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Solid oxide fuel cells (SOFCs) have been attracting considerable attention as ecologically friendly and highly 

efficient power sources with a variety of applications. Modern directions in the SOFCs technology are related 

to lowering the SOFC operating temperature that require both advanced materials design and development 

of versatile technologies to fabricate SOFC with thin-film electrolyte membrane to decrease ohmic losses at 

decreased temperatures. Electrophoretic deposition (EDP) is one of the most technologically flexible and 

cost-effective methods for the thin film formation currently available. This review highlights challenges and 

approaches presented in literature to the formation dense thin films based on oxygen-conducting and proton 

conducting electrolytes, as well as multilayer and composite electrolyte membranes. 
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1. Introduction 

Solid Oxide Fuel Cells (SOFCs) as electrochemical 

energy devices directly converting chemical energy of 

fuels into electricity have been attracted many efforts for 

their commercialization due to extraordinary power 

efficiency, fuel flexibility and environmental friendliness 

[1]. The established modern trend in the SOFC technology 

to decreasing the operating temperature to the 

intermediate temperature (IT) range of 600–750 °C is a 

reliable way to reduce their production cost using cheaper 

materials for balance-of-plant components, metal 

interconnects, electrodes [2–4], and extend the service life 

of the SOFC-based energy systems [5, 6]. However, the 

operation at reduced temperatures slowdowns all thermo-

activated processes in SOFCs [7]. The main obstacle 

standing  in  the  way  of  the  realization  of  the  reduced- 

 

 

temperature approach is a high ohmic resistance of the 

supporting electrolyte membrane. Thus, Yttria-stabilized 

Zirconia (YSZ) electrolyte traditionally used in high-

temperature SOFCs was replaced by new materials 

possessing superior conductivity in IT range: oxygen-ion 

conducting electrolytes based on Scandia-stabilized 

Zirconia (SSZ) [8], Sr, Mg-doped Lanthanum Gallate 

(LSGM) [9, 10], doped Ceria [11–13], as well as highly-

effective proton conducting electrolytes, particularly, 

based on Barium cerates/zirconates BaCe(Zr)O3 [14–16]. 

Another effective way to reduce ohmic resistance of a 

solid-state electrolyte is to reduce its thickness. In this 

regard, SOFCs with a thin-film electrolyte have been 

attracting growing research activity [17–19]. State-of-the-

art fabrication techniques applicable for manufacturing 

thin film electrolytes and features of the relative SOFC 

design (configurations and geometries) were recently 

overviewed by Dunyushkina [20]. It was shown that using 

advanced ceramic powder-based technologies and vacuum 

methods for deposition of thin-film electrolyte layers 

allowed excellent electrochemical characteristics and 
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enhanced power output to be obtained for both metal-

supported and planar anode-supported SOFCs. 

The method of electrophoretic deposition (EPD) has 

been developed as one of the cost-effective ceramic 

methods for forming film coatings on substrates of 

various shapes and porosity. Fundamentals of the EPD 

method were presented in detail in the review papers of 

Besra&Liu [21] and Corni et al. [22]. In the field of SOFC, 

the application of the EPD method, including the 

deposition of nanomaterials, was considered in a review 

by Lee et al. [23]. The features of the preparation of stable 

suspensions used for EPD of SOFC functional layers were 

considered in a short review by Aznam et al. [24]. 

In our recent reviews, we analyzed the basic work on 

the mechanisms and key factors of EPD, described various 

theoretical models of deposit growth and coating 

formation both on dense substrates and in porous 

structures, and also reported the results of studies on the 

application of EPD technology for the formation of 

different SOFC functional layers (electrolytes, electrodes, 

protective layers for interconnectors including works 

from 2000 up to 2019 year [25, 26]. The studies on 

formation of thin-film electrolytes using sputtering and 

ceramic technologies with focus attention given to the 

place of EPD among other methods, as well as the work of 

our scientific group on EPD of electrolyte films on 

conducting cathode substrates were represented in [27]. 

Opportunities, challenges and prospects of 

electrodeposition technology were considered in a review 

[28], covered electrolytic and electrophoretic deposition, 

as well as their combined use in the formation of SOFC 

layers. 

The present review contains up-to-date information 

on the application of the EPD method in SOFC 

technology, including basic works on deposition 

principles, preparation of stable suspensions and 

formation dense electrolyte films. It also summarizes the 

results obtained by scientific groups on EPD of electrolyte 

layers based on oxygen-ion and proton-conducting 

electrolytes. A critical analysis of the current state of work 

in this area is aimed at identifying key problems and 

existing opportunities for further development of the EPD 

method in SOFC technology for the subsequent successful 

implementation of the solutions found in practice. The 

review is supposed to be useful for both beginners and 

experienced researchers involved in the developments of 

thin-film technologies for SOFC and other 

electrochemical devices. 

2. General principles of electrophoretic deposition 

2.1. Electrokinetic phenomena in suspensions 

Electrophoretic deposition is a kind of ceramic 

powder coating technologies, which is based on 

electrokinetic processes of particle movement in a liquid 

medium. Schematic representation of the EPD cell is given 

in Figure 1. Under the influence of an external electric 

field, the charged particles dispersed in a liquid medium 

move towards the electrode and deposit. 

The excess charge on the particles occurs due to the 

following processes: adsorption of ions from the 

dispersion medium onto the particle surface; surface 

dissociation of ions from the powder particles into the 

liquid medium; electron transfer between the particles 

and the liquid medium [30]. The spatial charge separation 

that arises around the particles in a liquid medium, results 

in the formation of an electric double layer (EDL), which, 

in turn, causes electrokinetic phenomena, in particular, 

electrophoresis. 

An electric double layer consists of three parts: 

surface charge, comprising charged ions (commonly 

negative) adsorbed on the particle surface; stern layer, 

containing counterions (charged opposite to the surface 

charge), immobilized due to the strong influence of the 

electrostatic force near the particle surface and diffuse 

layer – a film of the surrounding dispersion medium 

adjacent to the particle, which contains both free ions and 

counterions. The most important suspension 

characteristic is the zeta potential (ζ, mV), which the 

excess electric charge on the particles and characterizes 

the stability of the colloidal suspension. When a colloidal  

 

Figure 1 Schematic diagram of an installation for electrophoretic 

deposition: 1 – reactor, 2 – counter electrode, 3 – porous anode 

substrate based on NiO–YSZ, 4 – suspension, 5 – electric 

current source [29]. 
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Figure 2 Schematic representation of Ionic distribution in a 

dispersion medium and potential difference as a function of 

distance from the charged particle surface. 

particle moves in the dispersion medium, a layer of the 

surrounding liquid remains attached to the particle. Zeta 

potential corresponds to an electrokinetic potential 

generated in a slipping plane, where displacement of the 

liquid medium occurs relative to the layer strongly 

bounded with the particle (Figure 2). 

In terms of the electrophoresis, the zeta potential of 

particles in the suspension is linearly related to their 

electrophoretic mobility according to the Henry equation 

[31]. In turn, the zeta potential increasing corresponds to 

the electrophoretic mobility and the deposition rate 

increasing according to the Hamaker equation [32]. 

The zeta potential value is influenced by ionic 

composition of a suspension, pH, temperature, and 

suspension concentration [33–35]. It is interesting to note 

that interparticle interactions play an important role in 

nanoparticle suspensions, since they cause the zeta 

potential decreasing with the increasing suspension 

concentration [36, 37], which makes it difficult to obtain 

concentrated nanosuspensions. The methods for the zeta 

potential measurement were reviewed in [25, 26]. 

2.2. Stability issues for the suspensions of electrolyte 

powders 

Successful implementation of EPD process requires 

preparation of stable suspensions [26]. Sedimentation 

stability in suspensions is characterized by the Stokes law, 

according to which the sedimentation rate is directly 

proportional to the square of the particle radius, the 

difference between the densities of the dispersed phase 

and the dispersion medium, and inversely proportional to 

the viscosity of the dispersion medium [33]. The stability 

of a suspension is the ability to keep the degree of 

dispersion unchanged over time, i.e. particle sizes and 

their individuality. To prevent agglomeration, high 

particle charge is required to create high electrostatic 

repulsion between the dispersed particles. However, if 

repulsive forces between the particles are too strong, the 

electric field will not be able to overcome these forces and 

move the particles towards the electrode, thus there will 

be no deposition. Typically, to stabilize a suspension and 

ensure stable deposition, a zeta potential value of 

approximately ±20–30 mV is required [38, 39]. 

