Computer development of silicene anodes for lithium-ion batteries: A review

Alexander Y. Galashev


Lithium-ion batteries (LIB) have many advantages, the main ones being high energy density, long service life, small size, and low environmental pollution. This review is devoted to further development of LIBs based on quantum mechanical calculations in order to use them for energy storage in the future. Energetically favorite places occupied by lithium atoms on silicene are found. Lithium filling of free-standing two-layer silicene and single-layer silicene on graphene was studied. The geometric, energy, charging characteristics, as well as the open circuit voltage are determined. The effect of metallic (Al, Cu, Ni, Ag and Au) and non-metallic (C, SiC and BN) substrates on the geometric, energy and electronic properties of silicene has been studied. The effect of an intermediate nickel layer on the characteristics of the "silicene on a multilayer copper substrate" system has been studied. The effect of nuclear transmutation doping (NTD) of the silicene/graphite system with phosphorus on the density of electronic states of one- and two-layer silicene has been determined. Promising applications for silicene and the advantages of its use as an anode in a lithium-ion battery are discussed.


lithium-ion batteries; silicene; binding energy; DFT calculation; substrate

Full Text:



Pang J, Bachmatiuk A, Yin Y, Trzebicka B, Zhao L, Fu L, Mendes RG, Gemming T, Liu Z, Rummeli MH, Applications of phosphorene and black phosphorus in energy conversion and storage devices, Adv. Energy Mater. 8 (2017) 1702093. https://doi.org/10.1002/aenm.201702093

Adams RA, Mistry AN, Mukherjee PP, Pol VG, Materials by design: Tailored morphology and structures of carbon anodes for enhanced battery safety, ACS Appl. Mater. Interfaces, 11 (2019) 13334–13342. https://doi.org/10.1021/acsami.9b02921

Wang L, Wang Z, Sun Y, Liang X, Xiang H, Sb2O3 modified PVDF-CTFE electrospun fibrous membrane as a safe lithium-ion battery separator, J. Membr. Sci. 572 (2019) 512–519. https://doi.org/10.1016/j.memsci.2018.11.041

Galashev AY, Computational investigation of silicene/nickel anode for lithium-ion battery, Solid State Ionics. 357 (2020) 115463. https://doi.org/10.1016/j.ssi.2020.115463

Su X, Wu Q, Li J, Xiao X, Lott A, Lu W, Sheldon BW, Wu J, Silicon-based nanomaterials for lithium-ion batteries: a review, Adv. Energy Mater. 4 (2013) 375–379. https://doi.org/10.1002/aenm.201300882

Liu L, Lyu J, Li T, Zhao T, Well-constructed silicon-based materials as high-performance lithium-ion battery anodes, Nanoscale. 8 (2016) 701–722. https://doi.org/10.1039/C5NR06278K

Du FH, Wang KX, Chen JS, Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials, J. Mater. Chem. A. 4 (2016) 32–50. https://doi.org/10.1039/C5TA06962A

Favors Z, Wang W, Bay HH, George A, Ozkan M, Ozkan C, Stable cycling of SiO2 nanotubes as high-performance anodes for lithium-ion batteries, Sci. Rep. 4 (2014) 4605. https://doi.org/10.1038/srep04605

Miyachi M, Yamamoto H, Kawai H, Ohta T, Shirakata M, Analysis of SiO anodes for lithium-ion batteries, J. Electrochem. Soc. 152 (2005) A2089. https://doi.org/10.1149/1.2013210

Yao Y, Zhang JJ, Xue LG, T. Huang T, Yu A, Carbon-coated SiO2 nanoparticles as anode material for lithium ion batteries, J. Power Sources. 196 (2011) 10240–10243. https://doi.org/10.1016/j.jpowsour.2011.08.009

Yan N, Wang F, Zhong H, Li Y, Wang Y, Hu L, Chen Q, Hollow porous SiO2 nanocubes towards high-performance anodes for lithium-ion batteries, Sci. Rep. 3 (2013) 1568. https://doi.org/10.1038/srep01568

Zhang YF, Li YJ, Wang ZY, Zhao K, Lithiation of SiO2 in Li-ion batteries: In situ transmission electron microscopy experiments and theoretical studies, Nano Lett. 14 (2014) 7161–7170. https://doi.org/10.1021/nl503776u

Gil M, Rabanal ME, Varez A, Kuhn A, Garcia-Alvarado F, Mechanical grinding of Si3N4 to Be used as an electrode in lithium batteries, Mater. Lett. 57 (2003) 3063–3069. https://doi.org/10.1016/S0167-577X(02)01437-4

Ahn D, Kim C, Lee J, Park B, The effect of nitrogen on the cycling performance in thin-film Si1-xNx anode, J. Solid State Chem. 181 (2008) 2139–2142. https://doi.org/10.1016/j.jssc.2008.04.040

Yang J, Guzman RC, Salley SO, Simon KY, Chen B, Cheng MM, Plasma enhanced chemical vapor deposition silicon nitride for a high-performance lithium ion battery anode, J. Power Sources. 269 (2014) 520–525. https://doi.org/10.1016/j.jpowsour.2014.06.135

Wu CY, Chang CC, Duh JG, Silicon nitride coated silicon thin film on three dimensions current collector for lithium ion battery anode, J. Power Sources 325 (2016) 64–70. https://doi.org/10.1016/j.jpowsour.2016.06.025

Suzuki N, Cervera RB, Ohnishi T, Takada K, Silicon nitride thin film electrode for lithium-ion batteries, J. Power Sources. 231 (2013) 186–189. https://doi.org/10.1016/j.jpowsour.2012.12.097

Yi R, Dai F, Gordin ML, Chen S, Wang D, Micro-sized Si–C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries, Adv. Energy Mater. 3 (2013) 295–300. https://doi.org/10.1002/aenm.201200857

Chang XH, Li W, Yang JF, Xu L, Zheng J, Li XG, Direct plasma deposition of amorphous Si/C nanocomposites as high performance anodes for lithium ion batteries, J. Mater. Chem. A 3 (2015) 3522–3528. https://doi.org/10.1039/C4TA06334A

Hsieh C-C, Liu W-R, Carbon-coated Si particles binding with few-layered graphene via a liquid exfoliation process as potential anode materials for lithium-ion batteries, Surf. Coatings Technol. 387 (2020) 125553. https://doi.org/10.1016/j.surfcoat.2020.125553

Kumari TS, Jeyakumar D, Kumar TP, Nano silicon carbide: A new lithium-insertion anode material on the horizon, RSC Adv. 3 (2013) 15028–15034. https://doi.org/10.1039/C3RA40798E

Zhang HT, Xu H, Nano crystalline silicon carbide thin film electrodes for lithium-ion batteries, Solid State Ionics 263 (2014) 23–26. https://doi.org/10.1016/j.ssi.2014.04.020

