Cover Image

Co-doping effect on the microstructural and electrical properties of barium stannate materials

George N. Starostin, Mariam T. Akopian, Inna A. Starostina, Dmitry A. Medvedev


Proton-conducting perovskite oxides are of considerable interest to researchers as promising electrolytes for low- and intermediate solid oxide electrochemical cells. Therefore, designing new potential proton-conducting phases and improving the functional properties of known materials are of great importance from both fundamental and applied viewpoints. In the present work, BaSnO3 was selected as a reference proton-conducting system and then a co-doping strategy was employed to analyze ‘composition – structure – microstructure – transport properties’ relationships. To perform such an analysis, the properties of previously studied BaSn0.7M0.3O3δ (M = In, Sc, Y) compounds were compared here to their co-doped derivatives, BaSn0.7In0.15Sc0.15O3δ, BaSn0.7Y0.15Sc0.15O3δ, and BaSn0.7In0.15Y0.15O3δ. It is found that the type of dopant affects the materials sinterability, when more coarse-crystalline ceramics are formed with increasing the average ionic radii at the Sn-position. The introduction of Y3+-cations reduces both ionic and hole conductivities compared to single-doped with In3+ or Sc3+ barium stannate materials. However, simultaneous doping with In3+/Sc3+ cations minimizes the contribution of hole conductivity compared to that of Sc-doped barium stannate with the same acceptor dopant concentration.


BaSnO3; perovskite; proton transport; PCFCs; PCECs; conductivity

Full Text:



Filippov SP, Yaroslavtsev AB, Hydrogen energy: development prospects and materials, Russ. Chem. Rev., 90(6) (2021) 627–643.

Ishaq H, Dincer I, Crawford C, A review on hydrogen production and utilization: challenges and opportunities, Int. J. Hydrogen Energy, 47(62) (2022) 26238–26264.

Hauch A, Küngas R, Blennow P, Hansen AB et al., Recent advances in solid oxide cell technology for electrolysis, Science, 370(6513) (2020) eaba6118.

Gómez SY, Hotza D, Current developments in reversible solid oxide fuel cells, Renew. Sustain. Energy Rev., 61 (2016) 155–174.

da Silva FS, de Souza TM, Novel materials for solid oxide fuel cell technologies: A literature review, Int. J. Hydrogen Energy, 42(41) (2017) 26020–26036.

Zhang J, Ricote S, Hendriksen PV, Chen Y, Advanced materials for thin‐film solid oxide fuel cells: recent progress and challenges in boosting the device performance at low temperatures, Adv. Funct. Mater., 32(22) (2022) 2111205.

Hossain S, Abdalla AM, Jamain SNB, Zaini JH et al., A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells, Renew. Sustain. Energy Rev., 79 (2017) 750–764.

Zhang W, Hu YH, Progress in proton‐conducting oxides as electrolytes for low‐temperature solid oxide fuel cells: from materials to devices, Energy Sci. & Eng., 9(7) (2021) 984–1011.

Wang Y, Chesnaud A, Bevillon E, Dezanneau G, Properties of Y-doped BaSnO3 proton conductors, Solid State Ion., 214 (2012) 45–55.

Kim J, Sengodan S, Kim S, Kwon O et al., Proton conducting oxides: A review of materials and applications for renewable energy conversion and storage, Renew. Sustain. Energy Rev., 109 (2019) 606–618.

Kreuer KD, Proton-conducting oxides, Annu. Rev. Mater. Res., 33(1) (2003) 333–359.

Wang S, Shen J, Zhu Z, Wang Z et al., Further optimization of barium cerate properties via co-doping strategy for potential application as proton-conducting solid oxide fuel cell electrolyte, J. Power Sources, 387 (2018) 24–32.

Fabbri E, Markus I, Bi L, Pergolesi D et al., Tailoring mixed proton-electronic conductivity of BaZrO3 by Y and pr co-doping for cathode application in protonic SOFCs, Solid State Ion., 202(1) (2011) 30–35.

Wang Y, Chesnaud A, Bevillon E, Huang J et al., Preparation and characterization of In-substituted BaSnO3 compounds, Funct. Mater. Lett., 06(04) (2013) 1350041. http:/

Ito T, Nagasaki T, Iwasaki K, Yoshino M et al., Location of deuterium atoms in BaSn0.5In0.5O2.75+δ at 77–473 K by neutron powder diffraction, Solid State Ion., 178(7-10) (2007) 607–613.