To prepare suspensions, the following treatment 

methods are used: ultrasonic treatment (UST) and 

mechanical dispersion [40, 41], treatment in a dissolver 

[42], stirring in a magnetic stirrer [43], as well as a 

combination of UST and centrifugation methods [44]. 

Suspensions of microsized powders are characterized by 

better aggregative stability, i.e. preservation of the 

dispersed composition, in comparison with the 

suspensions of nanoparticles, even the latter being 

ultrasonically treated. Not only single particles are 

formed in the process of the preparation of the 

suspensions based on nanosized powders, but also a 

significant proportion of their aggregates, which can be 

destroyed by a long-term ultrasonic treatment (exceeding 

2 hours, with organization of the simultaneous suspension 

cooling) and also separated from the suspension by 

centrifugation [44]. Any significant changes in the 

dispersed composition during UST are not representative 

of aggregatively stable suspensions of microsized powders 

[45], while for the suspensions based on nanosized 

powders they may be very pronounced [44, 46–48]. 

The selection of the appropriate dispersing medium 

plays an important role in ensuring both aggregative and 

sedimentation stability of the suspension. Dispersion 

media affect the stability of the suspension due to 

different solvating abilities [49, 50]. Non-aqueous media 

based on alcohols, ketones, such as acetylacetone or their 

mixtures are most commonly used for the preparation of 

the suspensions of electrolyte powders (Table 1). The use 

of an aqueous medium is not typical for creating gas-tight 

electrolyte films, since EPD from an aqueous suspension is 

accompanied by electrolysis and the release of bubbles. 

The formed gas bubbles can be incorporated in the 

deposit and yield coatings with closed porosity. 

The quality of YSZ films obtained by aqueous EPD 

was improved by pulses or alternate currents/voltages 

instead of direct current implementation [52, 87, 89]. 

Interesting to note, that the water, presented as an 

impurity in alcohols, can be a source of hydrogen ions, 

which provide better electrical conductivity of the 

suspension for EPD, thus increasing the deposition rate. 

The optimal amount of the water impurity in non-

aqueous   suspensions   was   found   to  be  in  a  range  of  
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Table 1 – Dispersion media used for the preparation of 

suspensions based on various solid-state electrolyte powders. 

Dispersion 

medium 
Electrolyte Refs 

Alcohols 

(ethanol, 

isopropanol, 

l-propanol, n-

propanol, n-

butanol) 

YSZ [49], [51], [52], [53], [54], 

[55], [56], [57], [58] 

SSZ [59] 

doped CeO2
 [50], [53], [60], [61], [62] 

LSGM [53] 

LSOa [63], [64] 

BaCe(Zr)YO3 [65], [66] 

Ketones 

(acetone, 

acetylacetone) 

YSZ [56], [57], [67], [68], [69], 

[70] 

SSZ [71] 

doped CeO2 [50], [72], [73], 

BaCe(Zr)YO3 [65], [74], [75] 

Mixed 

alcohol/ketone 

medium 

YSZ [29], [44], [56], [76], [77], 

doped CeO2 [47], [50], [78], [79], [80] 

LSGM [41] 

BaCe(Zr)YO3 [45], [81], [82], [83], [84] 

Distilled water YSZ [85], [86] 

doped CeO2 [87], [88] 
a – lanthanum silicate oxyapatite. 

2–4 vol. % [90, 91]. It should be noted that the formation 

of bubbles in coatings is possible with the use of a non-

aqueous suspensions in the EPD of oxide ceramics with the 

presence of a fraction of the metal component in the 

nanosized powder composition [92]. 

The concentration of protons in a suspension (pH) 

greatly affects the zeta potential, in particular, in non-

aqueous suspensions [78], since protons are adsorbed on 

the particles surface and become potential-determining 

ions. The pH value in the suspension can be adjusted by 

adding hydrochloric acid [93, 94], or carboxylic acids [95, 

96], and various bases – triethanolamine (TEA), 

monoethanolamine (MEA), and 6-amino-1-hexanol (AH) 

[97]. Non-aqueous suspensions can be modified by adding 

charging agents and dispersants such as molecular iodine 

[76, 98], polyethyleneimine (PEI) [40], N-butylamine [99], 

and etc. The generally accepted scheme of the influence 

of molecular iodine on the zeta potential is the generation 

of protons in the suspension by reacting with 

acetylacetone or alcohol in a dispersion medium, which 

leads to a zeta potential increasing according to [76]. 

Methodology for the selection of a charging agent based 

on its effect on the zeta potential/pH curve, on the 

isoelectric point and on the ionic conductivity of the 

suspension of ceramic particles was given in [100]. It worth 

noting that suspensions based on weakly aggregated 

nanosized powders obtained by electric explosion of a 

wire (EEW) [101, 102], and also by laser evaporation with 

the following condensation (LEC) [103, 104], exhibit high 

zeta potential (more than 26 mV in the absolute value), 

which ensures stability of the suspensions without using 

dispersants and charging agents [78]. In such the 

suspensions, a high zeta potential is associated with the 

self-stabilization effect that arises due to the dissociation 

of metal cations on the surface of nanoparticles in a liquid 

medium [105]. Polymeric binders are often added in 

suspensions to eliminate coatings cracking during their 

drying, e.g. BMMA-5 (butyl methacrylate copolymer with 

5 mole % methacrylic acid), polyvinyl butyral (PVB), 

polyacrylic acid, polyvinyl acetate, PEI, acrylic acid-

acrylate and acrylate-acrylamide copolymers, para-

hydroxybenzoic acid (PHBA), and etc. [40, 63, 75, 106].  

2.3. Deposition process 

The EPD process can be divided into two stages: (1) 

migration of charged particles in the suspension to the 

deposition electrode, and (2) destabilization of particles 

followed by deposition on the electrode surface.  

Figure 3 illustrates the most accepted mechanism of 

EPD connected with the changing EDL structure around 

the particles and their coagulation near the electrode 

surface, proposed by Sarkar&Nicholson [32]. The 

movement of charged particles in a suspension under the 

influence of the applied electric field causes EDLs 

distortion, expressed in elongating in the direction of 

movement and “tail” formation at the opposite side. The 

movement of ions, co-directed to the particles’ movement, 

leads to a change in the concentration of counterions in a 

diffuse part of the EDL of particles near the electrode. This 

results in reducing the EDL thickness and decreasing the 

potential repulsion barrier of the particles, causing 

coagulation followed by deposition. Different others 

destabilization mechanisms causing deposition were 

proposed in literature: due to particle accumulating and 

flocculating near the electrode [107], changing pH at the 

electrode/solution interface [108], neutralizing the 

particles charge on the electrode [109], electrochemical 

coagulating [110], and etc. 

Depending on the sign of the zeta potential, cathode 

and anode EPD can be distinguished - when particles in 

suspension move towards the cathode (with a positive zeta 

potential) or towards the anode (with a negative zeta 

potential). Commonly, for EPD of ceramic materials, 

particularly SOFC functional layers, substrates for the 

deposition are placed on the cathode, thereby realizing 

cathodic EPD [38]. In term of electrical regimes of EPD, the 

deposition can be performed at the constant voltage or 

current [111], as well as at the alternating and pulsed 

voltages [112].  

Installations for conducting EPD are cost-effective 

and simple. They comprise the following main 

components: a voltage (current) source, a container with
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Figure 3 Schematic representation of the deposition mechanism changing the structure of the particles EDLs under the external 

electric field followed by coagulating. 

 

a suspension, and electrodes (anode, cathode). 

Installations for the EPD of functional layers for planar 

SOFCs can be organized with vertical or horizontal 

electrodes. In EPD installations with the horizontal 

arrangement of the electrodes, EPD can be implemented 

on the upper electrode or on the lower electrode [113]. 