Lu Z, Wong T, Ng TW, Wang C, Facile synthesis of carbon decorated silicon nanotube arrays as anode material for high-performance lithium-ion batteries, RSC Adv. 4 (2014) 2440–2446. https://doi.org/10.1039/C3RA45439H

Lv Y, Wu Z, Fang Y, Qian X, Asiri AM, Tu B, Zhao D, Hierarchical mesoporous/microporous carbon with graphitized frameworks for high-performance lithium-ion batteries, APL Mater. 2 (2014) 366–377. https://doi.org/10.1063/1.4897201

Qian J, Ma J., He W., Hua D. Facile synthesis of prussian blue derivate-modified mesoporous material via photoinitiated thiol-ene click reaction for cesium adsorption, Chem. Asian. J. 10 (2015) 1738–1744. https://doi.org/10.1002/asia.201500350

Liu X, Zhu X, Pan D, Solutions for the problems of silicon–carbon anode materials for lithium-ion batteries, R. Soc. open sci. 5 (2018) 172370. https://doi.org/10.1098/rsos.172370

Ma X, Liu M, Gan L, Tripathi PK, Zhao Y, Zhu D, Xu Z, Chen L, Novel mesoporous Si@C microspheres as anodes for lithium-ion batteries, Phys. Chem. Chem. Phys. 16 (2014) 4135–4142. https://doi.org/10.1039/C3CP54507E

Seyed-Talebi SM, Kazeminezhad I, Beheshtian J, Theoretical prediction of silicene as a new candidate for the anode of lithium-ion batteries, Phys. Chem. Chem. Phys. 17 (2015) 29689–29696. https://doi.org/10.1039/C5CP04666A

Shi L, Zhao TS, Xu A, Xu JB, Ab initio prediction of a silicene and graphene heterostructure as an anode material for Li- and Na-ion batteries, J. Mater. Chem. A, 4 (2016) 16377–16382. https://doi.org/10.1039/C6TA06976B

Galashev AY, Ivanichkina KA, Silicene anodes for lithium-ion batteries on metal substrates, J. Electrochem. Soc. 167 (2020) 050510. https://doi.org/10.1149/1945-7111/ab717a

Galashev AY, Ivanichkina KA, Katin KP, Maslov MM, Computer test of a modified silicene/graphite anode for lithium-ion batteries, ACS Omega 5 (2020) 13207−13218. https://doi.org/10.1021/acsomega.0c01240

Galashev AY, Ivanichkina KA, Computational investigation of a promising Si–Cu anode material, Phys. Chem. Chem. Phys. 21 (2019) 12310–12320. https://doi.org/10.1039/C9CP01571J

Galashev AY, Ivanichkina KA, Computer study of atomic mechanisms of intercalation/deintercalation of Li ions in a silicene anode on an Ag (111) substrate, J. Electrochem. Soc. 165 (2018) A1788-A1796. https://doi.org/10.1149/2.0751809jes

Galashev AY, Rakhmanova O.R. Promising two-dimensional nanocomposite for the anode of the lithium-ion batteries. Computer simulation, Physica E Low Dimens. Syst. Nanostruct. 126 (2021) 114446. https://doi.org/10.1016/j.physe.2020.114446

Grazianetti C, Cinquanta E, Molle A, Two-dimensional silicon: the advent of silicene, 2D Materials 3 (2016) 012001. https://doi.org/10.1088/2053-1583/3/1/012001

Xu S, Fan X, Liu J, Singh DJ, Jiang Q, Zheng W, Adsorption of Li on single-layer silicene for anodes of Li-ion batteries, Phys. Chem. Chem. Phys. 20 (2018) 8887–8896. https://doi.org/10.1039/C7CP08036K

Galashev AY, Vorob’ev AS, First principle modeling of a silicene anode for lithium ion batteries, Electrochimica Acta 378 (2021) 138143 (1-10). https://doi.org/10.1016/j.electacta.2021.138143

Tritsaris GA, Kaxiras E, Meng S, Wang E, Adsorption and diffusion of lithium on layered silicon for Li-ion storage, Nano Lett. 13 (2013) 2258−2263. https://doi.org/10.1021/nl400830u

Zeng Z, Ma X, Chen J, Zeng Y, Yang D, Liu Y, Effects of heavy phosphorous-doping on mechanical properties of Czochralski silicon, J. Appl. Phys. 107 (2010) 123503. https://doi.org/10.1063/1.3436599

Okamoto S, Ito A, Investigation of mechanical properties of nitrogen-containing graphene using molecular dynamics simulations, Proceeding of the International MultyConference of Engineers and Computer Scientists 1 (2012) IMECS, Hong Kong.

Liu B, Zhou K, Recent progress on graphene-analogous 2D nanomaterials: Properties, modeling and applications, Prog. Mater. Sci. 100 (2019) 99-169. https://doi.org/10.1016/j.pmatsci.2018.09.004

Gao J, Xu Z, Chen S, Bharathi MS, Zhang Y-W, Computational understanding of the growth of 2D materials, Adv. Theor. Simul. 1 (2018) 1800085. https://doi.org/10.1002/adts.201800085

Mannix AJ, Zhang Z, Guisinger NP, Yakobson B, Hersam MC, Borophene as a prototype for synthetic 2D materials development, Nat. Nanotechol. 13 (2018) 444–450. https://doi.org/10.1038/s41565-018-0157-4

Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Electric field effect in atomically thin carbon films, Science 306 (2004) 666–669. https://doi.org/10.1126/science.11028

Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK, The electronic properties of graphene, Rev. Mod. Phys. 81 (2009) 109–162. https://doi.org/10.1103/RevModPhys.81.109

Wallace PR, The band theory of graphite, Phys. Rev. 71 (1947) 622–634. https://doi.org/10.1103/PhysRev.71.622

Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL, Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146 (2008) 351–355. https://doi.org/10.1016/j.ssc.2008.02.024

Weiss NO, Zhou H, Liao L, Jiang S, Huang Y, Duan X, Graphene: An emerging electronic material, Adv. Mater. 24 (2012) 5782–5825. https://doi.org/10.1002/adma.201201482

Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438 (2005) 197–200. https://doi.org/10.1038/nature04233

Zhang YB, Tan YW, Stormer HL, Kim P, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature 438 (2005) 201–204. ttps://doi.org/10.1038/nature04235

Bolotin KI, Ghahari F, Shulman MD, Stomer HL, Kim P, Observation of the fractional quantum Hall effect in graphene, Nature 462 (2009) 196–199. https://doi.org/10.1038/nature08582

Du X, Skachko I, Duerr F, Luican A, Andrei EY, Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene, Nature 462 (2009) 192–195. https://doi.org/10.1038/nature08522

