-1531-7</u>

117. Xu C, Zhen S, Ren R, Chen H, et al., Cu-doped Sr2Fel.5Mo0.5O6– δ as a highly active cathode for solid oxide electrolytic cells, Chem. Commun., **55** (2019) 8009–8012. https://doi.org/10.1039/C9CC03455B

118. Tian C, Cheng J, Yang J, A highly active cathode material of Cu-doped Sr2Fel.5Mo0.5O6– δ for symmetrical solid oxide fuel cells, J. Mater. Sci-Mater., **El.32** (2021) 1258–1264. https://doi.org/10.1007/s10854-020-04898-z

119. Wang SF, Hsu YF, Huang MS, Chang CW, et al., Characteristics of copper-doped SrFe0.75Mo0.25O3- δ ceramic as a cathode material for solid oxide fuel cells, Solid State Ion., **296** (2016) 120–126. https://doi.org/10.1016/j.ssi.2016.09.004

120. Dai N, Feng J, Wang Z, Jiang T, et al., Synthesis and characterization of B-site Ni-doped perovskites Sr2FeI.5Mo0.5O6– δ (x = 0, 0.05, 0.1, 0.2, 0.4) as cathodes for SOFCs, J. Mater. Chem., A1 (2013) 14147–14153. https://doi.org/10.1039/C3TA13607H

121. Feng J, Yang G, Dai N, Wang Z, et al., Investigation into the effect of Fe-site substitution on the performance of Sr2Fel.5Mo0.5O6– δ anodes for SOFCs, J. Mater. Chem., A2 (2014) 17628–17634. <u>https://doi.org/10.1039/C4TA03216K</u>

122. Xiao G, Wang S, Lin Y, Yang Z, et al., Ni-doped Sr2FeI.5Mo0.5O6– δ as Anode Materials for Solid Oxide Fuel Cells, J. Electrochem. Soc., **161(3)** (2013) F305–F310. https://doi.org/10.1149/2.061403jes

123. Osinkin DA, Antonova EP, Shubin KS, Bogdanovich NM Influence of nickel exsolution on the electrochemical performance and rate-determining stages of hydrogen oxidation on Sr1.95Fel.4Ni0.1Mo0.5O6–δ promising electrode for solid state electrochemical devices, Electrochim. Acta, **369** (2021) 137673. https://doi.org/10.1016/j.electacta.2020.137673

124. Xiao G, Chen F, Ni modified ceramic anodes for direct-methane solid oxide fuel cells, Electrochem. Commun., **13** (2011) 57–59. <u>https://doi.org/10.1016/j.elecom.2010.11.012</u>

125. Xiao G, Jin C, Liu Q, Heyden A, et al., Ni modified ceramic anodes for solid oxide fuel cells, J. Power Sources, **201** (2012) 43–48. <u>https://doi.org/10.1016/j.jpowsour.2011.10.103</u>

126. Lv H, Lin L, Zhang X, Gao D, et al., In situ exsolved FeNi3 nanoparticles on nickel doped Sr2Fe1.5Mo0.5O6– δ perovskite for efficient electrochemical CO2 reduction

reaction, J. Mater. Chem., **A7** (2019) 11967–11975. https://doi.org/10.1039/C9TA03065D

127. Wang Y, Xu J, Meng X, Liu T, et al., Ni infiltrated Sr2Fel.5Mo0.5O6-δ-Ce0.8Sm0.2O1.9 electrode for methane assisted steam electrolysis process, Electrochem. Commun., **79** (2017) 63-67. <u>https://doi.org/10.1016/j.elecom.2017.04.018</u>

128. Gong M, Dai H, A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts, Nano Res., **8** (2015) 23–39. https://doi.org/10.1007/s12274-014-0591-z

129. Li Y, Hu B, Xia C, Xu WQ, et al., A novel fuel electrode enabling direct CO2 electrolysis with excellent and stable cell performance, J. Mater. Chem., **A5** (2017) 20833–20842. <u>https://doi.org/10.1039/C7TA05750D</u>