When depositing on the upper electrode, the particle 

movement occurs against gravity. In this case the 

suspensions with a broad particle size distribution can be 

used, since large particles and agglomerates will be 

subjected to sedimentation, and the resulting coating will 

be represented by smaller particles. For the manufacture 

of tubular SOFCs, the EPD installations are organized with 

a cylindrical counter electrode and deposition is carried 

out on a coaxially mounted central electrode. Planar 

installations were successfully used for the deposition of 

dense electrolyte layers, including multilayer or 

composite structures deposited on porous cathodes, 

anodes or dense electrolyte substrates [54, 76, 114, 115], 

barrier and protective layers [83, 116, 117], porous 

electrodes [118–120]. Cylindrical EPD installations were 

adopted for the formation of functional layers, half cells 

or full structures of microtubular SOFCs [58, 86, 121]. 

Figure 4 presents examples of various SOFC structures 

obtained using planar and cylindrical EPD installations. 

2.4. EPD: Pros and Cons 

Overall, the EPD has the following advantages: there 

is no need to use expensive equipment, in contrast to RF 

and magnetron sputtering, pulsed laser and atomic layer 

deposition and majority of others physical and chemical 

methods [27]; preservation of the deposited coatings 

stoichiometry, and possibility of depositing films of 

complex compositions [47, 79, 122]; deposition can be 

carried out on substrates with an arbitrary shape, 

including tubular ones [86, 123, 124]; high deposition rate 

(up to  10 microns  in  one  minute)  [30];  high  density  of 

 

green coatings (40–60 % of the theoretical value) [125]; 

the ability to precise control the coating thickness by 

changing the deposition modes (voltage, time) [32, 126]; 

good adhesion of the deposited layers to each other and 

to the substrate [79, 127]. 

The method finds its application not only for forming 

coatings, but also for creating bulk samples (compacts) a 

few millimeters thick [129–131]. 

Limitations of the EPD method are related to the need 

to use a conductive substrate. However, successful 

electrophoretic deposition on porous non-conductive 

substrates as well as on dense non-conductive substrates, 

is possible by creating a conductive sublayer on their 

surface [132, 133]. Moreover, the deposition on highly 

porous, non-conductive substrates can be implemented 

according to the mechanism of electrophoretic filtration 

on the substrates with the porosity  more than 50 % [134]. 

In this case, the deposition can be performed without 

conductive sublayers, directly on a substrate, which 

prevents possible coating delamination during their 

burning out.  

The thickness of the coatings when using the EPD 

method is limited by the particle size of the applied 

powder. Micro-sized powders can used for the coatings 

with thicknesses higher than 10 µm [45], while for 

nanosized powders the coating thickness can be reduced 

to 1–2 µm or less [47, 114]. However, in the case of using 

nanosized powders, the pores size on the substrate surface 

should not exceed 1 µm [42]. 

An important feature of the EPD method using for 

creating ceramic coatings is the deposited coatings drying 

and their subsequent high-temperature sintering, which 

can be accompanied by shrinkage, interdiffusion, 

chemical interaction between the film and the substrate 

[81, 135]. The integrity and gas tightness of the coating can 

be ensured  by  matching  the shrinkage and coefficient of  
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Figure 4 Examples of SOFC structures formed using EPD: (a) 

bilayer YSZ/Sm-doped CeO2 (SDC) electrolyte on the 

supporting NiO–YSZ anode [114]; (b) single-layer Gd-doped 

Ceria (GDC) film on a (La0.6Sr0.4)0.95Co0.2Fe0.8O3-δ (LSCF) 

cathode support [88]; (с) symmetrical microtubular SOFC with 

thin film YSZ electrolyte and La0.7Ca0.3Cr0.8Mn0.2O3-δ–YSZ 

composite electrodes [128]; (d) microtubular anode-supported 

SOFC obtained by EPD by deposition of anode, electrolyte and 

cathode for 20 s, 45 s, 20 s [58]; (e) protective spinel layer 

deposited on a complex-shaped interconnector [116]; (f) 

functionally graded NiO–YSZ anode obtained by EPD [120]. 

thermal expansion (CTE) of the electrode/electrolyte 

materials during sintering [115, 136, 137]. 

3. Peculiarities of electrophoretic deposition of 

oxygen-ion and proton conducting electrolytes 

3.1. Deposition of thin ZrO2-based electrolyte films on 

electrode substrates 

The very first work on the use of EPD for SOFC 

technology was carried out by the Ishihara group to 

deposit layers of YSZ, a solid electrolyte developed for 

high temperature fuel cell applications, on porous anode 

and cathode substrates [67, 138]. Initially, dense YSZ layers 

~5 µm thick were obtained on a porous NiO–Zr(Ca)O2 

anode by sintering at a temperature of 1375 °C, 1 hour. To 

ensure EPD, anode substrates were plated with Pt, which 

also served as an anode collector in further experiments in 

the SOFC mode. EPD was performed at a constant voltage 

10 V, 3 min. The occurrence of through pores in the 

coating due to the influence of the porous structure of the 

substrate was noted. This problem was overcome using 

cyclic EPD, in which several cycles of deposition-sintering 

were carried out. An increase in the open circuit voltage 

(OCV) value and maximum power density (MPD) was 

noted with an increase in the number of deposition-

sintering cycles. Further work by Ishihara et al. was 

directed to the deposition on conducting porous 

La0.8Sr0.2MnO3 (LSM) substrates (Tsint = 1350 °C) [138]. To 

obtain dense coatings up to 15 µm thick, six deposition-

sintering cycles was performed. Based on the results of 

testing the YSZ/LSM cells in the SOFC mode at 1000 °C, 

it was shown that that optimal sintering temperature of 

the deposited YSZ film was 1300 °C (6 h) which resulted in 

OCV ~1.0 V and MPD 1.5 W/cm2, while further increasing 

the sintering temperature reduced the cell performance 

due to the formation of the secondary phase of La2Zr2O7. 

In the studies initiated by M. Liu group [76, 139], the 

dense YSZ films 10 µm thick were obtained on porous LSM 

and LSM–YSZ substrates by co-sintering at a temperature 

of 1250 °C, 3 h. Characteristic features of this work were 

the use of a single-cycle EPD and densification of YSZ at a 

reduced temperature, facilitated by shrinking the 

substrates, the pre-sintering temperature of which was 

reduced to 700 °C. 

The influence of the surface modification of LSM-

based tubular substrates on the uniformity of their 

conductive properties and quality of YSZ films obtained 

by EPD was investigated in the studies performed by Basu 

et al. group [121, 140]. The deposition of carbon layers by 

pyrolytic decomposition of propylene (CVD deposition) 

was shown to decrease conductivity of the substrate. 

Dense sintered YSZ films were obtained at a sintering 

temperature of 1350°C; however, in some cases, the 

coating cracked depending on the CVD carbon deposition 

modes. Graphite coating obtained by sputtering 

improved the uniformity of the conductive properties of 

the porous LSM substrates. The authors demonstrated 

potential benefits of burnable carbon coatings in 

improving the quality of the YSZ films due to reducing the 

effect of film and substrate shrinkage mismatch during co-

sintering. 

Despite the advantages associated with deposition on 

conductive cathode substrates, a lot of effort was invested 

in the development of electrophoretic deposition for 

anode-supported SOFCs with a reduced operating 

temperature [141]. The common way to ensure surface 

conductivity of non-conductive NiO-cermet anodes was 

the deposition of conductive (for instance, graphite) 

layers by painting [142, 143] or spraying [132]. In a number 

of studies, EPD of YSZ films on  reduced  anode  substrates 

was considered [40, 71, 89]. 
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Figure 5 Schematic view of the mechanism of EPD on non-

conducting highly porous substrates [11]. 

Carrying out direct EPD of the YSZ layer on non-

conductive NiO–YSZ anode substrates was proposed by 

Besra et al. group [68, 134]. The authors discussed a charge 

transfer mechanism during the deposition of an 

electrolyte film through the porous structure of a 

substrate filled with a suspension. The presence of 

continuous pores in substrates (50–70 %), when 

saturated with a solvent, promotes the formation of 

“conducting paths” between the electrode and particles in 

suspension (Figure 5). 

At a given applied voltage, there is a threshold value 

of porosity below which EPD becomes practically 

impossible. Specifically, to conduct direct EPD, the NiO–

YSZ substrates were pre-sintered at 1000 °C for 4 h, the 

substrate porosity was as high as 72.5 %. A YSZ film 

40 µm thick was deposited at 100 V for 3 min and sintered 

at a temperature of 1400 °C for 2 h. The use a carbon 

sheet connected with a power source as an electrode 

allowed deposition at a relatively low voltage compared to 

the direct EPD on non-conductive substrate covered with 

carbon proposed earlier by Matsuda et al. (at 400–900 V) 

[144]. 

