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Fitting the pair potentials for molten salts: A review in brief 
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In vitro and in silico studies should supplement each other in order to obtain reliable and comprehensive 

data on the physicochemical properties of molten salts. To attain the aim, the appropriate simulation 

technique is needed. Because of the computational speed that classical molecular dynamics could deliver, 

this method is often the most suitable for calculation of the transport properties. The accuracy of the 

calculation is of a high degree depending on parameters of the potential. In this paper, we review the basics 

of the pair potential fitting procedure. As an example, a molten lithium chloride is considered. The 

comparison of different pair potentials in terms of potential energy and per-atomic forces is performed, 

with the reference data were obtained by means of the density functional theory. Among the macroscopic 

properties, the melting temperature and viscosity are calculated. 
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1. Introduction 

The simulation methods interpret and supplement 

the experimental results. The theoretical approaches are 

especially relevant in the case of molten salts, because 

some of in vitro studies are challenging due to the 

aggressive media, toxicity, or extreme conditions. 

To model a melt, numerous approaches have been 

developed. In general, the models suitable for the 

molecular dynamics simulations can be divided into the 

three groups: 

1) Analytical (classical) potentials 

2) Ab initio methods 

3) Machine learning methods 

Let us consider the basic concepts of these methods, 

as well as their limits of applicability. 

Within the concept of analytical potential, the 

potential energy is expressed in the form of a certain 

known function of atomic coordinates. In the basic case,  

 

 

this function defines pair interactions and therefore 

depends on interionic distance only. 

The ab initio methods imply some approximations to 

solve the quantum electron equations [1, 2]. Density 

functional theory (DFT) [2–5] is most commonly used to 

model molten salts due to the reasonable compromise 

between computational speed and accuracy. Usually, the 

Born-Oppenheimer approximation is used, where the 

coordinates of the nuclei enter the quantum equations as 

parameters. The ab initio molecular dynamics is getting 

popular year by year due to its accuracy and versatility. 

In recent years, a new actor named the Machine 

Learning Potentials (MLPs) has appeared on the scene of 

the computational chemistry. Under this joint name, 

methods for calculating energy and forces are combined, 

which are based on machine learning methods. MLPs 

mimic the ab initio reference theory to match the ab initio 

accuracy without involving time-consuming quantum 

chemistry protocols. A comprehensive review on the 

subject can be found in [6]. One of the popular ML 

methods is the Behler-Parrinello approach [7, 8]. Here, the 

total energy is decomposed into the sum of atomic 
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contributions, which should be calculated by the artificial 

neural network (ANN) with the input vector composed of 

so-called symmetry functions describing the local 

environment. 

It should be noted that none of the above-mentioned 

methods is truly versatile. The ab initio molecular 

dynamics (AIMD) method makes it possible to simulate 

melts with minimal empirical information needed and, in 

theory, to obtain extensive and accurate property data. In 

practice, however, the limiting factor is the computational 

complexity of such calculations. AIMD allow simulating 

ensembles of hundreds of heavy atoms for up to 10-10 s 

(hundreds of picoseconds). The calculation of transport 

properties requires long time intervals sometimes 

combined with large ensembles which is not possible to 

implement within the ab initio methods. 

Employing the machine learning potentials could 

partially overcome the disadvantages of AIMD. An 

increase in the size of the system and time scales available 

for modeling compared to the reference method makes it 

possible to obtain qualitatively new data with an accuracy 

that significantly exceeds the accuracy of model 

calculations in the framework of classical molecular 

dynamics. However, the speed of calculations is still much 

slower as compared to the analytical potentials. 

The classical molecular dynamics can operate with 

ensembles of millions of particles, while the available 

simulation time, depending on the system, ranges from 

10-9 to 10-6 s. The prediction of numerous properties such 

as viscosity, electrical conductivity, thermal conductivity, 

self-diffusion coefficients requires long time runs and/or 

large ensembles and is therefore beyond the capabilities 

of AIMD. However, the weak point here is the loss in 

accuracy of the obtained properties. To a large extent, the 

performance is defined by the potential applied. Hence, 

the development and enhancement of classical potentials 

remains a relevant task. 

In this review, we provide a brief description of the 

protocols for fitting the classical pair potentials. 

