Cover Image

Molecular dynamic study of the applicability of silicene lithium ion battery anodes: A review

Alexander Y. Galashev


Lithium-ion batteries (LIBs) are the main energy storage devices that have found wide application in the electrical, electronics, automotive and even aerospace industries. In practical applications, silicene has been put forward as an active anode material for LIBs. This is facilitated by its high theoretical capacitance, strength, and small volume change during lithiation. Thin-film materials containing two-layer silicene and intended for use in the LIB anode have been studied by the method of classical molecular dynamics. Among the important characteristics obtained is the fillability of the silicene anode (under the influence of an electric field), which was determined depending on the type of vacancy defects in silicene and the type of substrate used. Both metallic (Ag, Ni, Cu, Al) and non-metallic (graphite, silicon carbide) substrates are considered. The behavior of the self-diffusion coefficient of intercalated lithium atoms in a silicene channel as it is filled has been studied. Based on the construction of Voronoi polyhedra, the packing of lithium atoms and the state of the walls in the channel has been studied in detail. The change in the shape of silicene sheets, as well as the stresses in them caused by lithium intercalation, are analyzed. It has been established that two-layer silicene with monovacancies on a nickel substrate is the most optimum variant of the anode material. The results of this work may be useful in the development of new anode materials for new generation LIBs.


anode; molecular dynamics; self-diffusion; silicene; stress; structure

Full Text:



Chen H, Hautier G, Jain A, Moore C, et al., Carbonophosphates: A new family of cathode materials for Li-ion batteries identified computationally, Chem. Mater. 24(11) (2012) 2009–2016.

Kononova O, Huo H, He T, Rong Z, et al., Text-mined dataset of inorganic materials synthesis recipes, Sci. Data 6 (2019) 203.

Ferrari S, Loveridge M, Beattie SD, Jahn M, et al., Latest advances in the manufacturing of 3D rechargeable lithium microbatteries, J. Power Sources 286 (2015) 25–46.

Li W, Christiansen TL, Li C, Zhou Y, et al., High-power lithium-ion microbatteries from imprinted 3D electrodes of sub10 nm LiMn2O4/Li4Ti5O12 nanocrystals and a copolymer gel electrolyte, Nano Energy 52 (2018) 431–440.

Long J W, Dunn B, Rolison D R, White H S, 3D architectures for batteries and electrodes, Adv. Energy Mater. 10 (2020) 1–6.

Song SW, Lee KC, Park HY, High-performance flexible all-solid-state microbatteries based on solid electrolyte of lithium boron oxynitride, J. Power Sources 328 (2016) 311–317.

Jetybayeva A, Uzakbaiuly B, Mukanova A, Myung S-T, Bakenov Z, Recent advancements in solid electrolytes integrated into all-solid-state 2D and 3D lithium-ion microbatteries, J. Mater. Chem. A 9 (2021) 15140–15178.

Zhang T, He W, Zhang W, Wang T, et al., Designing composite solid-state electrolytes for high performance lithium ion or lithium metal batteries, Chem. Sci. 11(33) (2020) 8686-8707.

Zhang Y, Zhai W, Hu X, Jiang Y, et al., Application of Auger electron spectroscopy in lithium-ion conducting oxide solid electrolytes, Nano Res. 16(3) (2023) 4039–4048.

Zheng Y, Yao Y, Ou J, Li M, et al., A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures, Chem. Soc. Rev. 49 (2020) 8790–8839.

Chen CH, Xie S, Sperling E, Yang AS, et al., Stable lithium-ion conducting perovskite lithium–strontium–tantalum–zirconium–oxide system, Solid State Ionics 167 (2004) 263–272.

Grazioli D, Zadin V, Brandell D, Simone A, Electrochemical-mechanical modeling of solid polymer electrolytes: Stress development and non-uniform electric current density in trench geometry microbatteries, Electrochem. Acta 296 (2019) 1142–1162.

Han F, Westover AS, Yue J, Fan X, et al., High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes, Nat. Energy 4 (2019) 187–196.

Xia H, Wang HL, Xiao W, Lai MO, Lu L, Thin film Li electrolytes for all-solid-state micro-batteries, Int. J. Surf. Sci. Eng. 3 (2009) 23–43.

