Cover Image

Heterovalent and isovalent doping of bilayer proton-conducting perovskite SrLa2Sc2O7

Nataliia A. Tarasova


Perovskite or perovskite-related structural materials are widely studied for their many functional properties. They can be used as components of energy sources such as solid oxide fuel cells. Along with classical perovskites, layered perovskites can also carry out high-temperature proton transport and are promising materials for use in electrochemical power engineering. In this paper, the possibility of heterovalent and isovalent doping of La and Sc sublattices of bilayer perovskite SrLa2Sc2O7 was made for the first time. It was shown that electrical conductivity increases in the row of bilayer perovskites SrLa2ScInO7 – SrLa2Sc2O7 – BaLa2In2O7 – BaNd2In2O7.


layered perovskite; oxygen-ion conductivity; proton conductivity; hydrogen energy; Ruddlesden-Popper structure

Full Text:



Zhang F, Zhu K, Additive Engineering for Efficient and Stable Perovskite Solar Cells Advanced Energy, Materials 10 (131) (2020) 1902579.

Kwon N, Lee J, Ko MJ, Kim YY, Seo J, Recent progress of eco-friendly manufacturing process of efficient perovskite solar cells, Nano Convergence 10 (1) (2023) 28.

Liu S, Biju VP, Qi Y, Chen W, Liu Z, Recent progress in the development of high-efficiency inverted perovskite solar cells, NPG Asia Materials 15 (1) (2023) 27.

Wu T, Qin Z, Wang Y et al., The Main Progress of Perovskite Solar Cells in 2020–2021, Nano-Micro Lett. 13 (2021) 152.

Liu XK, Xu W, Bai S et al., Metal halide perovskites for light-emitting diodes, Nat. Mater. 20 (2021) 10–21.

Li X, Gao X, Zhang X et al., Lead‐Free Halide Perovskites for Light Emission: Recent Advances and Perspectives, Advanced Science 8 (4) (2021) 2003334.

Zhang Q, Shang Q, Su R, Do TTH, Xiong Q, Halide Perovskite Semiconductor Lasers: Materials, Cavity Design, and Low Threshold, Nano Letters 21 (5) (2021) 1903–1914.

Liu D, Luo D, Iqbal A.N. et al., Strain analysis and engineering in halide perovskite photovoltaics, Nat. Mater. 20 (2021) 1337–1346.

Dey A, Ye J et al., State of the Art and Prospects for Halide Perovskite Nanocrystals, ACS Nano 15 (7) (2021) 10775–10981.

Li J, Duan J, Yang X, Duan Y, Yang P, Tang Q, Review on Recent Progress of Lead-Free Halide Perovskites in Optoelectronic Applications, Nano Energy 80 (2020) 105526.

Sun C, Alonso JA, Bian J, Recent Advances in Perovskite-Type Oxides for Energy Conversion and Storage Applications, Advanced Energy Materials 11 (2) (2021) 2000459.

Kaur P, Singh K, Review of perovskite-structure related cathode materials for solid oxide fuel cells, Ceramics International 46 (5) (2020) 5521–55351.

Ding P, Li W, Zhao H, Wu C, Zhao Li, Dong B, Wang S, Review on Ruddlesden-Popper perovskites as cathode for solid oxide fuel cells, J. Phys. Mater. 4 (2) (2021) 022002.

Hanif MB, Rauf S, Motola M, Babar ZUD, Li CJ, Li CX, Recent progress of perovskite-based electrolyte materials for solid oxide fuel cells and performance optimizing strategies for energy storage applications, Materials Research Bulletin 146 (2022) 111612,

Kasyanova AN, Zvonareva IA, Tarasova NA, Bi L, Medvedev DA, Shao Z, Electrolyte materials for protonic ceramic electrochemical cells: Main limitations and potential solutions, Mater. Rep. Energy 2 (2022) 100158.

Küngas R, Review – Electrochemical CO2 Reduction for CO Production: Comparison of Low- And High-Temperature Electrolysis Technologies, Journal of the Electrochemical Society 167 (4) (2020)

Kamkeng AND, Wang M, Hu J, Du W, Qian F, Transformation technologies for CO2 utilisation: Current status, challenges and future prospects, Chemical Engineering Journal 4091 (2021) 128138.

Younas M, Shafique S, Hafeez A, Javed F, Rehman F, An Overview of Hydrogen Production: Current Status, Potential, and Challenges, Fuel 31615 (2022) 123317.

Hossain MK, Chanda R, El-Denglawey A., Emrose T, Rahman MT, Biswas MC, Hashizume K, Recent progress in barium zirconate proton conductors for electrochemical hydrogen device applications: A review, Ceramics International 47 (17) (2021) 23725–237481.

Hanif MB, Rauf S, Abadeen Z et al., Proton-conducting solid oxide electrolysis cells: Relationship of composition-structure-property, their challenges, and prospects, Matter 6 (6) (2023) 1782–1830.

Nayak AK, Sasmal A, Recent advance on fundamental properties and synthesis of barium zirconate for proton conducting ceramic fuel cell, Journal of Cleaner Production 386 (2023) 135827.

Rasaki SA, Liu C, Lao C, Chen Z, A review of current performance of rare earth metal-doped barium zirconate perovskite: The promising electrode and electrolyte material for the protonic ceramic fuel cells, Progress in Solid State Chemistry 63 (2021) 100325.