Igawa N, Kodama K, Taguchi T, Yoshida Y et al., Local disorder in proton conductor BaSn0.5In0.5O2.75 analyzed by neutron diffraction/atomic pair distribution function, Trans. Mater. Res. Soc. Jpn., 43(6) (2018) 329–332.

Nakamura M, Watanabe H, Akamatsu H, Fujii K et al., Sn-based Perovskite with a wide Visible-light Absorption band Assisted by hydride Doping, Chem. Mater., 33(10) (2021) 3631–3638.

Nakamura M, Akamatsu H, Fujii K, Nambu Y et al., Synthesis of Hydride-doped Perovskite stannate with visible Light absorption Capability, Inorg. Chem., 61(17) (2022) 6584–6593.

Zvonareva IA, Mineev AM, Tarasova NA, Fu XZ et al., High-temperature transport properties of BaSn1–xScxO3–δ ceramic materials as promising electrolytes for protonic ceramic fuel cells, J. Adv. Ceram., 11(7) (2022) 1131–1143.

Kinyanjui FG, Norberg ST, Knee CS, Ahmed I et al., Crystal structure and proton conductivity of BaSn0.6Sc0.4O3–δ: insights from neutron powder diffraction and solid-state NMR spectroscopy, J. Mater. Chem. A, 4(14) (2016) 5088–5101.

Wang Y, Su T, Liu W, Dong Y et al., Effect of zn contents on the microstructure and electrical properties of

BaSn0.5Y0.5–xZnxO2.75 (x=0–0.04), Ceram. Int., 41(1) (2015) 481–486.

Wang Y, Su T, Liu W, Chang Q et al., Effect of indium content on the properties of BaSn0.5Y0.5–xInxO2.75 proton conductor, Ceram. Int., 41(5) (2015) 6863–6868.

Lu N, Zhang Z, Wang Y, Li HB et al., Enhanced low-temperature proton conductivity in hydrogen-intercalated brownmillerite oxide, Nat. Energy, 7(12) (2022) 1208–1216.

Kochetova N, Animitsa I, Medvedev D, Demin A et al., Recent activity in the development of proton-conducting oxides for high-temperature applications, RSC Adv., 6(77) (2016) 73222–73268.

Zvonareva IA, Starostin GN, Akopian MT, Vdovin GK et al., Ionic and electronic transport of dense Y-doped barium stannate ceramics for high-temperature applications, J. Power Sources, 565 (2023) 232883.

Yang JH, Kim DH, Kim BK, Kim YC, High activation energy for proton migration at ∑3111/11¯0 tilt grain boundary in barium zirconate, Solid State Ion., 252 (2013) 126–131.

Zvonareva IA, Kasyanova AV, Tarutin AP, Vdovin GK et al., Enhanced transport properties of Sn‐substituted proton‐conducting BaZr0.8Sc0.2O3–δ ceramic materials, J. Am. Ceram. Soc., 105(3) (2022) 2105–2115.

Klinkova LA, Nikolaichik VI, Barkovskii NV, Fedotov VK, On the existence of a homologous series of BamCum+nOy oxides with the cubic structure of the BaCuO2 oxide, Phys. C Supercond., 470(22) (2010) 2067–2071.

Yang CF, Lo SH, Grain growth for CuO-BaO mixtures added BaTi1+xO3+2x ceramics, Mater. Res. Bull., 32(12) (1997) 1713–1722.

Amsif M, Marrero-Lopez D, Ruiz-Morales JC, Savvin SN et al., Influence of rare-earth doping on the microstructure and conductivity of BaCe0.9Ln0.1O3–δ proton conductors, J. Power Sources, 196(7) (2011) 3461–3469.

Gilardi E, Fabbri E, Bi L, Rupp JLM et al., Effect of dopant–host ionic radii mismatch on acceptor-doped barium zirconate microstructure and proton conductivity, J. Phys. Chem. C, 121(18) (2017) 9739–9747.

Lv J, Wang L, Lei D, Guo H et al., Sintering, chemical stability and electrical conductivity of the perovskite proton conductors BaCe0.45Zr0.45M0.1O3–δ (M=In, Y, Gd, Sm), J. Alloys Compd., 467(1-2) (2009) 376–382.

Zvonareva IA, Medvedev DA, Proton-conducting barium stannate for high-temperature purposes: A brief review, J. Eur. Ceram. Soc., 43(2) (2023) 198–207.