Dean CR, Wang L, Maher P, Forsythe C, Ghahari F, et al. Hofstadter's butterfly and the fractal quantum Hall effectin moire superlattices, Nature, 497 (2013) 598–602. https://doi.org/10.1038/nature12186

Ponomarenko LA, Gorbachev RV, Yu GL, Elias DC, Jalil R, et al. Cloning of Dirac fermions in graphene superlattices, Nature 497 (2013) 594–597. https://doi.org/10.1038/nature12187

Hunt B, Sanchez-Yamagishi JD, Young AF, Yankowitz M, Leroy BJ et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals feterostructure, Science 340 (2013) 1427–1430. https://doi.org/10.1126/science.1237

Feldman BE, Levin AJ, Krauss B, Abanin D, Halperin BI, Smet JH, Yacoby A, Fractional quantum Hall phase transitions and four-flux states in graphene, Phys. Rev. Lett. 111 (2013) 076802. https://doi.org/10.1103/PhysRevLett.111.076802

Adam S, Hwang EH, Galitski VM, Das Sarma S, A self-consistent theory for graphene transport, P. Natl. Acad. Sci. USA 104 (2007) 18392–18397. https://doi.org/10.1073/pnas.0704772104

Dean CR, Young AF, Meric I, Lee C, Wang L, et al. Boron nitride substrates for high-quality graphene electronics, Nat. Nanotechnol. 5 (2010) 722–726. https://doi.org/10.1038/nnano.2010.172

Chen J-H, Jang C, Xiao SD, Ishigami M, Fuhrer MS, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nat. Nanotechnol. 3 (2008) 206–209. https://doi.org/10.1038/nnano.2008.58

Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA, Geim AK, Giant intrinsic carrier mobilities in graphene and its bilayer, Phys. Rev. Lett. 100 (2008) 016602. https://doi.org/10.1103/PhysRevLett.100.016602

Castro EV, Ochoa H, Katsnelson MI, Gorbachev RV, Elias DC, Novoselov KS, Geim AK, Guinea F, Limits on charge carrier mobility in suspended graphene due to flexural phonons, Phys. Rev. Lett. 105 (2010) 266601. https://doi.org/10.1103/PhysRevLett.105.266601

Li ZZ, Wang JY, Liu ZR, Intrinsic carrier mobility of Dirac cones: the limitations of deformation potential theory, J. Chem. Phys. 141 (2014) 144107. https://doi.org/10.1063/1.4897533

Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S, The structure of suspended graphene sheets, Nature 446 (2007) 60–63. https://doi.org/10.1038/nature05545

Xu P, Neek-Amal M, Barber SD, Schoelz JK, Ackerman ML, et al. Unusual ultra-low-frequency fluctuations in freestanding graphene, Nat. Commun. 5 (2014) 3720. https://doi.org/10.1038/ncomms4720

Guinea F, Katsnelson MI, Vozmediano MAH, Midgap states and charge inhomogeneities in corrugated graphene, Phys. Rev. B 77 (2008) 075422. https://doi.org/10.1103/PhysRevB.77.075422

Lui CH, Liu L, Mak KF, Flynn GW, Heinz TF, Ultraflat graphene, Nature 462 (2009) 339–341. https://doi.org/10.1038/nature08569

Zhang YB, Brar VW, Girit C, Zettl A, Crommie MF, Origin of spatial charge inhomogeneity in graphene, Nat. Phys. 5 (2009) 722–726. https://doi.org/10.1038/nphys1365

Burson KM, Cullen WG, Adam S, Dean CR, Watanabe K, et al. Direct imaging of charged impurity density in common graphene substrates, Nano Lett. 13 (2013) 3576–3580. https://doi.org/10.1021/nl4012529

Pereira VM, Neto AHC, Peres NMR, Tight-binding approach to uniaxial strain in graphene, Phys. Rev. B, 80 (2009) 045401. https://doi.org/10.48550/arXiv.0811.4396

Li Y, Jiang XW, Liu ZF, Liu Z, Strain effects in graphene and graphene nanoribbons: The underlying mechanism, Nano Res. 3 (2010) 545–556. https://doi.org/10.1007/s12274-010-0015-7

Pereira VM, Neto AHC, Strain engineering of graphene's electronic structure, Phys. Rev. Lett. 103 (2009) 046801. https://doi.org/10.1103/PhysRevLett.103.046801

Butler SZ, Hollen SM, Cao LY, Cui Y, Gupta JA et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene, Acs. Nano 7 (2013) 2898–2926. https://doi.org/10.1021/nn400280c

Xu MS, Liang T, Shi MM, Chen H, Graphene-like two-dimensional materials, Chem. Rev. 113 (2013) 3766–3798. https://doi.org/10.1021/cr300263a

Huang HQ, Duan WH, Liu ZR. The existence/absence of Dirac cones in graphynes, New J. Phys. 15 (2013) 023004. https://doi.org/10.1088/1367-2630/15/2/023004

Wang JY, Huang HQ, Duan WH, Liu Z, Identifying Dirac cones in carbon allotropes with square symmetry, J. Chem. Phys. 139 (2013) 184701. https://doi.org/10.1063/1.4828861

Ma YD, Dai Y, Li XR, Sun Q, Huang B, Prediction of two-dimensional materials with half-metallic Dirac cones: Ni2C18H12 and Co2C18H12, Carbon. 73 (2014) 382–388. https://doi.org/10.1016/j.carbon.2014.02.080

Xu LC, Wang RZ, Miao MS, Wei X-L, Chen Y-P, et al. Two dimensional Dirac carbon allotropes from graphene, Nanoscale. 6 (2014) 1113–1118. https://doi.org/10.1039/C3NR04463G

Zhou XF, Dong X, Oganov AR, Zhu Q, Tian Y, et al. Semimetallic two-dimensional boron allotrope with massless Dirac fermions, Phys. Rev. Lett. 112 (2014) 085502. https://doi.org/10.1103/PhysRevLett.112.085502

Li WF, Guo M, Zhang G, Zhang YW, Gapless MoS2 allotrope possessing both massless Dirac and heavy fermions, Phys. Rev. B, 89 (2014) 205402. https://doi.org/10.1103/PhysRevB.89.205402

Wang ZF, Liu Z, Liu F, Organic topological insulators in organometallic lattices, Nat. Commun. 4 (2013) 1471. https://doi.org/10.1038/ncomms2451

Politano A, Chiarello G, Probing the Young's modulus and Poisson's ratio in graphene/metal interfaces and graphite: A comparative study, Nano Res. 8 (2015) 1847–1856. https://doi.org/10.1007/s12274-014-0691-9

Luo X, Schubert DW, Examining the contribution of factors affecting the electrical behavior of poly(methyl methacrylate)/graphene nanoplatelets composites, J. Appl. Polymer. 138 (2021) 50694. https://doi.org/10.1002/app.50694

Qi W, Shapter JG, Wu Q, Yin T, Gao G, Cui D, Nanostructured anode materials for lithium-ion batteries: Principle, recent progress and future perspectives, J. Mater. Chem. A. 5 (2017) 19521–19540. https://doi.org/10.1039/C7TA05283A

Lay GL, Padova PD, Resta A, Bruhn T, Vogt P, Epitaxial silicene: can it be strongly strained?, J. Phys. D Appl. Phys. 45 (2012) 392001. https://doi.org/10.1088/0022-3727/45/39/392001

Peierls RE, Bemerkungen uber umwandlungs temperaturen, Helv. Phys. Acta. 7 (1934) 81–83.