The method of direct EPD found its further 

developed in the studies of Das&Basu group [91, 145]. It 

was established that coatings can be obtained by 

deposition on a substrate up to 1 mm thick. The influence 

of the substrate thickness can be associated with an uneven 

distribution of the electric field strength in the case of the 

substrate thickness more than 1 mm. The authors 

considered the possibility of obtaining by direct EPD of 

thin ~3 μm YSZ films using a nanosized powder 

synthesized by a sol-gel method [55]. YSZ films were 

directly deposited at the applied voltage of 10–70 V for 

1–6 min onto the porous non-conducting NiO–YSZ 

anodes using a conducting steel plate on the reverse side 

of the substrates and co-sintered with the substrates at a 

temperature of 1200 °C for 2 h. The SEM analysis 

confirmed film dense structure and good adhesion to the 

highly-porous anode substrate. As nanosized powders 

prone to agglomeration, a specific scheme of a stable 

suspension preparation can be proposed for such the 

materials (Figure 6), as it was revealed in [55]. 

The charging method that uses the mixture of ethanol 

and acetylacetone was applied by Xu et al. [146] to stabilize 

the suspensions of YSZ nanoparticles (20–30 nm). As a 

result, dense YSZ coatings on a porous LSM cathode were 

obtained at 1300 °C. Meepho et al. obtained dense YSZ 

coating from nanosized powder produced via 

solvothermal procedure (~5 nm) on porous NiO–YSZ 

substrates from ethanol based suspension modified with 

1,3-propanediol [147]. To retain the porous structure of 

the anodes, prepared using both commercial and home-

made YSZ, the sintering temperature of the deposited 

coatings did not exceed 1400 °C. The use of weakly 

aggregated YSZ nanosized powders (mean size of 10.9 nm) 

obtained by laser evaporation and condensation (LEC) 

method allowed depositing dense electrolyte layers with a 

thickness of less than 5 μm on LSM substrates by Kalinina 

et al. group [42, 44]. A feature of YSZ-LEC suspensions 

was the spontaneous formation of a high zeta potential 

due to a self-stabilization effect. It was established that for 

the successful deposition on nanosized LEC-powder, the 

pore sizes on the substrate surface should not exceed 1 µm. 

A decrease in the size of large pores on the surface of the 

LSM cathode substrates was achieved by preliminary EPD 

of a microsized LSM powder followed by deposition of 

YSZ–LEC [42]. 

The target SOFC parameters are the open circuit 

voltage (OCV) and the maximum power density (MPD), 

which are achieved by optimization of the cell design, the 

choice of the substrate, the thickness of the electrolyte 

membrane and its gas-tightness. Examples of the 

performance characteristics of SOFCs with zirconia-based 

electrolytes produced by EPD are presented in Table 2. 

The information of the size of the substrates and the 

deposited film thickness is also shown. 
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Figure 6 Schematic presentation of the specific process of preparation of a stable suspension based on nanosized powers. 

3.2. Electrophoretic deposition of oxygen-ion conducting 

electrolytes for SOFCs operating in IT range 

Development of effectively functioning Intermediate 

Temperature Solid Oxide Fuel Cells (IT-SOFCs) is a highly 

relevant task, which attracts increasing attention of a 

broad R&D community [152]. However, as SOFC 

functional layers are represented mainly by oxide 

materials, a decrease in temperature leads to resistivity 

and electrochemical activity issues both for electrolyte 

materials and electrodes. The problem of maintaining 

SOFC efficiency at lower operating temperatures can be 

partially solved by searching for new highly conductive 

electrolytes [153, 154]. 

Particularly, application of solid electrolytes with a 

fluorite structure based on doped CeO2, highly 

conductive in the intermediate temperature range, allows 

reduction of the cell operating temperature down to 

700 °C without loss of efficiency due to increasing the 

ohmic electrolyte resistance [11]. The level of electronic 

conductivity due to partial reduction Ce4+→Ce3+ in 

CeO2-electrolyte, which causes decreasing SOFC 

efficiency, can be reduced by proper co-doping with rare-

earth and alkali-earth elements, especially with Ba [155]. Sc-

doped ZrO2, co-doped with other rare-earth elements to 

improve phase stability at decreased temperatures, also 

give advantages compared to YSZ when using in IT-SOFC 

[156]. The promising electrolyte candidate for the devices 

operating in the IT range – solid state electrolytes with a 

perovskite structure based on LaGaO3 and LaAlO3 

substituted on the A- and B-sites with enhanced oxygen 

ionic conductivity [9]. Other ionic-conducting oxides with 

an apatite structure based on La10Si6O26 composition also 

can of interest from the point of view of low-cost, high 

abundance materials [157]. Unfortunately, a drawback of  
apatite-like materials is the high temperatures required for 
their  densification,  therefore,  alternative  synthesis  and 

Table 2 – Performance of SOFCs with YSZ electrolyte 

membranes formed by EPD on supporting electrodes. 

Substrate, 

shape/size, 

Tsint ( °C) 

Electrolyte, 

thickness, 

Tsint, ( °C) 

OCV (V)/MPD 

(W/cm2) 

T (°C) 

Refs 

NiO-Zr(Ca)O2 

disk, 20/1 mm 

1450 

YSZ 5 µm 

1400 

1.03/1.84/1000 

(H2+H2O/O2) 

[67] 

NiO-YSZ 

disk, 12.15-12.82/ 

0.68-0.95 mm 

1000 

YSZ 10 µm 

1400 

0.86/0.264/850 

0.97/0.060/650 

[134] 

NiO-YSZ 

disk, 19/0.7 mm 

900 

YSZ 5 µm 

1400 

1.094/1.02/800 

1.131/0.19/600 

[144] 

NiO-YSZ+ CMSa 

disk, 10/0.8 mm 

1000 

YSZ 12 µm 

1400 

0.96/0.202/850 

With CMS (5%): 

1.078/0.572/850 

[148] 

[149] 

NiO-YSZ 

disk, 12.15-12.82/ 

0.68-0.95 mm 

1000 

YSZ 40 µm 

1400 

0.86/0.264/850 

0.97/0.050/650 

[134] 

NiO-YSZPIM
b 

green 

disk, 20/1.5 mm 

YSZ 3 µm 

1250 

1.06/0.040/800 [51] 

NiO-YSZ(nano) 

disk, 16/ 1.5 mm 

900 

YSZ 3 µm 

1200 

1.05/0.90/800 

1.07/0.65/700 

[55] 

Graphite road 

NiO-YSZ (tube) 

YSZ 5.7 µm 

1400 

1.10/0.30/750 

112/0.21/700 

[150] 

Full μ-SOFC by 

EPD (tube) 

YSZ 6 μm 0.180/0.003/800 

10%H2 in N2/air 

[124] 

La0.8Sr0.2MnO3-δ 

plate, 4 cm2 

1350 

YSZ 10 μm 

1275 

1.00/1.50/1000 

(H2+H2O/O2) 

[138] 

La0.7Sr0.3MnO3-δ 

(nano/mic 

50:50) 

disk, 15 mm 

900–1200 

Zr0.1Y0.9O1.95 

5 µm 

1250 

1.1/0.55/850 

0.40/750 

0.15/650 

[151] 

a – microsphere; 

b – powder injection molding. 



Electrochem. Mater. Technol. 2 (2023) 20232011                                                                                                                                                                              REVIEW 

 

 

 

9 

 

densification methods (including deposition as thin films) 

are key areas of development for their practical 

application. 

The use of the electrophoretic deposition method in 

obtaining thin-film coatings based on the electrolytes 

developed for IT-SOFCs in less developed compared to the 

deposition of YSZ films. A number of works was done 

using green anode substrates fabricated with addition of 

graphite (carbon) to make them suitable for deposition. 

Nakayama&Miyayama [72] performed EPD of Sm-doped 

ceria (SDC) on a carbon-filled NiO–SDC cermet substrate 

followed by co-sintering at 1400 °C, 25 h. As a result, a 

dense SDC film with a thickness of ~8 μm was obtained. 

