Improving the quality of the industrial enterprise management based on the network-centric approach
Abstract
The article examines the network-centric approach to the industrial enterprise management to improve the ef ciency and effectiveness in the implementation of production plans and maximize responsiveness to customers. A network-centric management means the decentralized enterprise group management. A group means a set of enterprise divisions, which should solve by joint efforts a certain case that occurs in the production process. The network-centric management involves more delegation of authority to the lower elements of the enterprise’s organizational structure.
The industrial enterprise is considered as a large complex system (production system) functioning and controlled amidst various types of uncertainty: information support uncertainty and goal uncertainty or multicriteria uncertainty. The information support uncertainty occurs because the complex system functioning always takes place in the context of incomplete and fuzzy information. Goal uncertainty or multicriteria uncertainty caused by a great number of goalsestablished for the production system.
The network-centric management task de nition by the production system is formulated. The authors offer a mathematical model for optimal planning of consumers’ orders production with the participation of the main enterprise divisions. The methods of formalization of various types of uncertainty in production planning tasks are considered on the basis of the application of the fuzzy sets theory. An enterprise command center is offered as an effective tool for making management decisions by divisions.
The article demonstrates that decentralized group management methods can improve the ef ciency and effectiveness of the implementation of production plans through the self-organization mechanisms of enterprise divisions.
Keywords
Full Text:
PDFReferences
Tatarkin, A. I. (2014). Dialektika gosudarstvennogo i rynochnogo regulirovaniya sotsialno-ekonomicheskogo razvitiya regionov i munitsipalitetov [Dialectics of state and market regulation of the socio-economic development of regions and municipalities]. Ekonomika regiona [Economy of region], 1, 9–33.
Gorskiy, Yu. M. (1988). Sistemno-informatsionnyy analiz protsessov upravleniya [Systemic information analysis of management processes]. Novosibirsk: Nauka Publ., 327.
Gud, G. Kh. & Makol, R. E. (1962). Sistemotekhnika. Vvedenie v proektirovanie bolshikh system [System technique. Introduction to the large system design]. Moscow: Sovetskoye radio Publ., 383.
Meyerovich, G. A. (1985). Effekt bolshikh system [Effect of large systems]. Moscow: Znanie Publ., 192.
Burkov, V. N. et al. (1989). Bolshie sistemy: modelirovanie organizatsionnykh mekhanizmov [Large-scale systems: modeling of organizational mechanisms]. Moscow: Nauka Publ., 245.
Kalashnikov, V. V. (1980). Slozhnyye sistemy i metody ikh analiza [Complex systems and methods of their analysis]. Moscow: Znanie Publ., 64.
Quade, E. (1969). Analiz slozhnykh system [Complex system analysis]. Moscow: Sovetskoye radio Publ., 520.
Peregudov, F. I. & Tarasenko, F. P. (1989). Vvedenie v sistemnyy analiz [Introduction in the system analysis]. Moscow: Vysshaya shkola Publ., 360.
Milner, B. Z. (2004). Teoriya organizatsii [Organization theory]. Moscow: INFRA-M Publ., 648.
Novikov, D. A. (2007). Teoriya upravleniya organizatsionnymi sistemami [Organizational system management theory]. Moscow: Physic and Mathematical Literature Publ., 584.
Borisov, A. N. et al. (1982). Modeli prinyatiya resheniy na osnove lingvisticheskoy peremennoy [Decision making models based on linguistic variable]. Riga: Zinatne Publ., 256.
Dyachko, A. G. (2007). Matematicheskoye i imitatsionnoye modelirovanie proizvodstvennykh system [Mathematical and simulation modeling of production systems]. Moscow: MISIS Publ., 540.
APICS Dictionary, 6th ed. (1987). American Production and Inventory Control Society.
Gavrilov, D. A. (2002). Upravlenie proizvodstvom na baze standarta MRP II [Production management based on MRP II standard]. St. Petersburg: Piter Publ., 352.