Landau LD, Zur theorie der phase numwandlungen II, Phys. Z. Sowietunion. 11 (1937) 26–35.

Yu M, Jayanthi CS, Wu SY, Bonding nature, structural optimization, and energetics studies of SiC graphitic-like layer structures and single/double walled nanotubes, arXiv:0901.3567 [cond-mat.mtrl-sci]. https://doi.org/10.48550/arXiv.0901.3567

Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, et al. Evidence of silicene in honeycomb structures of silicon on Ag(111), Nano Lett. 12 (2012) 3507–3511. https://doi.org/10.1021/nl301047g

Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini Sb, Ealet Bn, et al. Epitaxial growth of a silicene sheet, Appl. Phys. Lett. 97 (2010) 223109. https://doi.org/10.1063/1.3524215

Liu Z-L, Wang M-X, Liu C, Jia J-F, Vogt P, Quaresima C, et al. The fate of the 2√3 × 2√3R(30°) silicene phase on Ag(111), APL Mater. 2 (2014) 092513. https://doi.org/10.1063/1.4894871

Kawahara K, Shirasawa T, Arafune R, Lin CL, Takahashi T, Kawai M, et al. Determination of atomic positions in silicene on Ag(111) by low-energy electron diffraction, Surf. Sci. 623 (2014) 25–28. https://doi.org/10.1016/j.susc.2013.12.013

Acun A, Poelsema B, Zandvliet HJW, van Gastel R. The instability of silicene on Ag(111), Appl. Phys. Lett. 103 (2013) 263119. https://doi.org/10.1063/1.4860964

Zhao J, Liu H, Yu Z, Quhe R, Zhou S, Wang Y, et al. Rise of silicene: A competitive 2D material, Prog. Mater. Sci. 83 (2016) 24–151. https://doi.org/10.1016/j.pmatsci.2016.04.001

Kaltsas D, Tsetseris L, Dimoulas A, Structural evolution of single-layer films during deposition of silicon on silver: a first-principles study, J. Phys.: Condens. Matter. 24 (2012) 442001. https://doi.org/10.1088/0953-8984/24/44/442001

Liu Z-L, Wang M-X, Xu J-P, Ge J-F, Lay GL, Vogt P, et al. Various atomic structures of monolayer silicene fabricated on Ag(111), New J. Phys. 16 (2014) 075006. https://doi.org/10.1088/1367-2630/16/7/075006

Lin CL, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, et al. Structure of silicene grown on Ag(111), Appl. Phys. Exp. 5 (2012) 045802. https://doi.org/10.1143/APEX.5.045802

Chiappe D, Grazianetti C, Tallarida G, Fanciulli M, Molle A, Local electronic properties of corrugated silicene phases, Adv. Mater. 24 (2012) 5088–5093. https://doi.org/10.1002/adma.201202100

Resta A, Leoni T, Barth C, Ranguis A, Becker C, Bruhn T, et al. Atomic structures of silicene layers grown on Ag(111): scanning tunneling microscopy and noncontact atomic force microscopy observations, Sci. Rep. 3 (2013) 2399. https://doi.org/10.1038/srep02399

Zhuang J, Xu X, Du Y, Wu K, Chen L, Hao W, et al. Investigation of electron–phonon coupling in epitaxial silicene by in situ Raman spectroscopy, Phys. Rev. B 91 (2015)161409. https://doi.org/10.1103/PhysRevB.91.161409

Grazianetti C, Chiappe D, Cinquanta E, Fanciulli M, Molle A, Nucleation and temperature-driven phase transitions of silicene superstructures on Ag(111). J. Phys.: Condens. Matter. 27 (2015) 255005. https://doi.org/10.1088/0953-8984/27/25/255005

Hvazdouski D, First-principles study of stability and electronic properties of single-element 2D materials, Doklady BGUIR, 19 (2022) 92–98. https://doi.org/10.35596/1729-7648-2021-19-8-92-98

Marianetti CA, Yevick HG, Failure mechanisms of graphene under tension, Phys. Rev. Lett. 105 (2010) 245502. https://doi.org/10.48550/arXiv.1004.1849

Jose D, Datta A, Understanding of the buckling distortions in silicene, J. Phys. Chem. C. 116 (2012) 24639–24648. https://doi.org/10.1021/jp3084716

Botari T, Perim E, Autreto PAS, van Duin AC., Paupitz R, Galvao DS, Mechanical properties and fracture dynamics of silicene membranes, Phys. Chem. Chem. Phys. 16 (2014) 19417-19423. https://doi.org/10.1039/C4CP02902J

Kohn W, Sham LJ, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965) A1133–A1138. https://doi.org/10.1103/PhysRev.140.A1133

Perdew J, K. Burke K, Ernzerhof M, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

Jones RO, Gunnarsson O, The density functional formalism, its applications and prospects, Rev. Mod. Phys. 61 (1989) 689–746. https://doi.org/10.1103/RevModPhys.61.689

Nose SA, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys. 81 (1984) 511–519. https://doi.org/10.1063/1.447334

Osborn TH, Farajian AA, Stability of lithiated silicene from first principles, J. Phys. Chem. C. 116 (2012) 22916−22920. https://doi.org/10.1021/jp306889x

Kittel C. Introduction to Solid State Physics; Wiley: New York, 2005; p. 680.