Kim KJ, Balaish M, Wadaguchi M, Kong L, Rupp JLM, Solid-state Li–metal batteries: Challenges and horizons of oxide and sulfide solid electrolytes and their interfaces, Adv. Energy Mater. 11 (2021) 2002689.

Xu RC, Xia XH, Zhang SZ, Xie D, et al., Interfacial challenges and progress for inorganic all-solid-state lithium batteries, Electrochim. Acta 284 (2018) 177–187.

Yan S, Yim C-H, Pankov V, Bauer M, et al., Perovskite solid-state electrolytes for lithium metal batteries, Batteries 7(4) (2021), 75.

Lu J, Li Y, Ding Y, Li-ion conductivity and electrochemical stability of A-site deficient perovskite-structured Li3x-yLa1-xAl1-yTiyO3 electrolytes, Mater. Res. Bull. 133 (2021) 111019.

Miyamoto K, Sasaki T, Nishi T, Itou Y, Takechi K, 3D-microbattery architectural design optimization using automatic geometry generator and transmission-line model, iScience 23 (2020) 101317.

Zadin V, Brandell D, Modelling polymer electrolytes for 3D-microbatteries using finite element analysis, Electrochim. Acta, 57 (2011) 237–243.

Boukamp BA, Lesh GC, Huggins RA, All‐solid lithium electrodes with mixed‐conductor matrix, J. Electrochem. Soc. 128 (1981) 725–729.

Liang B, Liu Y, Xu Y, Silicon-based materials as high capacity anodes for next generation lithium ion batteries, J. Power Sources 267 (2014) 469–490.

Wu H, Cui Y, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today 7 (2012) 414–429.

Tao L, Cinquanta E, Chiappe D, Grazianetti C, et al., Silicene field-effect transistors operating at room temperature, Nat. Nanotechnol. 10 (2015) 227–231.

Cinquanta E, Scalise E, Chiappe D, Grazianetti C, et al., Getting through the nature of silicene: An sp2–sp3 two-dimensional silicon nanosheet, J. Phys. Chem. C 117 (2013) 16719–16724.

Tsoutsou D, Xenogiannopoulou E, Golias E, Tsipas P, Dimoulas A, Evidence for hybrid surface metallic band in (4 × 4) silicene on Ag(111), Appl. Phys. Lett. 103 (2013) 231604.

Du Y, Zhuang J, Wang J, Li Z, et al., Quasi-freestanding epitaxial silicene on Ag(111) by oxygen intercalation, Sci. Adv. 2(7) (2016) e1600067. 10.1126/sciadv.1600067

Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K, Evidence of silicene in honeycomb structures of silicon on Ag(111), Nano Lett. 12 (2012) 3507–3511.

Jaroch T, Zdyb R, Temperature-dependent growth and evolution of silicene on Au ultrathin films—LEEM and LEED studies, Materials 15 (2022) 1610.

Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer W A, Gao H-J, Buckled silicene formation on Ir(111), Nano Lett. 13 (2013) 685–690.

Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y, Experimental evidence for epitaxial silicene on diboride thin films, Phys. Rev. Lett. 108 (2012) 245501.

Aizawa T, Suehara S, Otani S, Silicene on zirconium carbide (111), Phys. Chem. C 118 (2014) 23049–23057.

Chiappe D, Scalise E, Cinquanta E, Grazianetti C, et al., Two-dimensional Si nanosheets with local hexagonal structure on a MoS2 surface, Adv. Mater. 26 (2014) 2096-2101.

De Crescenzi M, Berbezier I, Scarselli M, Castrucci P, et al., Formation of silicene nanosheets on graphite, ACS Nano 10 (2016) 11163–11171.

Tritsaris G A, Kaxiras E, Meng S, Wang E, Adsorption and diffusion of lithium on layered silicon for Li-ion storage, Nano Lett. 13(5) (2013) 2258–2263.

De Souza LA, Monteiro de Castro G, Marques LF, Belchior JC, A DFT investigation of lithium adsorption on graphenes as a potential anode material in lithium-ion batteries, J. Mol. Graph. Model. 108 (2021) 107998.

Tritsaris G A, Zhao K, Okeke O U, Kaxiras E, Diffusion of lithium in bulk amorphous silicon: A theoretical study, J. Phys. Chem. C 116(42) (2012) 22212–22216.

