Cover Image

Molecular dynamics simulation of the Ni – FLiNaK interface: adsorption layers as origin of metal passivity

Dmitry O. Zakiryanov, Mikhail A. Kobelev

Abstract


The method of classical molecular dynamics was used to study the Ni (solid) – FliNaK (melt) phase separation boundary at temperatures of 800 K, 1000K , and 1200 K. An ab initio-based pairwise model is developed to describe the interactions that take place at the Ni – FLiNaK interface. It was shown that at temperatures of 800 K and 1000 K, lithium and fluorine ions are predominantly adsorbed on the nickel surface in the form of a two-dimensional ordered structure. Such a dense layer prevents the dissolution of nickel and the metal solid has no defects in the surface layer. However, at a temperature of 1200 K the structure of the adsorption layer is noticeably disturbed with the partial replacement of lithium ions by sodium ones. Along with higher temperature, this leads to the formation of point defects and degradation of the surface layers of the nickel crystal lattice.

https://doi.org/10.15826/elmattech.2023.2.023


Keywords


FLiNaK; double layer; molecular dynamics; passivation; adsorption

Full Text:

PDF

References


Olson L, Sridharan K, Anderson M, Allen T, Nickel-plating for active metal dissolution resistance in molten fluoride salts, J. Nucl. Mater., 411 (2011) 51–59. https://doi.org/10.1016/j.jnucmat.2011.01.032

Wang Y, Zhang S, Ji X, Wang P, et al., Material corrosion in molten fluoride salts, Int. J. Electrochem. Sci., 13 (2018) 4891–4900. https://doi.org/10.1016/10.20964/2018.05.33

DorMahammadi H, Pang Q, Murkute P, Arnadottir L, et al., Investigation of chloride-induced depassivation of iron in alkaline media by reactive force field molecular dynamics, Materials Degradation, 3 (2019) 19. https://doi.org/10.1038/s41529-019-0081-6

Dong C, Ji Y, Wei X, Xu A, et al., Integrated computation of corrosion: Modelling, simulation and applications, Corrosion Communications, 2 (2021) 8–23. https://doi.org/10.1016/j.corcom.2021.07.001

Rudenko A, Redkin A, Il’ina E, Pershina S, et al., Thermal conductivity of FLiNaK in a molten state, Materials, 15 (2022) 5603. https://doi.org/10.3390/ma15165603

Ghods P, Isgor OB, Brown JR, Bensebaa F, et al., XPS depth profiling study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties, Appl. Surface Sci., 257 (2011) 4669–4677. https://doi.org/10.1016/j.apsusc.2010.12.120

Zakiryanov D, Kobelev M, Tkachev N, Melting properties of alkali halides and the cation-anion size difference: A molecular dynamics study, Fluid Phase Equil., 506 (2020) 112369. https://doi.org/10.1016/j.fluid.2019.112369

Zakiryanov DO, Applying the Born-Mayer model to describe the physicochemical properties of FLiNaK ternary melt, Comp. Theor. Chem., 1219 (2023) 113951. https://doi.org/10.1016/j.comptc.2022.113951

Foiles SM, Baskes MI, Daw MS, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, Phys. Rev. B, 33 (1986) 7983–7991. https://doi.org/10.1103/PhysRevB.33.7983

Morse PM, Diatomic molecules according to the wave mechanics. II. Vibrational levels, Phys. Rev., 34 (1929) 57–64. https://doi.org/10.1103/PhysRev.34.57

Latorre CA, Ewen JP, Gattinoni C, Dini D, Simulating surfactant – iron oxide interfaces: From density functional theory to molecular dynamics, J. Phys. Chem. B, 123 (2019) 6870–6881. https://doi.org/10.1021/acs.jpcb.9b02925

Guymon CG, Rowley RL, Harb JN, Wheeler DR, Simulating an electrochemical interface using charge dynamics, Cond. Matter Phys., 8(2) (2005) 335–356. https://doi.org/10.5488/CMP.8.2.335

Adamo C, Barone V, Toward reliable density functional methods without adjustable parameters: The PBE0 model, J. Chem. Phys., 110 (1999) 6158–6170. https://doi.org/10.1063/1.478522

Grimme S, Antony J, Ehrlich S, Krieg H, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys., 132 (2010) 154104. https://doi.org/10.1063/1.3382344

Weigend F, Accurate coulomb-fitting basis sets for H to Rn, Phys. Chem. Chem. Phys., 8 (2006) 1057–1065. https://doi.org/10.1039/B515623H

Nosé S, Constant temperature molecular dynamics methods, Prog. Theor. Phys. Supp., 103 (1991) 1–46. https://doi.org/10.1143/PTPS.103.1

Thompson HM, Aktulga R, Berger DC, Bolintineanu WM, et al., LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales, Comp. Phys. Comm., 271 (2022) 10817. https://doi.org/10.1016/j.cpc.2021.108171

Fumi FG, Tosi MP, Ionic sizes and born repulsive parameters in the NaCl-type alkali halides – I The Huggins-Mayer and Pauling forms, J. Phys. Chem. Solids., 25 (1964) 31–43. https://doi.org/10.1016/0022-3697(64)90159-3

Cahn R, Crystal defects and melting, Nature, 273 (1978) 491–492. https://doi.org/10.1038/273491b0




DOI: https://doi.org/10.15826/elmattech.2023.2.023

Copyright (c) 2023 Dmitry O. Zakiryanov, Mikhail A. Kobelev

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.