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This paper illustrates the results of long-term tests on the stability of the output signal of the solid 

electrolyte amperometry sensor when measuring the hydrogen concentration in the H2 + N2 gaseous 

mixture. The obtained experimental data verify the stability and reproducibility of the sensor output 

signal for hydrogen concentration measurements in the nitrogen-containing gaseous mixture during 

> 8000 h of operation. The output signal drift, i.e., the limiting current value, was insignificant, less than 

± 5 %. The sensor operation was performed at 3 temperature shifts with different time intervals; these 

changes did not have any impact either on the sensor integrity or on its operation. The structure of the 

solid electrolyte sensor, intermediate solid electrolyte / electrode layer and electrodes did not undergo 

any significant changes during operation. The dynamic characteristics of the sensor, the response time in 

particular, remained stable during the operation. 
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1. Introduction 

Solid electrolytes with oxygen-ionic conductivity 

are widely used in sensors to analyze the content of free 

oxygen in the gas media and metallic melts [1–9]. The 

majority of published research on solid electrolyte 

sensors is devoted to the study of such sensors with the 

mixed potential based on oxygen-conducting solid 

electrolytes with single gas space [10–15]. When detecting 

the gas, for instance hydrogen in various gas media, the 

occurring processes result in the deviation of the 

concentration dependence from the Nernst dependence. 

This effect may be caused either by the occurrence of 

several simultaneous potential determining processes or 

by the accumulation of the process products on the 

three-phase boundary or by slow adsorption on the 

three-phase boundary. 

The dependence of the generated EMF on the 

concentration of the inflammable compound in the 

analyzed gas of such sensors is described by the 

following equation: 

𝐸 = 𝐸0 + 𝑘 ∙ ln[𝐻2], (1) 

where 𝑘 is an empirically derived constant. 

The value of the appeared mixed potential is 

determined mainly by a number of factors including the 

concentration and composition of the analyzed gas 

media, the material of the measuring electrode and 

operation temperature. 

Potentiometric sensors based on solid electrolytes of 

the YSZ composition are the most widely known. These 

sensors, based on the solid electrolytes with the unipolar 

oxygen conductivity, proved to be efficient in the heat 

engineering, metallurgy, chemistry and motor industry. 

They are characterized by ability to determine wide 

oxygen concentration range, rapid operation, simplicity 

of the construction and simple processing of the 

obtained electrical signal, i.e., EMF, to the hydrogen 
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concentration. The serious drawback of potentiometric 

sensors is that an etalon gas with known and stable 

oxygen concentration is required for accurate sensor 

operation. This fact makes the application of the sensor 

more complicated, as in some cases a separate etalon gas 

supply is hindered [16–22]. 

Recently solid electrolyte amperometric sensors 

with diffusion barrier aimed at the analysis of oxygen, 

hydrogen and moisture concentrations in inert and 

oxidizing gas media have been actively analyzed in a 

published literature [23–29]. These sensors are typically 

composed of YSZ solid electrolytes. The data on the 

most promising amperometric sensors design, 

composition of electrolytes, electrode materials, the 

most appropriate operating temperatures for the data 

analysis and etc. are accumulated in the obtained results 

of the published works [30–35]. The major part of the 

research is devoted to the determination of the 

hydrogen content in gas mixtures. 

Among the vast published literature data, we would 

like to elucidate the results on the evaluation and 

practical usage of amperometic sensors based on solid 

electrolytes with proton conductivity by Katahira et al. 

[36]. The authors developed and tested complex sensors 

composed of two electrochemical cells: hydrogen pump 

and potentiometric sensor based on the SrCe0.95Yb0.05O3 

electrolyte. Development of amperometric sensors 

design and detailed analysis of their characteristics are 

illustrated in papers by Yajima et al. [37, 38]. 