2. General review of the classical potentials 

Within the concept of analytical potential, the 

potential energy is expressed in the form of a certain 

known function of atomic coordinates. In the basic case, 

this function defines pair interaction and therefore 

depends on the interionic distance. To describe 

interactions in an ionic liquid using the pair potential 

approximation, it is necessary to take into account at least 

two contributions to the pair energy: the long-range 

Coulomb interaction and the short-range repulsion. The 

latter is often written in the exponential form: 








 −
+=



ij

ij

ji

ij

r
A

r

qq
rЕ exp)(

 
(1) 

Here qi and qj are ionic charges, and rij is the 

interionic distance. A and ρ are the adjustable parameters 

of the short-range repulsion term. Some methods for 

fitting these parameters are discussed in Section 2.1.2. 

Despite this potential, which is called the Born-Meyer 

potential, is relatively rarely used, it has been applied in 

some non-trivial cases such as the calculation of the 

properties of molten alkali carbonates [9–11], where it 

showed a controversial performance. Namely, while the 

density and the thermal expansion coefficient agree well 

with the experimental data, the calculated thermal 

conductivity and viscosity are poorly reproduced. 

However, the performance of the model largely depends 

on both the potential expression and the fitting 

procedure. Therefore, a general conclusion on the 

applicability of the Born-Mayer potential for molten salts 

cannot be stated so far. 

More often, a refined version of the potential is used, 

which takes into account the dipole-dipole and dipole-

quadrupole interactions: 
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In this case, the adjustable parameters of the 

dispersion terms are C and D. In some scenarios, the ionic 

charges are the fitting parameters as well [12, 13]. The 

potential (2) is called the Born-Mayer-Huggins potential. 

It is widely used to calculate the physicochemical 

properties of melts [14–20]. The range of simulated 

systems includes the melts containing multiply charged 

metal ions and oxygen, which is especially important for 

industrial applications. Interaction models (1) and (2) 

imply that the distribution of electron density of the ion 

does not depend on the instantaneous environment of this 

ion; such models are the rigid ion models (RIM). For a 

more plausible description of ions in a melt, an important 

improvement is the direct consideration of the electron 

density deformation caused by the local environment. 

Such models have been developed [21, 22], generally called 

the polarizable ion models (PIM). Details of the PIM 

expressions and the parameter fitting procedure are 

presented elsewhere [22]. It is important to note that the 

parameters for the PIM are obtained by fitting the model 

data to those obtained ab initio. Not surprisingly, PIM 

generally outperforms RIM in terms of accuracy [19, 23]. 

However, the improvement can be insignificant [23–26]. 

Moreover, for some properties, the results obtained with 

RIM may be in better agreement with the experimental 

data. Therefore, a strong accuracy improvement for PIM 

over RIM cannot be stated in all the cases. The 
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performance of both PIM and RIM largely depends on the 

fitting procedure. Below, such a procedure will be 

discussed for the Born-Mayer potential (1). 

3. Numerical fitting of potentials 

Let us consider the algorithm of obtaining 

parameters for the Born-Meyer potential (1), the simplest 

potential suitable for describing molten salts. The general 

aim of fitting the parameters of a pair model is to minimize 

the error function with respect to the parameters P: 

min)( ⎯→⎯
P

P
 

(3) 

For the Born-Mayer potential, the parameter list 

consists of the short-range repulsive parameters A and ρ: 

},{ AP =
 (4) 

The error function determines the amount of 

discrepancy between the data obtained using the pair 

potential (XPP) and the reference data (Xref). For example, 

it can be written as: 
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Here, i index various computing properties. The 

reference dataset can include information on both 

microscopic characteristics (potential energies and per-

atomic forces) and macroscopic physicochemical 

properties. In the latter case, it is possible to use 

experimental data; precise microscopic characteristics are 

usually available from the ab initio calculations only. The 

priority of the data in the fitting procedure can be 

adjusted by setting the weight coefficients wi. In the 

general case, the error function depends not on two 

parameters of the potential (1), but on two arrays of 

parameters: 
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(6) 

Here α and β number the ion types, presented in the 

system(s) under study. For alkali halides MX (M = Li, Na, 

K, Rb, Cs; X = F, Cl, Br I) and their mixtures, the total set 

of parameters is dozens of values. Finding the minimum of 

an error function over such a large number of variables is 

a serious challenge. The main difficulties are possible local 

minima and large computation time (especially when 

physicochemical properties are calculated). Therefore, for 

such a wide class of systems, it is reasonable to reduce the 

problem to an independent fitting of the coefficients for 

each pair. In this case, the number of parameters to be 

minimized is two. However, now only pair energies and 

per-atomic forces are available as reference data. Another 

drawback of this approach is that the influence of the 

environment is not taken into account, since the ion pair 

is considered isolated. 