Guerra CF, Handgraaf JW, Baerends EJ, Bickelhaupt FM, Voronoi deformation density (VDD) charges: assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis, J. Comp. Chem. 25 (2003) 189–210. https://doi.org/10.1002/jcc.10351

Islam MS, Fisher CAJ, Lithium and sodium battery cathode materials: com- putational insights into voltage, diffusion and nanostructural properties, Chem. Soc. Rev. 43 (2014) 185–204. https://doi.org/10.1039/C3CS60199D

Morris AJ, Grey CP, Pickard CJ, Thermodynamically stable lithium silicides and germanides from density-functional theory calculations, Phys. Rev. B. 90 (2014) 054111. https://doi.org/10.48550/arXiv.1402.6233

Guo YG, Hu JS, Wan LJ, Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices, Adv. Mater. 20 (2008) 2878–2887. https://doi.org/10.1002/adma.200800627

Ji L, Zhan L, Alcoutlabi M, Zhang X, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries, Energy Environ. Sci. 4 (2011) 2682–2699. https://doi.org/10.1039/C0EE00699H

Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang JG, Lithium metal anodes for rechargeable batteries, Energy Environ. Sci. 7 (2014) 513–537. https://doi.org/10.1039/C3EE40795K

Jing Y, Zhou Z, Cabrera CR, Chen Z, Graphene, inorganic graphene analogs and their composites for lithium ion batteries, J. Mater. Chem. A. 2 (2014) 12104–12122. https://doi.org/10.1039/C4TA01033G

Jing Y, Zhou Z, Cabrera CR, Chen Z, Metallic VS2 monolayer: A promising 2D anode material for lithium ion batteries, J. Phys. Chem. C. 117 (2013) 25409–25413. https://doi.org/10.1021/jp410969u

Naguib M, Halim J, Lu J, Cook KM, Hultman L, Gogotsi Y, Barsoum MW, New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries, J. Am. Chem. Soc. 135 (2013) 15966–15969. https://doi.org/10.1021/ja405735d

Xie Y, Dall’Agnese Y, Naguib M, Gogotsi Y, Barsoum MW, Zhuang HL, Kent PR, Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries, ACS Nano. 8 (2014) 9606–9615. https://doi.org/10.1021/nn503921j

Li W, Yang Y, Zhang G, Zhang YW, Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery, Nano Lett. 15 (2015) 1691–1697. https://doi.org/10.1021/nl504336h

Jiang HR, Lu Z, Wu MC, Ciucci F, Zhao TS, Borophene: A promising anode material offering high specific capacity and high rate capability for lithium-ion batteries, Nano Energy. 23 (2016) 97–104. https://doi.org/10.1016/j.nanoen.2016.03.013

Tang Q, Zhou Z, Shen P, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer, J. Am. Chem. Soc. 134 (2012) 16909–16916. https://doi.org/10.1021/ja308463r

Slater MD, Kim D, Lee E, Johnson CS, Sodium-ion batteries, Adv. Funct. Mater. 23 (2013) 947–958. https://doi.org/10.1002/adfm.201200691

Pan H, Hu YS, Chen L, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage, Energy Environ. Sci. 6 (2013) 2338–2360. https://doi.org/10.1039/C3EE40847G

Yabuuchi N, Kubota K, Dahbi M, Komaba S, Research development on sodium-ion batteries, Chem. Rev. 114 (2014) 11636–11682. https://doi.org/10.1021/cr500192f

Yang E, Ji H, Jung Y, Two-dimensional transition metal dichalcogenide monolayers as promising sodium ion battery anodes, J. Phys. Chem. C. 119 (2015) 26374–26380. https://doi.org/10.1021/acs.jpcc.5b09935

Yang E, Ji H, Kim J, Kim H, Jung Y, Exploring the possibilities of two-dimensional transition metal carbides as anode materials for sodium batteries, Phys. Chem. Chem. Phys. 17 (2015) 5000–5005. https://doi.org/10.1039/C4CP05140H

Yu YX, Prediction of mobility, enhanced storage capacity, and volume change during sodiation on interlayer-expanded functionalized Ti3C2 MXene anode materials for sodium-ion batteries, J. Phys. Chem. C. 120 (2016) 5288–5296. https://doi.org/10.1021/acs.jpcc.5b10366

Kulish VV, Malyi OI, Persson C, Wu P, Phosphorene as an anode material for Na-ion batteries: a first-principles study, Phys. Chem. Chem. Phys. 17 (2015) 13921–13928. https://doi.org/10.1039/C5CP01502B

Shi L, Zhao TS, Xu A, Xu JB, Ab initio prediction of borophene as an extraordinary anode material exhibiting ultrafast directional sodium diffusion for sodium-based batteries, Science Bulletin. 61 (2016) 1138–1144. https://doi.org/10.1007/s11434-016-1118-7

Cahangirov S, Audiffred M, Tang P, Iacomino A, Duan W, Merino G, Rubio A, Electronic structure of silicene on Ag(111): Strong hybridization effects, Phys. Rev. B: Condens. Matter Mater. Phys. 88 (2013) 035432. https://doi.org/10.1103/PhysRevB.88.035432

Cahangirov S, Topsakal M, Akt¨urk E, Sahin H, Ciraci S, Two- and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett. 102 (2009) 236804. https://doi.org/10.1103/PhysRevLett.102.236804

Cai Y, Chuu CP, Wei CM, Chou MY, Stability and electronic properties of two-dimensional silicene and germanene on graphene, Phys. Rev. B: Condens. Matter Mater. Phys. 88 (2013) 245408. https://doi.org/10.1103/PhysRevB.88.245408

Liu B, Baimova JA, Reddy CD, Law AWK, Dmitriev SV, Wu H, Zhou K, Interfacial thermal conductance of a silicene/graphene bilayer heterostructure and the effect of hydrogenation, ACS Appl. Mater. Interfaces, 6 (2014) 18180–18188. https://doi.org/10.1021/am505173s

Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio MC, Resta A, Ealet B, Le Lay G, Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon, Phys. Rev. Lett. 108 (2012) 155501. https://doi.org/10.1103/PhysRevLett.108.155501

Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Buckled silicene formation on Ir(111), Nano Lett. 13 (2013) 685–690. https://doi.org/10.1021/nl304347w

Nazzari D, Genser J, Ritter V, Bethge O, Bertagnolli E, Ramer G, Lendi B, Watanabe K, Taniguchi T, Rurali R, Kolibal M, Lugstein A, Highly biaxially strained silicene on Au(111), J. Phys. Chem. C. 125 (2021) 9973–9980. https://doi.org/10.1021/acs.jpcc.0c11033

Huang L, Zhang Y, Zhang Y, Xu W, Que Y, Li E, Pan J, Wang Y, Liu Y, Du S, Pantelides ST, Gao H, Sequence of silicon monolayer structures grown on a Ru surface: from a herringbone structure to silicene, Nano Lett. 17 (2017) 116–1166. https://doi.org/10.1021/acs.nanolett.6b04804

Scalise E, Iordanidou K, Afanas VV, Stesmans A, Houssa M, Silicene on non-metallic substrates: Recent theoretical and experimental advances, Nano Res. 11 (2018) 1169–1182. https://doi.org/10.1007/s12274-017-1777-y

Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y, Experimental evidence for epitaxial silicene on diboride thin films, Phys. Rev. Lett. 108 (2012) 245501. https://doi.org/10.1103/PhysRevLett.108.245501

Aizawa T, Suehara S, Otani S, Silicene on zirconium carbide (111), J. Phys. Chem. C. 118 (2014) 23049–23057. https://doi.org/10.1021/jp505602c