130. Hou M, Sun W, Li P, Feng J, et al., Investigation into the effect of molybdenum-site substitution on the performance of Sr2Fel.5Mo0.5O6– δ for intermediate temperature solid oxide fuel cells, J. Power Sources, **272** (2014) 759–765. <u>https://doi.org/10.1016/j.jpowsour.2014.09.043</u>

131. Sun W, Li P, Xu C, Dong L, et al., Investigation of Sc doped Sr2FeI.5Mo0.5O6 as a cathode material for intermediate temperature solid oxide fuel cells, J. Power Sources, **343** (2017) 237–245. https://doi.org/10.1016/j.jpowsour.2017.01.063

132. Zhang L, Yin Y, Xu Y, Yu S, et al., Tailoring Sr2Fel.5Mo0.5O6– δ with Sc as a new single-phase cathode for proton-conducting solid oxide fuel cells, Sci. China Mater., **65(6)** (2022) 1485–1494. <u>https://doi.org/10.1007/s40843-021-1935-5</u>

133. Ren R, Wang Z, Meng X, Wang X, et al., Tailoring the Oxygen Vacancy to Achieve Fast Intrinsic Proton Transport in a Perovskite Cathode for Protonic Ceramic Fuel Cells, ACS Appl. Energy Mater., **3** (2020) 4914–4922. https://doi.org/10.1021/acsaem.0c00486

134. Sun K, Liu J, Feng J, Yuan H, et al., Investigation of Bsite doped perovskites Sr2FeI.4XO.IMo0.5O6– δ (X = Bi, Al, Mg) as high-performance anodes for hybrid direct carbon fuel cell, J. Power Sources, **365** (2017) 109–116. https://doi.org/10.1016/j.jpowsour.2017.08.083

135. Wan Y, Yang Y, Lu Y, Peng R, et al., A Strategy to Enhance the Catalytic Activity of Electrode Materials by Doping Bismuth for Symmetrical Solid Oxide Electrolysis Cells, ACS Appl. Energy Mater., **5(2)** (2022) 2339–2348. https://doi.org/10.1021/acsaem.1c03822

136. Du Z, Zhao H, Li S, Zhang Y, et al., Exceptionally High Performance Anode Material Based on Lattice Structure Decorated Double Perovskite Sr2FeMo2/3MgI/3O6- δ for Solid Oxide Fuel Cells, Adv. Energy Mater., **8(18)** (2018) 1800062. <u>https://doi.org/10.1002/aenm.201800062</u>

137. Feng T, Niu B, Liu J, He T, Sr- and Mo-deficiency Sr1.95TiMol- $xO6-\delta$ double perovskites as anodes for solidoxide fuel cells using H2S-containing syngas, Int. J. Hydrogen Energ., **45** (2020) 23444–23454. https://doi.org/10.1016/j.ijhydene.2020.06.115

138. Niu B, Jin F, Zhang L, Shen P, et al., Performance of double perovskite symmetrical electrode materials Sr2TiFelxMoxO6- δ (x = 0.1, 0.2) for solid oxide fuel cells, Electrochim. Acta, **263** (2018) 217–227. https://doi.org/10.1016/j.electacta.2018.01.062

139. Zhou Q, Cheng Y, Li W, Yang X, et al., Investigation of cobalt-free perovskite Sr2FeTi0.75Mo0.25O6– δ as new

cathode for solid oxide fuel cells, Mater. Res. Bull., **74** (2016) 129–133. <u>https://doi.org/10.1016/j.materresbull.2015.09.023</u>

140. Xu C, Zhang L, Sun W, Ren R, et al., Co-improving the electrocatalytic performance and H2S tolerance of a Sr2Fel.5Mo0.5O6– δ based anode for solid oxide fuel cells, J. Mater. Chem. A, (2022) Advance Article. https://doi.org/10.1039/D2TA03136A