The study [27] describes the process of fitting 

parameters A and ρ for alkali halides. The reference data 

were presented by the energies of ion pairs calculated 

within the framework of the second-order Möller-Plesset 

perturbation theory (MP2) [28]. The algorithm consisted 

of two steps. First, the MP2 method was used to calculate 

the energy of ion pairs depending on the distance between 

the ions. The total charge of the system was equal to the 

sum of the oxidation states of the ions. Particular attention 

was paid to the description of the potential well for the 

cation-anion pairs. Then, the pair potential (1) was fitted 

to the obtained discrete dependence. The error function 

in this case can be proposed as Δ = 1 – R2, where R2 is the 

adjusted R-squared of model predictions. Note that the 

approximation used (1) is rather rough and for some pairs 

it gives a noticeable discrepancy between the reference 

and model energy profiles. Figure 1 shows the 

dependences of the energy on the distance between Li+ 

and Cl- ions. Ab initio data are shown as dots while the 

fitted potential is shown as a solid line. The adjusted R-

squared for this pair is equal to 0.9911. 

Fitting the pair energy of the Born-Huggins-Mayer 

potential (2) has some pitfalls due to the presence of 

several adjustable terms. Technically, ab initio data should 

be better reproduced by the model potential with the 

additional dispersion terms. However, a reduction in the 

error function could occur not due to the correct 

consideration of dispersion interactions, but due to a 

more flexible functional form. When using a pure 

mathematical fitting algorithm that knows nothing about 

underlying chemistry, there is a risk of obtaining 

unrealistic results. We recommend including 

physicochemical properties in the error function when 

fitting the Born-Huggins-Meyer potential. 

 

 
Figure 1 Fitting the Born-Mayer (BM) potential to the ab initio-

obtained energy [25]. The case of Li+-Cl- pair. 
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4. An example: alkali halides 

In this section, the potentials for the simulation of 

alkali halides are discussed. The applied calculations are 

performed to reveal the impact of the pair potential fitting 

procedure on potential accuracy. As an example system, 

molten LiCl is used. 

4.1. Simulations of the alkali halides 

Molten alkali halides and their mixtures are one of 

the most studied classes of molten salts. Early (and many 

subsequent) theoretical investigations used the rigid ion 

model and the Born-Mayer-Huggins potential (2). The 

short-range repulsion parameters were obtained by Fumi 

and Tosi [29] based on the crystallographic data, while the 

dispersion parameters were obtained by Mayer from the 

ultraviolet absorption experiments [30]. This 

approximation dominated for a long time, although 

various attempts were made to revise the model [31, 32]. 

In general, the accuracy of calculations strongly depends 

on the specific properties and composition of the system. 

However, one can note the general feature of density 

underestimation when using the Born-Mayer-Huggins-

Fumi-Tosi (BMHFT) potential [19, 23, 33, 34]. The 

assessment of the many-body polarization effects in the 

form of the PIM could improve the density calculations by 

a large margin [23]. However, PIM (compared to RIM) do 

not bring significant advantage in accuracy of alkali 

halides properties in general [23, 25, 26]. Precise ab initio 

methods are rather costly in calculations and therefore 

allow obtaining mainly structural information. A 

significant number of physicochemical properties of 

interest for practical applications are beyond the scope of 

AIMD. Recently, the need for accurate physicochemical 

properties of alkali halides is pushing the utilization of 

machine learning techniques to drive the molecular 

dynamics [35–39]. 

4.2. Fitting the pair potential 

As mentioned above, the quality of the potential 

depends significantly on the way the potential is fitted. Let 

us support this statement with an example of LiCl. We will 

consider three pair potentials: 

1) The Born-Mayer-Huggins potential (2), 

parameterized by Fumy, Tosi and Mayer on the basis of 

experimental data [29, 30]. Hereinafter, this potential is 

referred to as BMHFT. 

2) The Born-Mayer potential (1) parameterized on 

the basis of the ion pair energies obtained ab initio [27]. 

The detailed information on the fitting methodology is 

given in Section 3. Hereinafter, this potential is denoted as 

pair-based Born-Mayer (PBBM). 

3) The Born-Mayer potential (1) parameterized 

through the fitting to the ab initio energies of the ion 

cluster; hereinafter referred to as cluster-based Born-

Mayer (CBBM). The details of the fitting procedure are 

described below. 