Galashev AE, Zaikov YuP, Vladykin RG, Effect of electric field on lithium ion in silicene channel. Computer experiment, Rus. J. Electrochem. 52(10) (2016) 966–974.

Osborn TH, Farajian AA, Stability of lithiated silicene from first principles, J. Phys. Chem. C, 116 (2012) 22916–22920.

Tersoff J, Modelng solid-state chemistry: Interatomic potentials for multicomponent systems, Phys. Rev. B: Condens. Matter. Mater. Phys. 39 (1989) 5566–5568.

Galashev AY, Numerical simulation of functioning a silicene anode of a lithium-ion battery, J. Comp. Sci. 64 (2022) 101835.

Galashev AY, Ivanichkina K A, Rakhmanova O R, Advanced hybrid-structured anodes for lithium-ion batteries, Comp. Mater. Sci 200 (2021) 110771.

Galashev AY, Ivanichkina KA. Computer study of atomic mechanisms of intercalation/ deintercalation of Li ions in a silicene anode on an Ag (111) substrate, J. Electrochem Soc. 165 (2018) A1788–A1796.

Kawahara K, Shirasawa T, Arafune R, Lin C-L, et al., Determination of atomic positions in silicene on Ag(111) by low-energy electron diffraction, Surf. Sci. 623 (2014) 25–28.

Grazianetti C, Molle A, Engineering epitaxial silicene on functional substrates for nanotechnology, Research (Wash D C). 2019 (2019) 8494606.

Galashev AE, Rakhmanova OR, Numerical simulation of heating an aluminum film on two-layer grapheme, High Temp. 52 (2014) 374–380.

Galashev AY, Ivanichkina KA, Computer test of a new silicene anode for lithium-ion battery, ChemElectroChem 6(5) (2019) 1525–1535.

Liu H, Feng H, Du Y, Chen J, et al., Point defects in epitaxial silicene on Ag(111) surfaces, 2D Mater. 3 (2016) 025034.

Subramaniyan AK, Sun CT, Continuum interpretation of virial stress in molecular simulations, Int. J. Solids and Struct., 45 (2008) 4340–4346.

Plimpton S, Fast parallel algorithms for short-range molecular dynamics, J. Comp. Phys. 117 (1995) 1–19.

Takeda K, Shiraishi K, Theoretical possibility of stage corrugation in Si and Ge analogs of graphite, Phys. Rev. B 50 (1994) 14916–14922.

Vogt P, De Padova P, Quaresima C, Avila J, et al., Silicene: compelling experimental evidence for graphenelike two-dimensional silicon, Phys. Rev. Lett. 108 (2012) 155501.

Galashev AY, Vorob’ev AS, Ab initio study of the electronic properties of a silicene anode subjected to transmutation doping, Int. J. Mol. Sci. 24 (2023) 2864.

Galashev AY, Computer development of silicene anodes for litium-ion batteries: A review, Electrochem. Mater. Technol. 1 (2022) 20221005.

Galashev AE, Ivanichkina K A, Computer modeling of lithium intercalation and deintercalation in a silicene channel, Rus. J. Phys. Chem. A 93(4) (2019) 765–769.

Liao D, Kuang X, Xiang J, Wang X, A Silicon Anode Material with Layered Structure for the Lithium-ion Battery, J. Phys.: Conf. Ser. 986 (2018) 012024.

Zhang X, Wang D, Qiu X, Ma Y, Kong D, et al., Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation, Nat. Commun. 11 (2020) 3826.

Galashev AY, Vorob’ev AS, First principle modeling of a silicene anode for lithium ion batteries, Electrochim. Acta 378 (2021) 138143.

Xu S, Fan X, Liu J, Singh DJ, Jiang Q, Zheng W, Adsorption of Li on single-layer silicene for anodes of Li-ion batteries, Phys. Chem. Chem. Phys. 20 (2020) 8887−8896.

Galashev AY, Ivanichkina KA, Silicene anodes for lithium-ion batteries on metal substrates, J. Electrochem. Soc. 167 (2020) 050510.

Juan J, Fernández-Werner L, Bechthold P, Villarreal J, Gaztañaga F, Charged lithium adsorption on pristine and defective silicene: a theoretical study, J. Phys.: Condens. Matter. 34 (2022) 245001.