Kalyaev, I. A., Gayduk, A. R. & Kupustyan, S. G. (2009). Metody i modeli kollektivnogo upravleniya v gruppakh robotov [Methods and models of team management in the robot group]. Moscow: FIZMATLIT Publ., 280.
Kalyaev, I. A., Kupustyan, S. G. & Gayduk, A. R. (2011). Samoorganizuyushchiesya raspredelennye sistemy upravleniya gruppami intellektualnykh robotov, postroennyye na osnove setevoy modeli [Self-organizing distributed systems of control of groups of intelligent robots that are based on the network model]. Setevyye modeli v upravlenii [Network models in management]. Moscow: Egves Publ., 57–89.
Goldberg, D., Cicirello, V., Dias, M. B., Simmons, R., Smith, S. & Stentz, A. (2003). Market-Based Multi-Robot Planning in a Distributed Layered Architecture. Multi-Robot Systems: From Swarms to Intelligent Automata: Proceedings from the 2003 International Workshop on Multi-Robot Systems, 2, Kluwer Academic Publishers, 27–38.
Fedoseev, S. A., Gitman, M. B., Stolbov, V. Yu. & Vozhakov, A. V. (2011). Upravlenie kachestvom produktsii na sovremennykh promyshlennykh predpriyatiyakh: monografiya [Product quality control in modern industrial enterprises: monograph]. Perm: Perm National Research Polytechnic University Publ., 229.
Galuzin, K. S. & Stolbov, V. Yu. (2004). Metodika sostavleniya optimalnogo raspisaniya s uchetom predpochteniy [Methods of optimal scheduling subject to preferences]. Teor. i prikl. aspekty informatsionnykh tekhnologiy: sb. nauchn. tr. [Theoretical and applied aspects of information technologies: collection of scientific papers], 53. In: N. I. Artemov (Ed.). Perm, GosNIIUMS Publ., 43–50.
Fedoseev, S. A., Gitman, M. B. & Stolbov, V. Yu. (2008). Programmnoye obespechenie sistem upravleniya proizvodstvom v usloviyakh nechetkosti iskhodnoy informatsii [Production management system software amidst fuzziness of initial data]. Upravlenie razvitiem krupnomasshtabnykh sistem MLSD’08: tr. 2-y Mezhdunar. konf., Rossiya, Moskva, 1–3 oktyabrya 2008 g. [Management of large-scale system development MLSD’08: 2nd International Conference, Russia, Moscow, October 1–3, 2008]. Moscow: IPU RAN Publ., 265–277.
Borisov, A. N., Alekseev, A.V., Merkuryeva, G.V. et al. (1989). Obrabotka nechetkoy informatsii v sistemakh prinyatiya resheniy [Processing of fuzzy information in decision-making systems]. Moscow: Radio i svyaz Publ., 304.
Baldwin, J. F. & Guild, N. C. (1879). Comparison of Fuzzy Sets on the Same Decision Space. Fuzzy Sets and Systems, 2(3), 231–231.
Yager, R. R. (1981). Procedure for Ordering Fuzzy Subset of the Unit Interval. Information Sciences, 24(2), 143–161.
Dubois, D. & Prade, H. (1983). Ranking Fuzzy Numbers in the setting of Possibility Theory. Information Science, 30(3), 183–224.
Sah, R. K. & Stiglitz, J. E. (1988). The Committees, Hierarchies and Polyarchies. The Economic Journal, 98(391), 451–470.
Pustovoyt, K. S., Gitman, M. B. & Stolbov, V. Yu. (2014). Situatsionnyy tsentr predpriyatiya kak effektivnyy instrument soglasovaniya interesov potrebitelya i proizvoditelya produktsii [Enterprise control center as an efficient tool of accommodation of interests of consumer and manufacturer]. Aktualnyye problemy ekonomiki [Current problems of economics], 5, 538–547.
DOI: https://doi.org/10.15826/recon.2015.4.023
Copyright (c) 2018 Sergey A. Fedoseev, Mikhail B. Gitman, Valery Yu. Stolbov, Konstantin S. Pustovoyt
Сertificate of registration media Эл № ФС77-80764 от 28.04.2021
Online ISSN 2412-0731