The consideration of only two ions when obtaining 

reference energies, as done in [25], does not allow taking 

into account the effect of the ion’s environment in the 

melt. Although the method based on pair energies 

produces reasonable potentials, it is reasonable to increase 

the size of the reference system up to a small cluster of 

ions. In this case, many-body interactions will be implicitly 

taken into account in the fitting process. Therefore, the 

performance of the pair potential should improve. 

The dataset of fitting data represents a set of 

“coordinates → energy” records, where the energies of an 

ion cluster with given ion coordinates are calculated by 

the precise ab initio method. To obtain such a dataset, the 

ab initio molecular dynamics of a Li10Cl10 cluster was 

performed. No periodic boundary conditions were 

applied; i.e. the considered cluster was isolated. The fitting 

dataset should include some non-optimal configurations 

for better quality of the resulting pair potential. 

Therefore, the temperature was set to 5000 K using the 

Nose-Hoover thermostat [40] with a time constant of 10 fs. 

To avoid boiling, harmonic repulsive walls were defined 

around the system with a cell length being 12 Å. The 

density functional theory with the PBE0 potential [41] was 

used. The dispersion correction D3 [42] was applied. The 

length of the molecular dynamic run was 200 time steps 

with the each time step being 2 fs. Calculations were 

performed in the ORCA program [43]. As a result, a set 

of 200 reference energies was obtained. 

To fit the CBBM potential, the gradient descent 

method was used. The comprehensive review of fitting 

methods is provided by Martinez et al. [44]. As the 

starting parameters for optimization, the parameters of 

the PBBM potential were chosen. 

4.3. Testing and comparing the pair potentials 

We found that the Li+-Li+ and Cl--Cl- pair energies 

vary only slightly for the BMHFT, PBBM, and CBBM 

potentials, while the Li+-Cl- pair potential undergoes the 

major changes. The comparison of the Li+-Cl- pair 

potentials is presented in Figure 2. 

It can be seen that in the BMHFT → PBBM → CBBM 

row, the position of the minimum shifts towards a larger 

interionic distance. In addition, the cluster-based fitting 

(CBBM) resulted in a decrease in the well depth by about 

0.3 eV compared to BMHFT and PBBM. 

For all three considered potentials (BMHFT, PBBM, 

and CBBM), molecular dynamics simulations were 
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performed in the NVE ensemble (constants are the 

number of particles, the volume, and the total energy) at 

equilibrium density. The average temperature in all 

calculations was about 1000 K. The size of the ensembles 

was 120 ions (60 Li+ + 60 Cl-) which were placed in a cubic 

cell under periodic boundary conditions. The calculations 

were carried out using the LAMMPS program [45]. The 

duration of the simulation run was 10000 time steps, with 

a time step size of 1 fs. The coordinates of the ions were 

recorded every 100 time steps to form a set of 100 

configurations for each potential. To determine the 

quality of the potentials, the comparison of the potential 

energy and the per-atomic forces with the reference data 

were performed. The reference energy and the forces 

were calculated by means of the DFT with the Perdew-

Burke-Ernzerhof [46] functional. The atoms were 

described through the split-valence double zeta plus 

polarization (DZVP) basis sets combined with the 

Goedecker-Teter-Hutter pseudopotentials [47]. The ab 

initio calculations were performed using the cp2k [48] 

software package. 

The quality of potentials in terms of potential 

energies and per-atomic forces is illustrated in Figure 3. In 

this case, the “quality” should be interpreted as “the 

agreement with the reference ab initio method”. It is 

important to note that this agreement does not guarantee 

a high accuracy in terms of properties calculation. The 

pale lines represent the perfect y(x) = x function, while the 

dark lines are the linear fittings of the data. For ease of 

representation the forces were calculated at the last 

timestep only. As one can see, the BMHFT potential is 

struggling to reproduce both DFT energies and DFT 

forces. Also, this pair potential gives the average values of 

energies and forces lower by 45–46 %, as compared to the 

DFT; although the strong conclusion here is barely 

possible due to the large spread of the data. Switching to 

the PBBM potential improves the agreement sufficiently, 

especially in terms of the forces. 

 
Figure 2 The comparison of the Li+-Cl- potentials. 

 

Table 1 – Mean absolute errors. 

 BMHFT PBBM CBBM 

Energy, eV 0.574 0.482 0.296 

Energy*, meV/ion 4.78 4.02 2.47 

Force, eV/Å 0.313 0.206 0.133 

* given there are 120 ions in the cell 

 

Nevertheless, the energies obtained by PBBM are 16 % 

lower than those calculated by the ab initio method, which 

is a significant enhancement over the BMHFT potential. 