Due to the growing interest towards amperometric 

sensors with diffusion barriers, our research group 

evaluated the long-term operation stability of the output 

signal of the sensor based on the proton solid electrolyte 

of the CaZr0.9Sc0.1O3–δ composition to determine the 

hydrogen concentration in its mixture with nitrogen.  

2. Experimental 

2.1. Samples preparation 

In the present paper an amperometric sensor with a 

diffusion barrier, i.e. an electrochemical cell made on the 

basis of the proton-conducting solid electrolyte of the 

CaZr0.9Sc0.1O3–δ composition, was studied. The sensor 

schematic and appearance are presented in Figures 1 

and 2. It is made of two solid electrolyte plates of 25 mm 

length, 12 mm width, and 1 mm thickness. One of the 

plates is concave. The depth of the concave is 0.5 mm 

and diameter is 6 mm. Porous platinum electrodes with a 

platinum wire current lead of 0.1 mm in diameter are 

applied to the opposite surfaces of the solid electrolyte 

concaved plate. A ceramic capillary of 257 µm inner 

diameter and 20 mm length was located between the

Figure 1 Sensor schematic. 1 – solid electrolyte plates, 2 – outer 

electrode, 3 – inner electrode, 4 – glassy hermetic, 5 – cavity, 

6 – capillary, A – amperemeter, V – voltmeter. 

 
Figure 2 General view of the sensor before the tests (the sensor 

appearance after 8000 h tests remained unchanged). 

electrolyte plates. The plates were glued by a thermo-

resistant glass. To provide a constant voltage on the 

electrochemical cell we used a GPS-18500 source of a 

constant current; the value of current passed through 

the cell was measured by a GDM-8246 type multimeter. 

We used H2 (2 %) + nitrogen as a test gas mixture. 

Constant current voltage was applied to the sensor 

electrodes with different polarity to provide pumping 

hydrogen from the sensor inner cavity to the analyzed 

gas flow. Via the sensor capillary the analyzed gas 

mixture input and the output nitrogen from the cavity 

exchanged. When a definite value of the input voltage 

was reached these processes became equilibrium. This is 

testified by the appearance of the limiting current. The 

value of the limiting current allows calculating the 

amount of hydrogen in the analyzed gas according to 

Equation (2). 

𝐼𝐿(𝐻2+𝑁2) = (
2𝐹∙𝐷𝑡(𝐻2+𝑁2)∙𝑆∙𝑃

𝑅∙𝑇∙𝐿
) ∙ 𝑋𝐻2, (2) 

where 2𝐹 is the amount of electricity necessary for the 

transfer of one mole of hydrogen; 𝑃 is the total pressure 

of the analyzed gas; 𝐷 is the diffusion coefficient of 

hydrogen in nitrogen; 𝑆 and 𝐿 denote the cross section
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area and length of the capillary diffusion channel; 𝑅 is 

the gas constant; 𝑇 is the absolute temperature; 𝑋𝐻2 is 

the hydrogen concentration (volume fractions). 

2.2. Experiment procedures 

The electrochemical sensor, illustrated in Figure 1, 

was placed into a tube furnace with a nichrome heater. 

The volume of the tube furnace was 0.65 l. The 

temperatures in the furnace were maintained with the 

accuracy of ± 3 °C using a thermoregulator 

TP 703 Varta (Laboratory of ceramics Ltd., Moscow, 

Russia). The analyzed gas mixture was blown through 

the inner furnace area; the gas consumption was 

20 ml/min. The gas mixture of the set composition 

(H2 (2 %) + nitrogen) was additionally purified from 

moisture and admixtures (zeolite). Gas batching was 

performed using the F-201C-33-V type gas consumption 

regulator. The sensor operated in the pulse mode, i.e., 

during the whole experimental period there were four 

cooling-heating cycles to verify the sensor thermal 

resistance. 