Film and substrate shrinkage compatibility during co-

sintering was controlled by the amount of carbon added 

to the substrate and the particle size of the cermet powder. 

At a NiO–SDC particle size of 49 nm, the optimal carbon 

content was found to be equal to 9 wt. %. 

Ichiboshi et. al [62] produced single-layer SDC 

coatings on Ni–SDC cermet substrates with the addition 

of graphite in a ratio to the cermet powder 1:1 (wt %). 

After sintering at a temperature of 1600 °C for 10 h, an 

SDC film with a thickness of ~20 µm was obtained. The 

SDC coating contained pores and microcracks, therefore 

the achieved SOFC performance was not high.  

Cheng et al. [158] carried out the formation of an SDC 

electrolyte layer on NiO–SDC substrates to obtain a 

single-chamber SOFC cell for operation in a methane-air 

mixture. The authors chose the optimal composition of 

the SDC suspension (concentration 5 g/L, powder particle 

size 248 nm) and obtained an SDC film 18 µm thick by 

sintering at a temperature of 1350 °C for 12 h. The authors 

argue that when deposited from a less concentrated 

suspension, a denser packing of particles in the coating can 

be obtained, which improves the characteristics and 

performance of the resulting SOFC cell. 

Kalinina et al. group carried out a series of studies on 

the deposition of CeO2-based electrolytes both on 

cathode and anode substrates. Particularly, EPD of single-

layer coatings based on multi-doped solid electrolyte 

Ce0.8(Sm0.75Sr0.2Ba0.05)0.2O2-δ (CSSBO) on dense La2NiO4+δ 

(LNO) and porous multilayer LaNi0.6Fe0.4O3-δ 

(LNFO)/LNO cathode substrates was performed in [47, 

79]. A feature of these works was the use of CSSBO 

nanosized powder obtained by the LEC method, the 

suspensions of which were characterized by the effect of 

self-stabilization. Dense sintered CSSBO coatings 2 µm 

thick were obtained on the dense LNO at a sintering 

temperature of 1400 °C for 5 h. The total conductivity of 

the coating was 0.1 S/cm at 650 °C (activation energy 

0.76 eV). It was shown that to eliminate pores in a CSSBO 

Figure 7 Electron micrographs of the resulting half-cell with a 

deposited layer of the CSSO electrolyte, functional LNO layer, 

and LNFO collector (from left to right). Reproduced with 

permission [80]; Copyright 2019, Pleiades Publishing. 

film deposited on LNFO/LNO multilayer substrates, it 

was necessary to perform several deposition-sintering 

cycles. In this case, the conductivity of the film was lower 

than that for single deposition on a dense substrate and 

amounted 2.40·10−2 S/cm at 750 °C. Similar deposition 

procedure was applied for the deposition of 

Се0.8(Sm0.8Sr0.2)0.2O2–δ (CSSO) on the LNFO/LNO 

substrate with optimized porosity (Figure 7). The dense 

electrolyte film was obtained 1400 °C for 4 h. This 

temperature did not exceed the sintering temperature of 

the collector layer; thus, its structure and gas permeability 

were preserved. 

Various options for creating electrical conductivity 

of the cermet anode substrates were considered by 

Kalinina&Pikalova group, namely, the reduction of 

cermet substrates in a hydrogen-argon mixture; 

deposition of a conductive sublayer of finely dispersed 

platinum (20 μm) on the front side; synthesis of a 

conductive polymer layer - polypyrrole (PPy); infiltration 

into the porous structure of the anode of an aqueous 

solution of silver nitrate, followed by centrifugation and 

annealing [135, 159]. The NiO–SDC substrates used for the 

studies were pre-sintered at 1400 °C for 2 h. It was shown 

that during EPD, continuous SDC coating was formed on 

the reduced Ni-SDC substrate, however subsequent high-

temperature sintering in an oxidizing atmosphere at a 

temperature of 1400 °C for 5 h led to the complete 

destruction of the SDC coating, while maintaining the 

integrity of the NiO–SDC substrate. This effect is due to 

significant internal mechanical stresses associated with a 

change in the specific volume during the oxidation of the 
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reduced cermet substrate. A more successful option for 

implementing the formation of an SDC solid electrolyte 

layer was the use of deposition of a platinum sublayer 

(20 μm) on a nonconductive cermet substrate. After 

cyclic EPD (4 cycles) and final sintering at 1500 °C for 5 h, 

a dense sintered 40 µm thick SDC coating with closed 

porosity was obtained. It is important to note that no 

diffusion penetration of platinum into the sintered SDC 

electrolyte layer occurred. 

One of the important tasks in the implementation of 

the electrophoretic deposition of solid electrolytes on 

porous substrates is to achieve the lowest possible coating 

sintering temperature in order to preserve the porous 

structure of the electrode and its high electrochemical 

activity at a reduced operating temperature. In the study 

performed by Kalinina&Pikalova group [160], to enhance 

sintering properties of SDC films, directly deposited on 

highly porous non-conductive NiO–BaCe0.8Sm0.2O3 (BCS) 

and NiO–SDC substrates, introducing Co3O4, TiO2, and 

Al2O3 oxides in the amount of 2, 2 and 5 mol. % was used. 

Dense electrolyte membranes up to 30 μm in thickness 

were obtained after sintering at 1450 °C for 5 h. In SOFC 

mode, the increasing the open circuit voltage (OCV) 

(1.06–0.92 V at the temperatures of 650–750 °C) was 

demonstrated as a consequence of the formation of a Ba-

rich layer on the interface caused by the diffusion from 

the NiO–BCS substrate during sintering. It should be 

noted, that at 1450 °C, complete densification of Co-

modified SDC films on the NiO–SDC anode substrate did 

not occur. The authors argue that the sintering properties 

are influenced by both the Ba diffusion and the sintering 

additives. Stabilization of the suspensions based on SDC-

micropowder with oxide additives used in the study was 

achieved by introducing the SDC–LEC powder in the 

amount of 10 wt % according to a “halo” mechanism, 

earlier described in [161, 162]. 

A significant improvement in the sinterability of a 

GDC-based electrolyte film was demonstrated by 

Yamamoto et al. [88] using cubic GDC nanoparticles 

obtained by hydrothermal synthesis. EPD was carried out 

on a pre-sintered porous cathode 

(La0.6Sr0.4)0.95Co0.2Fe0.8O3-δ (LSCF) at 1100 °C, 2 h. To 

implement deposition from an aqueous suspension of 

GDC nanopowder, a complex composition of additives 

was used comprising PAAA as a dispersant, 

methylcellulose as a binder, polyethylene glycol as a 

plasticizer, and 1-octanol as a defoamer to suppress 

bubbles formation. A GDC film 1 µm thick was obtained 

by sintering at a temperature of 1000 °C for 2 h. 

In the studies of X. Liu group, the aqueous  deposition 

of a commercially available Gd-doped CeO2 was 

developed [87]. The authors deposited cathode barrier 

layers based on Gd-doped CeO2 on a YSZ electrolyte to 

suppress its interaction with LSFC cathode [60]. YSZ 

surface was coated with polypyrrole (PPy) as the 

conductive agent. GDC barrier layers ranging in thickness 

from 5 μm to 8 μm were successfully densified at 

temperatures as low as 1300 °C. The same group 

implemented alternating current EPD (AC-EPD) of GDC 

on half-cell comprising NiO–YSZ/YSZ, pre-sintered at 

1250 °C [163]. The voltage waveform consisted of negative 

and positive voltage steps of varying magnitude and step 

length. The optimum frequency of 500 Hz leads to the 

maximum deposition yield. A bilayer electrolyte YSZ 

(10 µm)/GDC (6 µm) was obtained by sintering at a 

temperature of 1250 °C for 4 h. The authors managed to 

reduce the sintering temperature by introducing a 

sintering additive in the amount of 2 mol % FeO1.5. The 

authors attribute the improvement in coating density to a 

decrease in the generation of molecular hydrogen near 

the substrate due to using AC-EPD.  