Fabbri E, Pergolesi D, Traversa E, Materials challenges toward proton-conducting oxide fuel cells: a critical review, Chem. Soc. Rev., 39(11) (2010) 4355.

Han D, Toyoura K, Uda T, Protonated BaZr0.8Y0.2O3–δ: impact of hydration on electrochemical Conductivity and local Crystal Structure, ACS Appl. Energy Mater., 4(2) (2021) 1666–1676.

Sun W, Liu M, Liu W, Chemically stable yttrium and tin co‐doped barium zirconate electrolyte for next generation high performance proton‐conducting solid oxide fuel cells, Adv. Energy Mater., 3(8) (2013) 1041–1050.

Kasyanova AV, Zvonareva IA, Tarasova NA, Bi L et al., Electrolyte materials for protonic ceramic electrochemical cells: main limitations and potential solutions, Mater. Rep.: Energy, 2(4) (2022) 100158.

Qiu R, Lian W, Ou Y, Tao Z et al., Multifactor theoretical analysis of current leakage in proton-conducting solid oxide fuel cells, J. Power Sources, 505 (2021) 230038.

Oishi M, Akoshima S, Yashiro K, Sato K et al., Defect structure analysis of B-site doped perovskite-type proton conducting oxide BaCeO3, Solid State Ion., 179(39) (2008) 2240–2247. http:/

Oishi M, Akoshima S, Yashiro K, Sato K et al., Defect structure analysis of proton-oxide ion mixed conductor BaCe0.9Nd0.1O3−δ, Solid State Ion., 181(29-30) (2010) 1336–1343.

Lim DK, Park CJ, Choi MB, Park CN et al., Partial conductivities of mixed conducting BaCe0.65Zr0.2Y0.15O3–δ, Int. J. Hydrogen Energy, 35(19) (2010) 10624–10629.

Zvonareva IA, Tarutina LR, Vdovin GK, Lyagaeva JG et al., Heavily Sn-doped barium cerates BaCe0.8–xSnxYb0.2O3–δ: correlations between composition and ionic transport, Ceram. Int., 47(18) (2021) 26391–26399.

Zhu Z, Wang S, Investigation on samarium and yttrium co-doping barium zirconate proton conductors for protonic ceramic fuel cells, Ceram. Int., 45(15) (2019) 19289–19296.

Qin G, Bao J, Gao J, Ruan F et al., Enhanced grain boundary conductivity of Gd and Sc co-doping BaZrO3 proton conductor for proton ceramic fuel cell, Chem. Eng. J., 466 (2023) 143114.

Lesnichyova AS, Belyakov SA, Stroeva AY, Kuzmin AV, Proton conductivity and mobility in Sr-doped LaScO3 perovskites, Ceram. Int., 47(5) (2021) 6105–6113.

Kasyanova AV, Lyagaeva JG, Vdovin GK, Murashkina AA et al., Transport properties of LaYbO3-based electrolytes doped with alkaline earth elements, Electrochimica Acta, 439 (2023) 141702.

Lesnichyova A, Stroeva A, Belyakov S, Farlenkov A et al., Water uptake and transport properties of La1–xCaxScO3–α proton-conducting oxides, Materials, 12(14) (2019) 2219. http:/

Ding Y, Li Y, Huang W, Influence of grain interior and grain boundaries on transport properties of scandium‐doped calcium zirconate, J. Am. Ceram. Soc., 103(4) (2020) 2653–2662.

Lyagaeva J, Danilov N, Korona D, Farlenkov A et al., Improved ceramic and electrical properties of CaZrO3-based proton-conducting materials prepared by a new convenient combustion synthesis method, Ceram. Int., 43(9) (2017) 7184–7192.

Khaliullina A, Meshcherskikh A, Dunyushkina L, Effect of cation nonstoichiometry on hydration and charge transport processes in Yb-doped SrZrO3 perovskite-type proton conductor for ceramic electrochemical cells, Processes, 11(10) (2023) 2939.

Lu J, Wang L, Fan L, Li Y et al., Chemical stability of doped BaCeO3-BaZrO3 solid solutions in different atmospheres, J. Rare Earths, 26(4) (2008) 505–510.

Medvedev DA, Lyagaeva JG, Gorbova EV, Demin AK et al., Advanced materials for SOFC application: strategies for the development of highly conductive and stable solid oxide proton electrolytes, Prog. Mater. Sci., 75 (2016) 38–79.

Copyright (c) 2024 George N. Starostin, Mariam T. Akopian, Inna A. Starostina, Dmitry A. Medvedev

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.