Galashev AE, Rakhmanova OR, Zaikov YuP, Defect silicene and graphene as applied to the anode of lithium-ion batteries: Numerical experiment, Phys. Solid State 58 (2016) 1850–1857.

Yu R, Zhai P, Li G, Liu L, Molecular dynamics simulation of the mechanical properties of single-crystal bulk Mg2Si, J. Electron. Mater. 41 (2012) 1465–1469.

Galashev AE, Ivanichkina KA, Nanoscale simulation of the lithium ion interaction with defective silicene, Phys. Lett. A 381 (2017) 3079–3083.

Chiang K-N, Chou C-Y, Wu C-J, Huang C-J, Yew M-C, Analytical solution for estimation of temperature-dependent material properties of metals using modified Morse potential, Comp. Model. Eng. Sci. 37(1) (2008) 85–96.

Das SK, Roy D, Sengupta S, Volume change in some substitutional alloys using Morse potential function, J. Phys. F: Metal. Phys. 7 (1977) 5–14.

Galashev AE, Ivanichkina KA, Vorob’ev AS, Rakhmanova OR, Structure and stability of defective silicene on Ag(001) and Ag(111) substrates: A computer experiment, Phys. Solid State 59 (2017) 1242–1252.

Galashev AE, Ivanichkina KA, Rakhmanova OR, Zaikov YuP, Physical aspects of the lithium ion interactionwith the imperfect silicene located on a silver substrate, Letters on Materials 8(4) (2018) 463–467. 10.22226/2410-3535-2018-4-463-467

Galashev AY, Ivanichkina KA, Computer study of silicene applicability in electrochemical devices, J. Struct. Chem. 61 (2020) 659–667.

Galashev AY, Ivanichkina KA, Computer study of silicene channel structure based on the transport of Li+, Rus. J. Phys. Chem. A 2021 95(4) (2021) 724–729.

Lee JK, Shin J-H, Lee H, Yoon WY, Characterization of nano silicon on nanopillar-patterned nickel substrate for lithium ion batteries, J. Electrochem. Soc., 161(10) (2014) A1480–A1485.

Lalmi B, Girardeaux C, Portavoce A, Ottaviani C, et al., Formation and stability of a two-dimensional nickel silicide on Ni (111): an Auger, LEED, STM, and high-resolution photoemission study, Phys. Rev. B 85 (2012) 245306.

Galashev AY, Zaikov YuP, New Si–Cu and Si–Ni anode materials for lithium-ion batteries, J. Appl. Electrochem. 49 (2019) 1027–1034.

Galashev AY, Computational investigation of silicene/nickel anode for lithium-ion battery, Solid State Ionics 357 (2020) 115463.

Galashev AY, Ivanichkina KA, Vorob’ev AS, Rakhmanova OR, et al., Improved lithium-ion batteries and their communication with hydrogen power, Int. J. Hydrogen Energy, 46(32) (2021) 17019–17036.

Galashev AY, Rakhmanova OR, Stability of a two-layer silicene on a nickel substrate upon intercalation of lithium, Glass Phys. Chem. 46(4) (2020) 321–328.

Galashev AY, Numerical simulation of functioning a silicene anode of a lithium-ion battery, J. Comp. Sci. 64 (2022) 101835.

Le MQ, Nguyen DT, The role of defects in the tensile properties of silicene, Appl. Phys. A 118 (2014) 1437–1445.

Rasmussen AA, Jensen JAD, Horsewell A, Somers MAJ, Microstructure in electrodeposited copper layers; the role of the substrate, Electrochim. Acta 47 (2001) 67–74.

Shen YF, Lu L, Lu QH, Jin ZH, Lu K, Tensile properties of copper with nano-scale twins, Scripta Mater. 59 (2005) 989–994.

Kaloyeros AE, Eisenbraun E, Ultrathin diffusion barriers/liners for gigascale copper metallization, Annu. Rev. Mater. Sci. 30 (2000) 363–385.

Martella C, Faraone G, Alam MH, Taneja D, et al., Disassembling silicene from native substrate and transferring onto an arbitrary target substrate, Adv. Funct. Mater. 30 (2020) 2004546.