The possibility of obtaining two-layer YSZ/SDC 

electrolytes on pre-sintered porous NiO–YSZ anode 

substrates at a temperature of 900 °C was shown by 

Matsuda et al. [114]. EPD was performed by electrophoretic 

filtration on highly porous substrates covered with 

graphite layer on the back side. Subsequent deposition of 

YSZ and SDC layers was performed at 600 V. The 

obtained films were co-sintered with the anode at 1400 °C 

for 2 h. To avoid delamination of the two-layer 

electrolyte during sintering, the thickness of the SDC layer 

was decreased down to 1 µm. 

Yamaji et al. group [59,164] carried out EPD of Sc2O3 

doped ZrO2-based (SSZ) films on NiO–SSZ substrates 

prepared by mixing of graphite in the amount up to 

40 wt. % with the cermet material. A thin (5–8 μm thick) 

SSZ electrolyte was dense enough when co-sintering 

temperature was set at 1275 °C. It was found, that cracks 

formed in the electrolyte film during the co-sintering 

process, when the shrinkage of the anode substrate was 

smaller than that of the electrolyte. The mismatch in 

shrinkage was controlled by changing the preparation 

conditions for the anode substrates, amount of graphite 

and starch powders.  

Thin films of La1-xSrxGa1-yMgyO3-(x+y)/2 were prepared 

by cyclic EPD from an acetone-based suspension with 

addition of J2 in [165]. Dense films with uniform thickness 

of 4 μm were obtained on the Pt substrates after five 

cycles of deposition/sintering at 1400 °C for 1 h. The 

conductivity of the films was approximately 0.12 S/cm at 

775 °C, which was close to the conductivity of the relative 

bulk samples. In [41], La0.83Sr0.17Ga0.83Mg0.17O2.83 
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electrolyte films were obtained by one-step EPD on 

conducting Pt and LSM substrates from suspensions based 

on a mixed acetone/ethanol dispersion medium and 

sintered at 1300 °C. It was found that LSGM films 

10–20 μm thick exhibited good adhesion to the Pt 

substrate, while those deposited on LSM exhibited 

cracking after sintering. The bulk conductivity of the Pt 

supported LSGM film showed the same behavior as that of 

the compact LSGM electrolyte (Ea = 0.93 eV and 0.99 eV, 

respectively). The LSGM film exhibited lower bulk 

electrical conductivity than the latter (4.1·10−3 and 

4.4·10−2 S/cm, respectively, at 700 °C). This difference 

should be ascribed to the slight Ga depletion in the LSGM 

film during deposition and sintering.  

As in the case of YSZ, CeO2-based barrier layers are 

often used to prevent interaction LGSM electrolyte with 

perovskite cathodes and cermet anodes [9]. A three-layer 

GDC/La0.8Sr0.2Ga0.8Mg0.2O3–δ (LSGM8282)/GDC 

electrolyte was obtained by Suzuki et al. [133] with a layer 

thickness of ~15 µm on a porous NiO–YSZ anode 

substrate using a conductive polypyrrole sublayer. 

Despite the high OCV value (1.112 V at a temperature of 

600 °C), the achieved MPD was very low, 0.011 W/cm2 at 

a temperature of 800 °C, which the authors attributed to 

the formation of secondary phases due to chemical 

interaction of GDC and LSGM during sintering.  

La-doped CeO2 was found to be more compatible 

with LGSM electrolytes [9]. Bozza et al. [166] carried out 

one-step EPD of a LSGM8282 electrolyte on tape-cast 

composite electrodes, composed of La-doped ceria (LDC), 

polyvinylidene difluoride (PVDF) and carbon powders. A 

dense 15 μm thick electrolyte film was obtained by co-

firing at 1490 °C, with preservation the substrate porous 

structure (Figure 8). Moreover, the EDS analyses revealed 

negligible interaction between perovskite and fluorite 

phases (inset in Figure 8). 

EPD of apatite-type electrolytes is still in its initial 

stage of development. Jothinathan et al. [64] reported on 

EPD of La9.83Si4.5Al1.5O26 (LASO) electrolyte prepared by 

a modified sol–gel procedure on porous LASO–NiO 

anode substrates. To perform direct deposition on cermet 

anodes, pre-sintered at 1300 °C, the authors used a 

modified electrode set-up combining a conductive ring 

with an insulating backing plate. The thick uniform 

deposit of 25 μm was formed after 50 s at 150 V. Suarez et 

al. reported on EPD of La9.33Si6O26 electrolyte films from 

ethanol-based suspensions modified with PEI [63]. Highly 

dense film (99.1 %) with a Vickers hardness of 7.57 GPa 

was obtained by sintering at 1500 °C for 10 h. 

Finally, Table 3 summarizes the studies on testing in 

SOFC mode of the cells with oxygen-ion conducting films, 

including bilayer structures. 

 

Figure 8 (a) SEM micrograph of the cross section of the dense 

LSGM film supported on a porous LDC substrate and (b) EDS 

line profile analysis across the LSGM/LDC interface. 

Reproduced with permission [166]; Copyright 2008, John Wiley 

and Sons. 

Table 3 – Performance characteristics of IT-SOFCs with oxygen-

ion conducting electrolyte membranes formed by EPD. 

Substrate 

(Tsint, °C) 

Electrolyte 

(Tsint, °C) 

OCV (V)/MPD 

(W/cm2) 

T (°C) 

Refs 

NiO-

SDC+ 

graphite 

9 wt % 

disk, 15 

mm 

SDC 8 µm 

1400 

0.7/0.272/700 

0.281/600 

0.161/500 

[72] 

NiO-

SDC+ 

graphite 

 

SDC 20 µm 

1600 

0.61/0.072/700 [62] 

NiO-SDC 

disk, 16 

mm 

SDC 18 µm 

1350 

0.95/0.155/500 

CH4 

[158] 

NiO-BCS 

disks 

15/1 mm 

1200 

SDC/Ti 30 µm 

SDC+Al 27 µm 

SDC+Co 20 µm 

1.00/0.122/750 

0.98/0.125/750 

0.92/0.101/750 

[160] 

NiO-

YSZ/YSZ 

1250 

h = 

0.4 mm 

SDC/Fe 6 μm 

1250 

AC-EPD 

0.75/750 

0.52/700 

0.31/650 

[163] 

NiO-YSZ 

900 

YSZ 4 µm / 

SDC 1 µm 

1400 

1.1/0.61/700 [114] 

NiO-SSZ + 

graphite 

disks, 

22/2 mm 

SSZ 8 µm 

1275 

1.113/0.440/750 

1.117/0.270/700 

[164] 

NiO-SSZ 

900 

red 600 

h = 

0.7 mm 

SSZ 10 µm 

1300 

1.0-1.1/1.8/900 

0.4/700 

[71] 

NiO-YSZ 

900 

GDC 15 μm/ 

LSGM 15 μm/ 

GDC 15 15 μm 

1400 

0.95/0.011/800 

1.05/0.009/700 

1.112/0.005/600 

[133] 
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3.3. EPD of proton-conducting electrolytes on supporting 

dense and porous substrates for IT-SOFCs 

Proton-conducting electrolytes based on doped 

barium cerate/zirconate are promising for the use in 

SOFCs due to a sufficiently high level of co-ionic (proton 

and oxygen-ion) conductivity [167]. One of the main 

difficulties that arise in the formation of proton-

conducting electrolyte membranes based on BaCeO3 is 

the evaporation of barium during high-temperature 

sintering, which causes films’ deficiency in terms of 

barium content, and deterioration of their sinterability 

and conductivity. Ba evaporation was observed for both 

volume samples and films [168–170]. It became more 

pronounced at increased sintering temperatures and also 

for films with a thickness of less than 10 microns. 

The possibility of implementing EPD of an electrolyte 

membrane based on BaCe0.89Gd0.1Cu0.01O3-δ (BCGCuO), a 

perspective proton-conducting electrolyte [171], on 

supporting cathodes was examined in the works of 

Kalinina&Pikalova group [81, 82]. The features of 

preparation of stable suspensions based on microsized 

powders of doped BaCeO3 were considered in [45, 172]. 