De Crescenzi M, Berbezier I, Scarselli M, Castrucci P, Abbarchi M, Ronda A, Jardali F, Park J, Vach H, Fisica D, Tor R, Formation of silicene nanosheets on graphite, ACS Nano. 10 (2016) 11163–11171. https://doi.org/10.1021/acsnano.6b06198

Galashev AE, Ivanichkina KA, Computer study of silicene applicability in electrochemical devices, J. Struct. Chem. 61 (2020) 659–667. https://doi.org/10.1134/S0022476620040204

Galashev AY, Zaikov YuP, New Si–Cu and Si–Ni anode materials for lithium‑ion batteries, J. Appl. Electrochem. 49 (2019) 1027–1034. https://doi.org/10.1007/s10800-019-01344-9

Galashev AY, Ivanichkina KA, Computer test of a new silicene anode for lithium‐ion batteries, ChemElectroChem. 6 (2019) 1525-1535. https://doi.org/10.1002/celc.201900119

Galashev AE, Rakhmanjva OR, Stability of a two-layer silicene on a nickel substrate upon intercalation of lithium, Glass Phys. Chem. 46 (2020) 321–328. https://doi.org/10.1134/S108765962030001X

Galashev AY, Ivanichkina KA, Vorob’ev AS, Rakhmanjva OR, Katin KP, Maslov MM, Improved lithium-ion batteries and their communication with hydrogen power, Int. J. Hydrogen Energy. 46 (2021) 17019–17036. https://doi.org/10.1016/j.ijhydene.2020.11.225

Galashev AY, Rakhmanjva OR, Ivanichkina KA, Graphene and graphite supports for silicene stabilization: A computation study, J. Struct. Chem. 59 (2018) 877–883. https://doi.org/10.1134/S0022476618040194

Galashev AY, Ivanichkina KA, Numerical simulation of the structure and mechanical properties of silicene layers on graphite during the lithium ion motion, Phys. Solid State. 61 (2019) 233–243. https://doi.org/10.1134/S1063783419020136

Galashev AY, Suzdaltsev AV, Ivanichkina KA, Design of the high performance microbattery with silicene anode, Mater. Sci. & Eng. B 261 (2020) 114718. https://doi.org/10.1016/j.mseb.2020.114718

Galashev AY, Ivanichkina KA, Katin KP, Maslov MM, Computational study of lithium intercalation in silicene channels on a carbon substrate after nuclear transmutation doping, Computation. 7 (2019) 60. https://doi.org/10.3390/computation7040060

Galashev AY, Numerical simulation of a 2D layered anode for use in lithium-ion batteries, Int.J. Comput. Meth. 18 (2021), 2150032. https://doi.org/10.1142/S0219876221500328

Galashev AE, Rakhmanjva OR, Katin KP, Maslov MM, Zaikov YuP, Effect of an electric field on a lithium ion in a channel of the doped silicene–graphite system, Rus. J. Phys. Chem. B 14 (2020) 1055–1062. https://doi.org/10.1134/S1990793120060044

Galashev AY, Rakhmanjva OR, Two-layer silicene on the SiC substrate: lithiation investigation in the molecular dynamics experiment, ChemPhysChem e202200250 (2022). https://doi.org/10.1002/cphc.202200250

Thuy Tran NT, Gumbs G, Nguyen DK, Lin M-F, Fundamental properties of metal-adsorbed silicene: A DFT study, ACS Omega. 5 (2020) 13760–13769. https://doi.org/10.1021/acsomega.0c00905

Lin H, Qiu W, Liu J, Yu L, Gao S, Yao H, Chen Y, Silicene: Wet-chemical exfoliation synthesis and biodegradable tumor nanomedicine, Adv. Mater. 31 (2019) 1903013. https://doi.org/10.1002/adma.201903013

Galashev AY, Vorob’ev AS, DFT study of silicene on metal (Al, Ag, Au) substrates of various thicknesses, Phys. Lett. A. 408 (2021) 127487. https://doi.org/10.1016/j.physleta.2021.127487

Galashev A, Vorob’ev A, An Ab initio study of lithization of two-dimensional silicon–carbon anode material for lithium-ion batteries, Materials. 14 (2021) 6649. https://doi.org/10.3390/ma14216649

Galashev A, Vorob’ev A, Electronic properties and structure of silicene on Cu and Ni substrates, Materials. 15 (2022) 3863. https://doi.org/10.3390/ma15113863

Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D, The SIESTA method for ab initio order-N materials simulation, J. Phys. Condens. Matter. 14 (2002) 2745–2779. https://doi.org/10.1088/0953-8984/14/11/302

Kresse G, Furthmüller J, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B. 54 (1996) 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169

Lubarda VA, On the effective lattice parameter of binary alloys, Mech. Mater. 35 (2003) 53–68. https://doi.org/10.1016/S0167-6636(02)00196-5

Flynn S., Lennon A. Copper penetration in laser-doped selective-emitter silicon solar cells with plated nickel barrier layers, Solar Energy Materials & Solar Cells. 130 (2014) 309–316. https://doi.org/10.1016/j.solmat.2014.07.026

Cheng YR, Chen WJ, Ohdaira K, Higashimine K, Barrier properties of electroplating nickel layer for copper metallization in silicon solar cells, Int. J. Electrochem. Sci. 13 (2018) 11516–11525. https://doi.org/10.20964/2018.12.23

Kuchuk AV, Borowicz P, Wzorek M, Borysiewicz M, Ratajczak R, Golaszewska K, et al. Ni-based ohmic contacts to n-type 4H-SiC: The formation mechanism and thermal stability, Adv. Cond. Mat. Phys. 2016 (2016) 1-26. https://doi.org/10.1155/2016/9273702

Galashev AY, Vorob’ev AS, An ab initio study of the interaction of graphene and silicene with one-, two-, and three-layer planar silicon carbide, Physica E: Low-dimens. Syst. Nanostruct. 138 (2022) 115120. https://doi.org/10.1016/j.physe.2021.115120

Zaminpayma E, Nayebi P, Band gap engineering in silicene: A theoretical study of densityfunctional tight-binding theory, Phys. E: Low-dimens. Syst. Nanostruct. 84 (2016) 555−563. https://doi.org/10.1016/j.physe.2016.06.016

Galashev AY, Vorob’ev AS, Electronic and mechanical properties of silicene after nuclear transmutation doping with phosphorus, J. Mater. Sci. 55 (2020) 11367–11381. https://doi.org/10.1007/s10853-020-04860-8

Lin C-L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N, Kawai M, Structure of silicene grown on Ag(111), Appl. Phys. Express 5 (2012) 045802. https://doi.org/10.1143/APEX.5.045802