141. Zheng K, Swierczek K, Polfus JM, Sunding MF, et al., Carbon Deposition and Sulfur Poisoning in SrFe0.75Mo0.25O3-δ and SrFe0.5Mn0.25Mo0.25O3-δ Electrode Materials for Symmetrical SOFCs, J. Electrochem. 162(9) F1078-F1087. Soc., (2015)https://doi.org/10.1149/2.0981509ies

142. Jiang Y, Yang Y, Xia C, Bouwmeester HJM, Sr2Fel.4Mn0.1Mo0.5O6 $-\delta$ perovskite cathode for highly efficient CO2electrolysis, J. Mater. Chem., A7 (2019) 22939–22949. https://doi.org/10.1039/C9TA07689A

143. Xu C, Sun K, Yang X, Ma M, et al., Highly active and CO2-tolerant Sr2Fel.3Ga0.2Mo0.5O6– δ cathode for intermediate-temperature solid oxide fuel cells, J. Power Sources, **450** (2020) 227722. https://doi.org/10.1016/j.jpowsour.2020.227722

144. Lv H, Lin L, Zhang X, Li R, et al., Promoting exsolution of RuFe alloy nanoparticles on Sr2FeI.4Ru0.IMo0.5O6– δ via repeated redox manipulations for CO2 electrolysis, Nat. Commun., **12** (2021) 5665. https://doi.org/10.1038/s41467-021-26001-8

145. Li B, He S, Li J, Yue X, et al., A Ce/Ru Codoped SrFeO3- δ Perovskite for a Coke-Resistant Anode of a Symmetrical Solid Oxide Fuel Cell, ACS Catal., **10(24)** (2020) 14398–14409. <u>https://doi.org/10.1021/acscatal.0c03554</u>

146. Zhang S, Zhu K, Hu X, Peng R, et al., Antimony doping to greatly enhance the electrocatalytic performance of Sr2Fel.5Mo0.5O6– δ perovskite as a ceramic anode for solid oxide fuel cells, J. Mater. Chem., **A9** (2021) 24336–24347. https://doi.org/10.1039/DITA06196H

147. Gao J, Zhang Y, Wang X, Jia L, et al.,Nitrogen-doped Sr2Fel.5Mo0.5O6– δ perovskite as an efficient and stable catalyst for hydrogen evolution reaction, Mater. Today Energy, **20** (2021) 100695. https://doi.org/10.1016/j.mtener.2021.100695

148. Zhang Y, Zhu Z, Gu Y, Chen H, et al., Effect of Cl doping on the electrochemical performance of Sr2Fel.5Mo0.5O6–δ cathode material for solid oxide fuel cells, Ceram. Int., **46** (2020) 22787–22796. https://doi.org/10.1016/j.ceramint.2020.06.046

149. Zhang L, Sun W, Xu C, Ren R, et al., Attenuating a metal-oxygen bond of a double perovskite oxide via anion doping to enhance its catalytic activity for the oxygen reduction reaction, J. Mater. Chem., **A8** (2020) 14091–14098. https://doi.org/10.1039/DOTA04820H

150. Zhang S, Jiang Y, Han H, Li Y, Perovskite Oxyfluoride Ceramic with In Situ Exsolved Ni–Fe Nanoparticles for Direct CO2 Electrolysis in Solid Oxide Electrolysis Cells, ACS Appl. Mater. Interfaces, **14(25)** (2022) 28854–28864. <u>https://doi.org/10.1021/acsami.2c05324</u>

151. Li Y, Li Y, Wan Y, Xie Y, et al., Perovskite Oxyfluoride Electrode Enabling Direct Electrolyzing Carbon Dioxide with Excellent Electrochemical Performances, **9(3)** (2018) 1803156. <u>https://doi.org/10.1002/aenm.201803156</u>