Hossain MK, Biswas MC, Chanda RK et al. A review on experimental and theoretical studies of perovskite barium zirconate proton conductors, Emergent Mater. 4 (2021) 999–1027,

Vera CYR, Ding H, Peterson D et al., A mini-review on proton conduction of BaZrO3-based perovskite electrolytes, J. Phys. Energy 3 (2021) 032019,

Fujii K, Esaki Y, Omoto K, Yashima M, Hoshikawa A, Ishigaki T, Hester JR, New Perovskite-Related Structure Family of Oxide-Ion Conducting Materials NdBaInO4, Chem. Mater. 26 (2014) 2488−2491.

Fujii K, Shiraiwa M, Esaki Y, Yashima M, Kim SJ, Lee S, Improved oxide-ion conductivity of NdBaInO4 by Sr doping, J. Mater. Chem. A 3 (2015) 11985.

Troncoso L, Alonso JA, Aguadero A, Low activation energies for interstitial oxygen conduction in the layered perovskites La1+xSr1-xInO4+d, J. Mater. Chem. A 3 (2015) 7797–17803.

Troncoso L, Alonso JA, Fernández-Díaz MT, Aguadero A, Introduction of interstitial oxygen atoms in the layered perovskite LaSrIn1-xBxO4+δ system (B=Zr, Ti), Solid State Ion. 282 (2015) 82–87.

Ishihara T, Yan Y, Sakai T, Ida S, Oxide ion conductivity in doped NdBaInO4, Solid State Ion. 288 (2016) 262–265.

Yang X, Liu S, Lu F, Xu J, Kuang X, Acceptor Doping and Oxygen Vacancy Migration in Layered Perovskite NdBaInO4-Based Mixed Conductors, J. Phys. Chem. C 120 (2016) 6416–6426.

Fijii K, Yashima M, Discovery and development of BaNdInO4—A brief review, J. Ceram. Soc. Jpn. 126 (2018) 852–859.

Troncoso L, Mariño C, Arce MD, Alonso JA, Dual Oxygen Defects in Layered La1.2Sr0.8-xBaxInO4+d (x = 0.2, 0.3) Oxide-Ion Conductors: A Neutron Diffraction Study, Materials 12 (2019) 1624.

Tarasova N, Animitsa I, Galisheva A, Korona D, Incorporation and Conduction of Protons in Ca, Sr, Ba-Doped BaLaInO4 with Ruddlesden-Popper Structure, Materials 12 (2019) 1668.

Troncoso L, Arce MD, Fernández-Díaz MT, Mogni LV, Alonso JA, Water insertion and combined interstitial-vacancy oxygen conduction in the layered perovskites La1.2Sr0.8-xBaxInO4+δ, New J. Chem. 43 (2019) 6087–6094.

Zhou Y, Shiraiwa M, Nagao M, Fujii K, Tanaka I, Yashima M, Baque L, Basbus JF, Mogni LV, Skinner SJ, Protonic Conduction in the BaNdInO4 Structure Achieved by Acceptor Doping, Chem. Mater. 33 (2021) 2139–2146.

Shiraiwa M, Kido T, Fujii K, Yashima M, High-temperature proton conductors based on the (110) layered perovskite BaNdScO4, J. Mat. Chem. A 9 (2021) 8607.

Tarasova NA, Animitsa IE, Galisheva AO, Medvedev DA, Layered and hexagonal perovskites as novel classes of proton-conducting solid electrolytes. A focus review, Electrochem. Mater. Technol. 1 (2022) 20221004.

Tarasova N, Galisheva A, Animitsa I, Korona D, Davletbaev K, Novel proton-conducting layered perovskite based on BaLaInO4 with two different cations in B-sublattice: Synthesis, hydration, ionic (O2+, H−) conductivity, International journal of hydrogen energy 47 (44) (2022) 1897–18982.

Tarasova N, Galisheva A, Animitsa I, Ba2+/Ti4+-co-doped layered perovskite BаLaInO4: The structure and ionic (O2−, H+) conductivity. Int. J. Hydrog. Energy 46 (2021) 16868−16877.

Tarasova N, Animitsa I, Materials AIILnInO4 with Ruddlesden-Popper Structure for Electrochemical Applications: Relationship between Ion (Oxygen-Ion, Proton) Conductivity, Water Uptake, and Structural Changes, Materials 15 (1) (2022) 114.

Tarasova N, Galisheva A, Animitsa I, Belova K, Egorova A, Abakumova E, Medvedev D, Layered Perovskites BaM2In2O7 (M = La, Nd): From the Structure to the Ionic (O2–, H+) Conductivity, Materials 15 (2022) 3488.

Tarasova N, Layered Perovskites BaLnnInnO3n+1 (n = 1, 2) for Electrochemical Applications: A Mini Review, Membranes 13 (2023) 34.

Tarasova N, Bedarkova A, Animitsa I, Abakumova E, Cation and oxyanion doping of layered perovskite BaNd2In2O7: oxygen-ion and proton transport, International journal of hydrogen energy 48 (59) (2023) 22522–22530.

Tarasova N, Bedarkova A, Animitsa I, Abakumova E, Gnatyuk V, Zvonareva I, Novel Protonic Conductor SrLa2Sc2O7 with Layered Structure for Electrochemical Devices, Materials 15 (2022) 8867.

Shannon RD, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A32 (1976) 751–767.


Copyright (c) 2023 Nataliia A. Tarasova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.