Jamgotchian H, Colignon Y, Hamzaoui N, Ealet B, Hoarau JY, Aufray B, Bib´erian JP, Growth of silicene layers on Ag(111): unexpected effect of the substrate temperature, J. Phys. Condens. Matter. 24 (2012) 172001. https://doi.org/10.1088/0953-8984/24/17/172001

Le Lay G, De Padova P, Resta A, Bruhn T, Vogt P, Epitaxial silicene: can it be strongly strained?, J. Phys. D Appl. Phys. 45 (2012) 392001. https://doi.org/10.1088/0022-3727/45/39/392001

Okamoto H, Massalski TB, The Au−Si (Gold-Silicon) system, Bull. Alloy Phase Diagram. 4 (1983) 190–198. https://doi.org/10.1007/BF02884878

Becke AD, Edgecombe KE, A simple measure of electron localization in atomic and molecular systems, J. Chem. Phys. 92 (1990) 5397–5403. https://doi.org/10.1063/1.458517

Stephan R, Hanf M-C, Sonnet P, Spatial analysis of interactions at the silicene/Ag interface: first principles study, J. Phys.: Condens. Matter. 27 (2015) 015002. https://doi.org/10.1088/0953-8984/27/1/015002

Lin CL, Arafune R, Kawahara K, Kanno M, Tsukahara N, Minamitani E, Kim Y, Kawai M, Takagi N, Substrate-induced symmetry breaking in silicene, Phys.Rev. Lett. 110 (2013) 076801. https://doi.org/10.1103/PhysRevLett.110.076801

Johnson NW, Vogt P, Resta A, De Padova P, Perez I, Muir D, Kurmaev EZ, Le Lay G, Moewes A, The metallic nature of epitaxial silicene monolayers on Ag (111), Adv. Funct.Mater. 24 (2014) 5253–5259. https://doi.org/10.1002/adfm.201400769

Majzik Z, Tchalala MR, Svec M, Hapala P, Enriquez H, Kara A, Mayne AJ, Dujardin G, Jelinek P, Oughaddou H, Combined AFM and STM measurements of a silicene sheet grown on the Ag (111) surface, J. Phys.: Condens. Matter. 25 (2013) 225301. https://doi.org/10.1088/0953-8984/25/22/225301

Hu W, Xia N, Wu X, Li Z, Yang J, Silicene as a highly sensitive molecule sensor for NH3, NO and NO2, Phys. Chem. Chem. Phys. 16 (2014) 6957–6962. https://doi.org/10.1039/C3CP55250K

Osborn TH, Farajian AA, Silicene nanoribbons as carbon monoxide nanosensors with molecular resolution, Nano Res. 7 (2014) 945–952. https://doi.org/10.1007/s12274-014-0454-7

Feng JW, Liu Y-J, Wang H-X, Zhao J-X, Cai Q-H, Wang X-Z, Gas adsorption on silicene: A theoretical study, Comput. Mater. Sci. 87 (2014) 218–226. https://doi.org/10.1016/j.commatsci.2014.02.025

Oughaddou H, Enriquez H, Tchalalaa MR, Yildirim H, Mayne AJ, Bendounan A, Dujardin G, Ait Ali M, Kara A, Silicene, a promising new 2D material, Prog. Surf. Sci. 90 (2015) 46–83. https://doi.org/10.1016/j.progsurf.2014.12.003

Ezawa M, Valley-polarized metals and quantum anomalous Hall effect in silicene, Phys. Rev. Lett. 109 (2012) 055502. https://doi.org/10.1103/PhysRevLett.109.055502

Pan L. Liu HJ, Tan XJ, Lv HY, Shi J, Tang XF, Zheng G, Thermoelectric properties of armchair and zigzag silicene nanoribbons, Phys. Chem. Chem. Phys. 14 (2012) 13588–13593. https://doi.org/10.1039/C2CP42645E

Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A, Akinwande D, Silicene field-effect transistors operating at room temperature, Nat. Nanotechnol. 10 (2015) 227–231. https://doi.org/10.1038/nnano.2014.325

Bai J, Tanaka H, Zeng XC, Graphene-like bilayer hexagonal silicon polymorph, Nano Res. 3 (2010) 694–700. https://doi.org/10.1007/s12274-010-0032-6

Fu H, Zhang J, Ding Z, Li H, S Meng S, Stacking-dependent electronic structure of bilayer silicene, Appl. Phys. Lett. 104 (2014) 131904. https://doi.org/10.1063/1.4870534

Luo W, Ma Y, Gong X, Xiang H, Prediction of silicon-based layered structures for optoelectronic applications, J. Am. Chem. Soc. 136 (2014) 15992–15997. https://doi.org/10.1021/ja507147p

Sakai Y, Oshiyama A, Structural stability and energy-gap modulation through atomic protrusion in freestanding bilayer silicene, Phys. Rev. B. 91 (2015) 201405. https://doi.org/10.1103/PhysRevB.91.201405

Pandey KC, New π-bonded chain model for Si(111)-(2×1) surface, Phys. Rev. Lett. 47 (1981) 1913–1917. https://doi.org/10.1103/PhysRevLett.47.1913

Stich I, Payne MC, King-Smith RD, Lin J-S, Clarke LJ, Ab initio total-energy calculations for extremely large systems: Application to the Takayanagi reconstruction of Si(111), Phys. Rev. Lett. 68 (1992) 1351–1354. https://doi.org/10.1103/PhysRevLett.68.1351

Brommer KD, Needels M, Larson BE, Joannopoulos JD, Ab initio theory of the Si(111)-(7×7) surface reconstruction: A challenge for massively parallel computation, Phys. Rev. Lett. 68 (1992) 1355–1358. https://doi.org/10.1103/PhysRevLett.68.1355

Takayanagi K, Tanishiro Y, Takahashi M, Takahashi S, Structural analysis of Si(111)‐7×7 by UHV‐transmission electron diffraction and microscopy, J. Vac. Sci. Technol. 4 (1985) 1502. https://doi.org/10.1116/1.573160

Takayanagi K, Tanishiro Y, Takahashi S, Takahashi M, Structure analysis of Si(111)-7 × 7 reconstructed surface by transmission electron diffraction, Surf. Sci. 164 (1985) 367–392. https://doi.org/10.1016/0039-6028(85)90753-8

Hybertsen MS, Louie SG, First-principles theory of quasiparticles: Calculation of band gaps in semiconductors and insulators, Phys. Rev. Lett. 55 (1985) 1418–1421. https://doi.org/10.1103/PhysRevLett.55.1418

De Padova P, Generosi A, Paci B, Ottaviani C, Quaresima C, Olivieri B, Salomon E, Angot T, Le Lay G, Multilayer silicene: clear evidence, 2D Materials. 3 (2016) 031011. https://doi.org/10.110310.1088/2053-1583/3/3/031011