Galashev AY, Ivanichkina KA, Computational investigation of a promising Si–Cu anode material, Phys.Chem.Chem.Phys. 21 (2019) 12310.

Galashev AE, Rakhmanova OR, Isakov AV, Molecular dynamic behavior of lithium atoms in a flat silicene pore on a copper substrate, Rus. J. Phys. Chem. B 14(4) (2020) 705–713.

Galashev AY, Structure of water clusters with captured methane molecules, Rus. J. Phys. Chem. B 8 (2014) 793–800.

Chavez-Castillo MR, Rodrıguez-Mezab MA, Meza-Montes L, Size, vacancy and temperature effects on Young’s modulus of silicone nanoribbons, RSC Adv. 5 (2015) 96052–96061.

Maranchi JP, Hepp AF, Kumta PN, High capacity reversible silicon thin film anodes lithium ion batteries, Electrochem. Solid-State Lett. 6 (2003) A198–A201.

Maranchi JP, Hepp AF, Evans AG, Nuhfer NT, Kumta PN, Interfacial properties of the a-Si/Cu: active–inactive thin-film anode system for lithium-ion batteries, J. Electrochem. Soc. 153 (2006) A1246–A1253.

Graetz J, Ahn CC, Yazami R, Fultz B, Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid-State Lett. 6 (2003) A194–A197.

Yao NP, Heredy LA, Saunders RC, Emf measurements of electrochemically prepared lithium‐aluminum alloy, J. Electrochem. Soc. 118 (1971) 1039.

Ji B, Zhang F, Sheng M, Tong X, Tang Y, A novel and generalized lithium-ion-battery configuration utilizing Al foil as both anode and current collector for enhanced energy density, Adv. Mater. 29 (2017) 1604219.

Li S, Niu J, Zhao YC, So KP, et al., High-rate aluminium yolk-shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity, Nature Commun. 6 (2015) 7872.

Galashev AE, Ivanichkina KA, Computer study of the properties of silicon thin films on graphite, Rus. J. Phys. Chem. A, 91(12) (2017) 2445–2449.

Galashev AE, Rakhmanova OR, Ivanichkina KA, Graphene and graphite supports for silicene stabilization: a computation study, J. Struct. Chem. 59(4) (2018) 877–883.

Galashev AE, Ivanichkina KA, Numerical simulation of the structure and mechanical properties of silicene layers on graphite during the lithium ion motion, Phys. Solid State 61(2) (2019) 233–243.

Skripov VP, Galashev AE, The structure of simple liquids, Rus. Chem. Rev. 52 (1983) 97–116.

Roman RE, Cranford SW, Mechanical properties of silicene, Comput. Mater. Sci. 82 (2014) 50–55.

Huang XD, Zhang F, Gan XF, Huang QA, et al., Electrochemical characteristics of amorphous silicon carbide film as a lithium-ion battery anode, RSC Adv. 8 (2018) 5189–5196.

Majid A, Fatima A, Khan SU-D, Khan S, Layered silicon carbide: a novel anode material for lithium ion batteries, New J. Chem. 45 (2021) 19105–19117.

Ibrahim N, Mohammed L, Ahmed R, Graphene-like silicon carbide layer for potential safe anode lithium ion battery: A first principle study, Science Talks 4 (2022) 100075.

Galashev AY, Rakhmanova OR, Two-layer silicene on the SiC substrate: Lithiation investigation in the molecular dynamics experiment, ChemPhysChem 23(18) (2022) e202200250.

Galashev AE, Computer test of a silicene/silicon carbide anode for a lithium ion battery, Rus. J. Phys. Chem. A 96(12) (2022) 2757–2762.

Mortazavi B, Dianat A, Cuniberti G, Rabczuk T, Application of silicene, germanene and stanene for Na or Li ion storage: A theoretical investigation, Electrochim. Acta 2013 (2016) 865–870.

Galashev AE, Computer simulation of a silicene anode on a silicene carbide substrate, Rus. J. Phys. Chem. B 17(1) (2023) 113–121.

Galashev AY, Vorob’ev AS, Electronic properties and structure of silicene on Cu and Ni substrates, Materials 15 (2022) 3863. https://

Galashev AY, Vorob’ev AS, DFT study of silicene on metal (Al, Ag, Au) substrates of various thicknesses, Phys. Lett. A 408(27) (2021) 127487.