Finally, the CBBM potential shows the best agreement 

with the reference DFT method. The energies are slightly 

overestimated by ~6 %, while the forces have relatively 

small deviations from the perfect y(x) = x function. 

The mean absolute errors (MAEs) of all potentials are 

summarized in Table 1. It is worth noting that per-atomic 

energy MAE is less representative since per-atomic errors 

in energy could cancel out each other. 

The comparison with the accurate ab initio theory 

shows that the CBBM potential appears to be the most 

reliable. This is not surprising, since the fitting in this case 

was carried out for a system of many ions, which is closer 

to the melt than the pair approximation (the case of 

PBBM). In general, it can be recommended to choose a 

reference system as close as possible to the system that will 

be the object of study. 

4.4. Calculation of properties 

To reveal the accuracy of the discussed LiCl 

potentials in terms of properties calculations, the melting 

temperature and viscosity were obtained. The melting 

temperature is one of the most challenging properties to 

compute even for alkali halides [49]. Obtaining the 

viscosity requires long simulation runs and therefore 

employs the strengths of the classical molecular dynamics. 

To calculate the melting temperature, the coexisting 

solid and molten lithium chloride were simulated with the 

constant enthalpy and pressure of 1 bar. The total number 

of ions was 3880. The simulation timestep was 0.2 fs to 

ensure energy conservation. The calculated melting 

temperature was equal to the equilibrium temperature of 

the coexisting phases. For BMHFT, PBBM and CBBM the 

obtained melting temperature was 708, 891 and 952 K, 

respectively. The experimental value is 883 K [50]. The 

pair-based Born-Mayer potential gives a quite accurate 

value with the absolute error being less than 1 %.  
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Figure 3 The accuracy of the BMHFT, PBBM and CBBM potentials for calculation of potential 

energy (left side) and per-atomic forces (right side). As a reference data, the DFT calculation 

results are taken. Pale lines represent y(x) = x function of a perfect fit. Dark lines are the 

linear fitting of the obtained data. 
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Figure 4 The accuracy of the potentials in terms of properties 

calculation. 

 

CBBM show an error of 7 %, while the potential 

parameterized by Fumi and Tosi gives the value that is 

20 % lower than the experimental one. These results show 

that the melting temperature is quite sensitive to the 

chosen potential. 

The viscosity of the melt was calculated under 

constant energy and volume using the formula (7) [51]. 


→

=



 
0

)0()( dtt
Tk

V

B  

(7) 

Here σ is the virial pressure tensor, V is the volume, 

kB is the Boltzmann constant, τ is the simulation time. The 

simulation run length was 100 000 000 steps with a time 

step of 0.2 fs. The error associated with the time limit can 

be estimated as 4 %. The registered temperature was 

about 1000 K. The viscosity values obtained by BMHFT, 

PBBM and CBBM are 0.928, 1.353 and 1.213 mPa·s, 

respectively, while the experimental one is 1.082 ± 1 % 

mPa·s (T = 1000 K) [52]. Therefore, the absolute errors 

for BMHFT, PBBM and CBBM are 14 %, 25 % and 12 %, 

respectively. In contrast to the melting temperature 

calculation, the pair-based Born-Mayer potential shows 

here the worst agreement with the experimental data, 

while CBBM shows the best. 

The summary of potential accuracy in terms of 

properties is given in Figure 4. It should be concluded that 

the accuracy depends on the particular property. Among 

the potentials considered, the most balanced performance 

is provided by the cluster-based Born-Mayer potential. 

This supports the choice of the corresponding reference 

system in the fitting process. 

5. Conclusions 

In this paper, the basics of fitting the potentials for 

molten salts were considered. An analysis of the literature 

data and practical calculations shows that the procedure 

for fitting the parameters of the pair potential is no less 

important than the analytical formula for calculating the 

energy itself. Using LiCl as an illustrative example, it was 

shown how the choice of a reference system affects the 

accuracy of the pair potential. The comparison of energies 

and per-atomic forces with those computed ab initio 

shows that the cluster-based potential is the most accurate. 

Unsurprisingly, this potential delivers the best agreement 

in terms of macroscopic properties as well, as 

demonstrated by the examples of melting temperature 

and viscosity. These results prove that the appropriate 

fitting procedure could improve the accuracy of the 

potential to a large extent. 
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