Zheng F-B, Zhang C-W, The electronic and magnetic properties of functionalized silicene: a first-principles study, Nanoscale Res. Lett. 7 (2012) 422. https://doi.org/10.1186/1556-276X-7-422

Zhu J, Schwingenschlög U, Silicene for Na-ion battery applications, 2D Materials. 3 (2016) 035012. https://doi.org/10.1088/2053-1583/3/3/035012

Ding Y, Wang Y, Unusual structural and electronic properties of porous silicene and germanene: insights from first-principles calculations, Nanoscale Res. Lett. 10 (2015) 13. https://doi.org/10.1186/s11671-014-0704-3

Agubra V, Fergus J, Lithium ion battery anode aging mechanisms, Materials. 6 (2013) 1310−1325. https://doi.org/10.1186/10.3390/ma6041310

An SJ, Li J, Daniel C, Mohanty D, Nagpure S, Wood DL, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon. 105 (2016) 52−76. https://doi.org/10.1016/j.carbon.2016.04.008

Shi Q, Liu W, Qu Q, Gao T, Wang Y, Liu G, Battaglia VS, Zheng H, Robust solid/electrolyte interphase on graphite anode to suppress lithium inventory loss in lithium-ion batteries, Carbon. 111 (2017) 291−298. https://doi.org/10.1016/j.carbon.2016.10.008

Chang H, Wu Y-R, Han X, Yi T-F, Recent developments in advanced anode materials for lithium-ion batteries, Energy Mater. 1 (2021) 100003. https://doi.org/10.20517/energymater.2021.02

Kummer M, Badillo JP, Schmitz A, et al. Silicon/polyaniline nanocomposites as anode material for lithium ion batteries, J. Electrochem. Soc. 161 (2013) A40-A45. https://doi.org/10.1149/2.020401jes

Zhou L, Zhang K, Hu Z, et al. Recent Developments on and prospects for electrode materials with hierarchical structures for lithiumion batteries, Adv. Energy Mater. 8 (2018) 1701415. https://doi.org/10.1002/aenm.201701415

Kim H, Lee E, Sun Y, Recent advances in the Si-based nanocomposite materials as high capacity anode materials for lithium ion batteries, Mater. Today. 17 (2014) 285–297. https://doi.org/10.1016/j.mattod.2014.05.003

Su X, Wu Q, Li J, et al. Silicon-based nanomaterials for lithium-ion batteries: a review, Adv. Energy Mater. 4 (2014) 1300882. https://doi.org/10.1002/aenm.201300882

Terranova ML, Orlanducci S, Tamburri E, Guglielmotti V, Rossi M, Si/C hybrid nanostructures for Li-ion anodes: an overview, J. Power Sources. 246 (2014) 167-177. https://doi.org/10.1016/j.jpowsour.2013.07.065

Peng Q, Wen X-D, De S, Mechanical stabilities of silicene, RSC Adv. 3 (2013) 13772-13781. https://doi.org/10.1039/C3RA41347K

Yoo S.H, Lee B, Kang K, Density functional theory study of the mechanical behavior of silicene and development of a Tersoff interatomic potential model tailored for elastic behavior, Nanotechnology. 32 (2021) 295702. https://doi.org/10.1088/1361-6528/abf26d

Wortman JJ, Evans RA, Young's modulus, shear modulus, and Poisson's ratio in silicon and germanium, J. Appl. Phys. 36 (1965) 153–156. https://doi.org/10.1063/1.1713863

Zhang X, Xie H, Hu M, Bao H, Yue S et al. Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential, Phys. Rev. B. 89(5) (2014) 054310. https://doi.org/10.1103/PhysRevB.89.054310

Anufriev R, Wu Y, Ordonez-Miranda J, Nomura M, Nanoscale limit of the thermal conductivity in crystalline silicon carbide membranes, nanowires, and phononic crystals, NPG Asia Mater. 14 (2022) 35. https://doi.org/10.1038/s41427-022-00382-8

Jannatul Islam ASM, Sherajul Islam Md, Ferdous N, Park J, Hashimoto A, Vacancy-induced thermal transport in two-dimensional silicon carbide: a reverse non-equilibrium molecular dynamics study, Phys. Chem. Chem. Phys. 22 (2020) 13592–13602. https://doi.org/10.1039/D0CP00990C

Pender JP, Jha G, Youn DH, Ziegler JM, Andoni I, Choi EJ, Heller A, Dunn BS, Weiss PS, Penner RM, Mullins CB, Electrode degradation in lithium-ion batteries, ACS Nano. 14 (2020) 1243−1295. https://doi.org/10.1021/acsnano.9b04365

Ertural C, Stoffel RP, Muller PC, Vogt CA, Dronskowski R First-principles plane-wave-based exploration of cathode and anode materials for Li and Na-ion batteries involving complex nitrogen-based anions, Chem. Mater. 34(2) (2022) 652–668. https://doi.org/10.1021/acs.chemmater.1c03349

Budnyak TM, Slabon A, Sipponen MH, Lignin-inorganic interfaces: Chemistry and applications from adsorbents to catalysts and energy storage materials, ChemSusChem. 13(17) (2020) 4344‒4355. https://doi.org/10.1002/cssc.202000216

Lin D, Liu Y, Cui Y, Reviving the lithium metal anode for high-energy batteries, Nature Nanotechnol. 12(3) (2017) 194–206. https://doi.org/10.1038/nnano.2017.16

Lenchuk O, Adelhelm P, Mollenhauer D, New insights into the origin of unstable sodium graphite intercalation compounds, Phys. Chem. Chem. Phys. 21(35) (2019) 19378–19390. https://doi.org/10.1039/C9CP03453F

Li Y, Lu Y, Adelhelm P, Titirici M-M, Hu Y-S, Intercalation chemistry of graphite: Alkali metal ions and beyond, Chem. Soc. Rev. 48(17) (2019) 4655–4687. https://doi.org/10.1039/C9CS00162J

Kubota K, Dahbi M, Hosaka T, Kumakura S, Komaba S, Towards K-ion and Na-ion batteries as “Beyond Li-ion”, Chem. Rec. 18(4) (2018) 459–479. https://doi.org/10.1002/tcr.201700057

Wang Z, Selbach SM, Grande T, Van der Waals density functional study of the energetics of alkali metal intercalation in graphite, RSC Adv. 4(8) (2014) 4069–4079. https://doi.org/10.1039/C3RA47187J

Kim H, Yoon G, Lim K, Kang K, A comparative study of graphite electrodes using the co-intercalation phenomenon for rechargeable Li, Na and K batteries, Chem. Commun. 52(85) (2016) 12618–12621. https://doi.org/10.1039/C6CC05362A

DOI: https://doi.org/10.15826/elmattech.2022.1.005

Copyright (c) 2022 Alexander Y. Galashev

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.