Galashev AY, Vorob’ev AS, An ab initio study of lithization of two-dimensional silicon–carbon anode material for lithium-ion batteries, Materials 14 (2021) 6649.

Galashev AY, Vorob’ev AS, An ab initio study of the interaction of graphene and silicene with one-, two-, and three-layer planar silicon carbide, Physica E: Low Dimens. Syst. Nanostruct. 138 (2022) 115120.

Fatima A, Majid A, Haider S, Akhtar MS, Alkhedher M, First principles study of layered silicon carbide as anode in lithium ion battery, Quantum Chem. 122(11) (2022) e26895.

Leonova AM, Bashirov OA, Leonova NM, Lebedev AS, et al., Synthesis of C/SiC mixtures for composite anodes of lithium-ion power sources, Appl. Sci. 13(2) (2023) 901.

Liao HW, Karki K, Zhang Y, Cumings J, Wang YH, Interfacial mechanics of carbon nanotube@amorphous-Si coaxial nanostructures, Adv. Mater., 23 (2011) 4318–4322.

Simon GK, Maruyama B, Durstock MF, Burton DJ, Goswami T, Silicon-coated carbon nanofiber hierarchical nanostructures for improved lithium-ion battery anodes, J. Power Sources 196 (2011) 10254–10257.

Etacheri V, Geiger U, Gofer Y, Roberts GA, et al., Exceptional electrochemical performance of Si-nanowires in 1,3-dioxolane solutions: A surface chemical investigation, Langmuir 28 (2012) 6175–6184.

Du Y, Zhuang J, Liu H, Xu X, et al., Quasi-freestanding epitaxial silicene by oxygen intercalation, ACS Nano 8 (2014), 10019.

Kanno M, Arafune R, Lin CL, Minamitani E, et al., Electronic decoupling by h-BN layer between silicene and Cu(111): a DFT-based analysis New J. Phys. 16 (2014) 105019.

Dávila ME, Le Lay G, Silicene: Genesis, remarkable discoveries, and legacy, Materialstoday Adv. 16 (2022) 100312.

Martella C, Faraone G, Alam MH, Taneja D, et al. Disassembling silicene from native substrate and transferring onto an arbitrary target substrate, Adv. Funct. Mater. 30 (2020), 2004546.

Sahoo S, Sinha A, Koshi NA, Lee S-C, et al., Silicene: an excellent material for flexible electronics, J. Phys. D Appl. Phys. 55 (2022), 425301.

An Y, Tian Y, Wei C, Zhang Y, et al., Recent advances and perspectives of 2D silicon: synthesis and application for energy storage and conversion, Energy Storage Mater. 32 (2020) 115–150.

Rohaizad N, Mayorga-Martinez CC, Fojtu M, Latiff NM, Pumera M, Two-dimensional materials in biomedical, biosensing and sensing applications, Chem. Soc. Rev. 50 (2021) 619–657.

Priimägi P, Kasemägi H, Aabloo A, Brandell D, Zadin V, Thermal simulations of polymer electrolyte 3D Li-microbatteries, Electrochim. Acta 244 (2017) 129–138.

Su X, Guo K, Ma T, Tamirisa, P, et al., Deformation and chemomechanical degradation at solid electrolyte-electrode interfaces, ACS Energy Lett. 2(8) (2017) 1729–1733.

Natsiavas PP, Weinberg K, Rosato D, Ortiz M, Effect of prestress on the stability of electrode-electrolyte interfaces during charging in lithium batteries. J. Mech. Phys. Solid. 95 (2016) 92–111.

Guo M, Yuan C, Zhang T, Yu X, Solid-state electrolytes for rechargeable magnesium-ion batteries: From structure to mechanism, Small 18(43) (2022) 2106981.

Alipour M, Ziebert C, Conte FV, Kizilel R, A review on temperature-dependent electrochemical properties, aging, and performance of lithium-ion cells, Batteries 6(3) (2020) 35.

Galashev AY, Suzdaltsev AV, Ivanichkina K A, Design of the high performance microbattery with silicene anode, Mater. Sci. & Eng. B 261 (2020) 114718.


Copyright (c) 2023 Alexander Y. Galashev

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.