Three variants of barium retention in a BCGCuO film 

were studied [81], namely, the formation of BCGCuO 

coatings on an La2NiO4+δ (LNO) cathode substrate with 

following sintering in a closed volume with the BCGCuO 

powder poured around the sample; application of a 

protective BaCeO3 (BCO) film deposited on the BCGCuO 

coating on the LNO cathode; formation of a BCGCuO 

film on a Ba-modified La1.7Ba0.3NiO4+δ (LBNO) cathode. It 

was shown that the most effective method to preserve Ba 

in the electrolyte layer was the use of the Ba-modified 

cathode substrate, which served as a source of Ba during 

high-temperature sintering. A feature of the application 

of the EPD method in this work was the use of centrifuged 

suspensions of microsized BCGCuO with a concentration 

of 7 g/L in a mixed dispersion medium of 

isopropanol/acetylacetone (70/30 vol. %) with the 

addition of a polymeric binder BMMA-5 (copolymer of 

butyl methacrylate with 5 wt. % methacrylic acid). To 

obtain a continuous BCGCuO coating 6.6 μm thick, 12 

deposition-sintering cycles at a temperature of 1450 °C 

for 2 hours were required. According to the EDX analysis, 

the barium content in the BCGCuO electrolyte film 

(~19 at. %) was close to the nominal value. Multiple 

deposition-sintering cycles ensured the “healing” of open 

pores in the coating (Figure 9). The activation energy of 

the film conductivity (0.55 eV) was close to that of the 

compact BCGCuO sample (0.42 eV). However, the 

conductivity value was lower (5.5·10-4 S/cm, 600 °C) 

compared to a compact sample (6.9·10-3 S/cm, 600 °C),  

  

Figure 9 SEM images of the BCGCuO film deposited onto the 

LBNO substrate after the final sintering at 1450 °C, 2 h: (a) the 

cross-section of the BCGCuO film on the LBNO (on the left) 

substrate and Pt electrode (on the right); (b) integrated EDX 

mapping image of the cross section [81]. 

due to closed pores in the BCGCuO film caused by 

multiply deposition, as well as lanthanum diffusion into 

the electrolyte layer, having a negative effect on the 

BCGCuO conductivity. 

Logical development of the studies performed by 

Kalinina&Pikalova group was the EPD of the BCGCuO 

electrolyte film on porous cathode substrates 

LaNi0.6Fe0.4O3-δ (LNFO), LBNO and bilayer cathodes with 

LNFO carrier/collector layer and a functional LBNO 
layer. To reduce the number of EPD cycles, a suspension 

of BCGCuO in an isopropanol/acetylacetone medium 

(70/30 vol. %) with a concentration of 10 g/L was used 

with ultrasonic treatment for 125 min without subsequent 

centrifugation, and also without the addition of a polymer 

binder. A change in the suspension preparation method 

made it possible to reduce the number of deposition-

sintering cycles from 12 to 5 to deposit a 21 µm thick 

BCGCuO electrolyte layer. Various approaches to solving 

the problem of barium retention in the composition of the 

BCGCuO electrolyte during its sintering were 

investigated, such as the use of sintering in BaCO3 powder; 

the use of a thin functional LBNO sublayer with a 

thickness of 10 μm, obtained by the EPD method, as well 

as the use of a barium-modified porous LBNO cathode 

substrate. It was found that the presence of a bulk LBNO 

substrate (1 mm thick) and the simultaneous use of BaCO3 

as a protective cover can be an effective way to maintain 

the Ba content in the BCGCuO electrolyte film 10 μm 

thick during high-temperature sintering at a temperature 

of 1450 °C for 2 hours. Probably, a promising direction in 

the development of work on the deposition of proton 

conductors on cathode substrates will be the formation of 

a multilayer structure of cathodes with a bulk collector 

(LNFO or other highly conductive electrode material) as 

well as a Ba-containing functional layer (FL) optimized in 
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thickness and porosity, which will allow retaining Ba in the 

electrolyte film and ensure thermomechanical 

compatibility of the deposited film and substrate during 

sintering. Among the promising materials for FLs are Ba-

doped layered nickelates, which demonstrated excellent 

compatibility with BaCeO3-based electrolytes [173–175]. 

The series of work on EPD of proton-conducting 

electrolytes, mainly doped BaCeO3, on anode substrates 

and their characterization was initiated by the groups of 

Zunik at al. and Traversa et al. EPD of an BaCe0.9Y0.1O3-δ 

(BCY10) electrolyte on green NiO-BCY10 anode substrates 

filled with graphite are represented in [74, 176, 177]. The 

deposition was carried out from acetylacetone-based 

suspensions modified with J2. With increasing the 

deposition voltage from 30 to 60 V, the BCY10 film 

thickness increased from 5.2 μm to 9.5 μm. The lower the 

deposition voltage, the larger the porosity with larger 

pinholes and micropores was (Figure 10).  

Thus, for the half-cell formation the mode of 

deposition at 60 V for 1 min was finally chosen. Co-

sintering of the electrolyte layer and the anode was done 

at 1550 °C, 2 hours. The thickness of the BCY10 electrolyte 

after sintering was 9.5 µm. The OCV value of 1.05 V 

(700 °C) revealed the gas-tightness of the electrolyte film, 

the preservation of the porous structure of the anode after 

sintering was also confirmed. Tests performed on single 

cells with a composite cathode based on commercial LSCF 

and synthesized BaCe0.9Yb0.1O3–δ showed, that the 

performance of BCY10-based cells was mainly limited by 

the interfacial polarization resistance. 

The use of methyl-ethyl-ketone (MEK) with the 

addition of polyacrylic acid (PAA) for the preparation of 

suspensions based on BCY10 powder was considered in the 

work of Argirusis et al. [65]. It was shown that with an 

increase in the amount of PAA to 0.4 wt. %, the negative 

values of the zeta potential increase to a value of about -

40 mV, ensuring the stable EPD process on reduced 

Ni/BaCe and Ni/YSZ cermets resulting to half cells with 

green electrolyte layers of 20 μm thickness. 

In the work of Itagaki [75] thin layers of the 

BaCe0.8Y0.2O3-δ (BCY20) solid electrolyte with a thickness 

of 9.2 μm were obtained by EPD on green NiO–BCY 

anode substrates filled with graphite. The film was co-

sintered with the substrate at 1450 °C. The achieved 

specific power was significantly lower compared to that 

obtained for the BCY10-based cell and amounted to 

74.2 mW/cm2 at 600 °C. The authors attribute the low 

power value to the high contribution of the electrode 

polarization resistance. 

Doped BaCeO3–BaZrO3 proton-conducting materials 

have been considered recently as a promising electrolytes  

 

Figure 10 SEM images of the cross section of BCY10 electrolyte 

membranes on NiO–BCY10 anodes obtained using EPD at 

various voltages of 30 V (a), 40 V (b), 50 V (c), 60 V (d) after 

sintering at a temperature of 1550 C, 2 hours. Reproduced with 

permission [176]; Copyright 2011, John Wiley and Sons. 

for IT-SOFCs and electrolysis cells [178]. The mixed 

systems combine excellent conducting properties and 

stability in water and CO2-containing atmospheres. 

However, to the best of our knowledge, there are only few 

studies on EPD of these class of electrolytes. Choudhary et 

al. [66] studied EPD of a proton-conducting electrolyte of 

BaZr0.4Ce0.4Y0.2O3-δ (BZCY) on non-conducting porous 

NiO–BZCY anodes, pre-sintered at 1100 °C for 2 hours 

(porosity 42.4 %). The deposition was performed from 

an ethanol-based suspension at 70 V for 2 min. The 

sintering of the BZCY film with a thickness of ~13 μm was 

carried out at a temperature of 1500 °C for 2 hours. A 

decrease in the anode porosity to a value of 19.31 % after 

sintering was noted. 

Kalinina et al. [135] carried out a detailed study of the 

properties of suspensions based on microsized powder of 

BaZr0.3Ce0.5Y0.1Yb0.1O3-δ (BCZYYbO). Variants of 

modifying the BCZYYbO suspension by adding molecular 

iodine (0.4 g/L) and copper oxide (1 wt. %) were studied. 

It was shown that the addition of iodine did not change 

the zeta potential of the suspension, the value of which was 

+7 mV, while the pH shifted to the acid side. However, the 

addition of iodine made it possible to carry out the EPD 

process. The BCZYYbO–CuO suspension had a higher 

zeta potential (+11 mV) and did not require the addition 

of iodine to carry out the EPD process. The authors argue 

that the noted features are associated with a change in the 

mechanisms of EPD with the participation of ions (Н+ and 

I–) located in the solvate layers around the particles. 