3. Results and discussion 

When the sensor was heated to 500 °C, the constant 

current voltage was applied to the electrodes. As the 

applied voltage increased, the current passing through 

the sensor solid electrolyte plate increased. When a 

definite value of the applied voltage was reached, the 

current reached the desired value and stabilized; this 

current value was considered to be the limiting current. 

At each hydrogen concentration in the analyzed gas 

mixture and under otherwise equal conditions including 

diffusion barrier parameters, temperature, gaseous 

mixture component composition, and pressure, the 

limiting current was constant. Figure 3 illustrates 

voltammetry characteristics of the sensor during the 

determination of the hydrogen content at the 

temperatures of 500 and 550 °C. It is seen that the 

limiting current appears at the voltage of about 1 V. The 

measured limiting currents of the sensor, observed for 

gas mixtures containing from 0 to 4 % of hydrogen, 

allowed obtaining a linear dependence of the limiting 

current on hydrogen, presented in Figure 4. 

Apart from the sensor characteristics illustrated in 

Figures 3 and 4, we recorded dynamic characteristics of 

the sensor before resource and stability tests (Figure 5). 

The time of the sensor reaction and sensor signal of 

90 % of the nominal value were determined. The time of 

the sensor initial response varied from 3 to 5 seconds, 

and the time of the sensor signal output of the 90 % 

nominal value was from 70 to 100 seconds (these values 

were obtained using the transport delay). 

 

 

Figure 3 Dependence of the sensor current on the applied 

voltage. Hydrogen concentration in the gas mixture was 1.4 %. 

Figure 4 Dependence of the sensor limiting current on the 

hydrogen concentration. 
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Figure 5 Dependence of the sensor dynamic characteristics on 

the hydrogen concentration change at the beginning of the 

tests. 

The dynamic characteristics of the sensor were 

evaluated after 4-thousand-hour operation and after 8 

thousand hours (Figures 6 and 7). Figure 8 illustrates the 

dependence of the sensor limiting current changes on 

the hydrogen concentration in air during 8000 hours. 

During the tests, there were 3 heating-cooling cycles of 

the different time length. These thermal changes did not 

cause any destruction, decompression, or fault in the 

reproducibility of the sensor measurements. 

Figures 6, 7 and 8 illustrate that the sensor dynamic 

characteristics remain almost stable during the whole 

test period. These figures verify good reproducibility of 

the sensor results. The deviations of the limiting current 

values during the tests were ± 5 % of the average value. 

The sensor demonstrated a stable operation and 

well-reproducible results. The absolute hydrogen 

measurement error ranged from 0 to 4 % and was 

± 0.3, which is satisfactory for hydrogen analyzers, 

based on different measuring modes. For instance, the 

hydrogen analyzer in gases HY-OPTIMA by the Artvik 

Company (Almaty, Kazakhstan) is based on the analysis 

of the regularities of hydrogen dissolution in metals and 

has an absolute measurement error of ± 3 mA. The 

amperometric hydrogen analyzer in the inert gas 

EHDV-G produced by FSUE 'NII NPO “Luch” (Podolsk, 

Russia) is based on liquid electrolyte and has a 

measurement error of ± 15 %. 

 

 
Figure 6 Dependences of the sensor dynamic characteristics on 

the hydrogen concentrations in nitrogen after the 4000-hour 

operation. 

Figure 7 Dependences of the sensor dynamic characteristics on 

the hydrogen concentrations in nitrogen after the 8000-hour 

operation. 
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Figure 8 Changes in the sensor limiting current during the tests. 

 

4. Conclusions 

The stability of the amperometric solid electrolyte 

CaZr0.9Sc0.1O3– sensor with the diffusion barrier has 

been studied for measuring the concentration of 

hydrogen in the hydrogen-nitrogen gas mixture during 

8000 hours. The sensor demonstrated stable operation 

and good data reproducibility. The performed 3 heating-

cooling cycles did not cause any faults in the sensor 

operation. The sensor characteristics were found to be 

promising for its practical implementation. 
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