Previously, an increase in the zeta potential of a 

suspension upon the addition of iodine was explained by 

an increase in the zirconia particle charge due to the 

adsorption of protons generated by the reaction of iodine 

with acetylacetone [67, 76, 91]. The absence of any changes 
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in zeta-potential was also observed when adding iodine to 

suspensions of various microsized proton-conducting 

electrolytes [83, 84, 115]. Nevertheless, modification with 

iodine allowed the stable deposition of microsized 

powders to be carried out.  

Bozza&Bonanos developed EPD of commercially 

available La0.995Ca0.005NbO4 (LCN) electrolyte on 

LCN–NiO substrates, prepared by an impregnation 

method [179]. The deposition was performed from the 

suspensions based on the mixture of acetylacetone, iodine 

and water. The developed technique was found to be 

effective also for the deposition of a mixture of NiO and 

LCN powders to form anode functional layer. A dense 

10 μm thick LCN electrolyte layer and a porous 3 μm 

thick LCN/NiO anode layer were obtained after co-

sintering at 1200 °C. 

Direct EPD of a bilayer electrolyte films based on  

proton-conducting electrolyte BaCe0.8Sm0.2O3 (BCS) and 

SDC on porous BCS-NiO anode substrates pre-sintered at 

1200 °C (porosity 41 %) was performed by 

Kalinina&Pikalova group [115]. To decrease sintering 

temperature of the BCS electrolyte, it was modified by the 

addition of 1 wt. % of CuO. A feature of this work was the 

use of modified suspensions of microsized SDC powder by 

adding SDC-LEC nanosized powder (5 wt. %). The use of 

nanosized powder made it possible to increase the zeta 

potential from +6 mV to +13 mV, which significantly 

improved the uniformity of the deposited coatings. The 

EPD process of BCS-CuO coatings required the addition of 

molecular iodine (0.4 g/L). The deposition of BCS–CuO 

and SDC electrolyte layers on non-conducting substrates 

was carried out at 200 V in one cycle with co-sintering at 

1450 °C. The sintering at the chosen temperature resulted 

in the formation of a composite structure. SEM studies 

showed that all elements of the composite were evenly 

distributed throughout its volume (Figure 11 a,b) and there 

were no individual micron-sized grains related to the 

barium cerate or cerium oxide phase. Probably, the 

separation of the phases of the composite electrolyte 

membrane into the BCS and SDC phases occurred at the 

submicron level, similarly to that observed by Sun et al. 

[180]. 

The OCV value for SOFC cells with BCS–CuO/SDC 

electrolyte was in the range of 1.05–0.95 V at 

temperatures of 600–700 °C, which exceeded the OCV 

value for single-layer SOFC cells with SDC [72] and BCS-

SDC (1:1 wt. ratio) [180] electrolytes, demonstrating 

enhanced effect of blocking the electron leakage current. 

The analysis of the impedance data showed that the 

polarization resistance of Pt cathode used for the SOFC 

testing contributed mostly to the entire cell performance 

(Figure 12 c). This fact was also stated in [171]. The authors  

 

Figure 11 Fracture images of the cell with the BCS–CuO/SDC 

electrolyte layer on the NiO–BCS–CuO anode substrate 

sintered at a temperature of 1450 °C after electrochemical 

testing in the SOFC mode: (a) SEM image, magnification 1500×; 

(b) integral map of the elements’ distribution; (c) frequency 

dependences of the distribution function of relaxation times of 

the electrode response for the BCS–SDC cell at various partial 

pressures of hydrogen in the anode channel at 700 °C. The pick 

on the left is related to the cathode resistance, on the right – to 

the supporting anode resistance. 

conclude that further development of air electrodes 

compatible with CeO2/BaCeO3 composite electrolytes is 

necessary to enhance performance related SOFCs. 

A separate direction can be singled out related to the 

development of the design of SOFCs based on SDC solid 

electrolyte carrier substrates. The advantage of this SOFC 

scheme with a carrier electrolyte is the reliable separation 

of gas channels using a dense electrolyte membrane of 

sufficient thickness (several hundred microns), this SOFC 

design has mechanical strength under application 

conditions. To solve the problem of internal shorting of 

the MIEC SDC electrolyte, an approach using barrier 

layers on the anode and cathode sides of the electrolyte 

membrane can be used [11]. 

One of the problems of forming barrier layers is to 

ensure their compatibility with the main electrolyte layer 

during sintering of the SOFC multilayer structure. For 

example, the use of unipolar ionic conductors of 

zirconium dioxide doped with yttria Y2O3 (YSZ) as a 

barrier layer material on an SDC electrolyte encounters 

significant difficulties associated with delamination and 

cracking of the coatings [181]. Proton-conducting 

electrolyte materials based on BaCeO3, in particular BCS, 

are well compatible with the SDC electrolyte material, 
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which allows it to be used as barrier layers. In  this 

approach was studied by Kalinina&Pikalova group in 

detail [83]. EPD of BaCe0.8Sm0.19Cu0.1O3 (BCSCuO) barrier 

layers was carried out on SDC supporting electrolyte 

substrates with a thickness of 550 μm. The surface 

conductivity of the surface of the SDC substrates was 

ensured by applying conductive sublayers: 1) deposition 

of a layer of finely dispersed platinum and 2) synthesis of 

a conductive polymer – polypyrrole. The BCSCuO layers 

were deposited on an anode or both anode and cathode 

side on the SDC-based cell and sintered at a temperature 

of 1530 °C for 5 h. After sintering, dense BCSCuO barrier 

layers free of cracks and pores were formed on the 

fabricated samples. In contrast to deposition of bilayer 

BCS–SDC electrolytes, there was no interdiffusion 

between the dense SDC substrate and the BCSCuO films. 

Despite of numerous studies of protonic-based 

suspensions, the testing the deposited electrolytes in a 

SOFC mode is poorly represented. We summarized the 

available literature data in Table 4. 

Table 4 – Performance characteristics of IT-SOFCs with proton-

conducting electrolyte layers formed by EPD on porous 

electrode and dense electrolyte substrates. 

Substrate 

(Tsint, °C) 

Electrolyte 

(Tsint, °C) 

OCV (V)/MPD 

(W/cm2) 

T (°C) 

Refs 

NiO-

BCY10 + 

graphite 

green 

BCY10 9.5 µm 

1550 

1.05/0.296/700 

1.07/0.275/650 

1.10/0.242/600 

[176] 

NiO-

BCY20 + 

graphite 

green 

BCY20 9.2 

1450 µm 

0.94/0.074/600 [75] 

NiO-BCS 

disks, 

d = 15 mm 

1200 

BCS_CuO 18 

μm 

SDC 10 μm 

1450 

0.92/0.070/750 

0.050/700 

[115] 

NiO-BCS 

disks, 

15 mm 

1200 

BCS_CuO 13 

μm 

SDC 18 μm 

1450 

0.90/0.160/750 

0.080/700 

1.05/0.050/650 

[115] 

SDC 

h = 

550 μm 

1600 

BCSCuO 18 μm 

(anode side) 

1500 

0.809/0.375/800 

0.872/0.259/700 

0.923/0.141/600 

[83] 

Conclusions 

In this review, we summarized the main trends and 

most important achievements in the field of 

electrophoretic formation of SOFC electrolyte layers. The 

general principles of EPD were briefly presented, 

including a discussion of the key parameter of suspension 

stability - the zeta potential, stabilization factors for 

suspensions of micro- and nanopowders, and various EPD 

mechanisms. Works on the EPD of coatings of the 

traditional YSZ solid electrolyte, as well as works related 

to the deposition of coatings based on various oxygen-ion, 

proton-conducting, multilayer and composite electrolytes 

for intermediate-temperature SOFCs were considered, the 

results on SOFC testing were summarized in the separate 

Tables. The main advantages and possibilities of the 

electrophoretic formation of SOFC electrolyte layers and 

the limitations inherent to the EPD were discussed.  The 

EPD method was demonstrated to be used in the 

implementation of the complete technological cycle for 

the manufacture of SOFC cells, including high-

temperature co-sintering. The problem of obtaining dense 

solid electrolyte layers was shown to be associated with a 

consistent choice of materials and porosity of the 

substrates, the choice of the optimal thickness of the solid 

electrolyte layer and the deposition and sintering modes.  
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