Agent modelling of cluster formation processes in regional economic systems

Galina D. Boush, Oksana M Kulikova, Ivan K. Shelkov

Abstract


The subject matter of this research is the processes of the spontaneous clustering in the regional economy. The purpose is the development and approbation of the modeling algorithm of these processes. The hypothesis: the processes of spontaneous clustering in the social and economic environment are supposed to proceed not linearly, but intermittently. The following methods are applied: agent imitating modeling with an application of FOREL and k-means algorithms. The modeling algorithm is realized in the Python 3 programming language. The course regularities of clustering processes in the region are revealed: 1) the clustering processes are intensifying, the production uniformity is increasing; 2) the increase of the level of production uniformity leads to the leveling of customer behavior; 3) the producers of high-differentiated production reduce the level of its differentiation or leave the cluster; 4) the stages of steady functioning are illustrative for clustering processes, their change is followed with arising of bifurcation points; 5) the activation of clustering processes in regional economy leads to the revenue increase of the cluster participants, each of producers and of consumers, and to the growth of synergetic effect values. These results testify the nonlinearity of processes of clustering and ambiguity of their effects. The following conclusions have been drawn: 1) a modeling of the processes of spontaneous clustering in regional economy has showed that they proceed not linearly, a steady progressive development is followed with leaps; 2) the clustering of regional economy leads to the growth of the efficiency indicators of activities of cluster-concerned entities; 3) initiation and activation of the clustering processes requires a certain environment.

Keywords


regional economy; regional clusters; spontaneous clustering; agent imitational modeling; model of spontaneous clustering in regional economy; agents-producers; agents-suppliers; agents-customers; modeling of the algorithm of spontaneous clustering

Full Text:

PDF

References


Ponkina, E. V. & Lobova, S. V. (2011). Ekonomicheskiy klaster: vzglyad s pozitsii teorii sistem i sistemnogo analiza [Economic cluster: view from the theory of systems and system analysis]. Izvestiya vysshikh uchebnykh zavedeniy [News of higher educational institutions]. Ser: Ekonomika, finansy i upravlenie proizvodstvom [Series: Economics, finances and production management], 4, 90–99.

Alyoshin, A. V. (2013). Modelno-analiticheskaya podderzhka protsessa formirovaniya regionalnykh klasterov [Model and analytical support for process of the regional clusters development]. Ekonomika i predprinimatelstvo [Economics and business], 4(33), 101–106.

Drozdova, N. V. (2011). Osobennosti modelirovaniya protsessa formirovaniya klasterov s ispolzovaniem apparata setey Petri [Cluster process modeling issues with the use of a Petri net]. Aktualnyye problemy ekonomiki i prava [Modern problems of economics and law], 3, 98–102.

Latypova, L. V. (2013). Modelirovanie mekhanizma obedineniya predpriyatiy malogo biznesa v klaster s pomoschyu metodologii SADT i paketa ALLFUSION MODELING SUITE (BPWIN) [Mechanism modeling of the small business enterprises consolidation in a cluster by the SADT methodology and ALLFUSION MODELING SUITE (BPWIN) package]. Ekonomika i predprinimatelstvo [Economics and business], 5(34), 596–600.

Medvedev, A. V., Kosinskiy, P. D. & Bondareva, G. S. (2013). Ekonomiko-matematicheskoye modelirovanie agroprodovolstvennogo klastera regiona [Economic-mathematical modeling of regional agrofood cluster]. Fundamentalnyye issledovaniya [Basic research], 10–10, 2203–2206.

Soloveychik, K. A. (2011). Metodicheskiy podkhod k modelirovaniyu promyshlennykh klasterov [Methodical approach to the modeling of industrial clusters]. Ekonomika i upravlenie [Economics and business], 1(63), 42–45.

Bek, M. A., Bek, N. N., Sheresheva, M. Y. & Johnston, W. J. (2013). Perspectives of SME innovation clusters development in Russia. Journal of Business and Industrial Marketing, 28(3), 240–259.

Chincarini, L. & Asherie, N. (2008). An analytical model for the formation of economic clusters. Regional Science and Urban Economics, 38(3), 252–270.

Dilaver, O., Bleda, M. & Uyarra, E. (2014). Entrepreneurship and the emergence of industrial clusters. Complexity, 19(6), 14–29.

Kantemirova, M. A. (2013). Imitatsionnaya model klasternoy organizatsii ekonomicheskoy sistemy regiona [Imitating model of the regional economic system cluster organization]. Fundamentalnyye issledovaniya [Basic research], 4–2, 476–480.

Banasick, S., Lin, G. & Hanham, R. (2009). Deviance residual moran’s I test and its application to spatial clusters of small manufacturing firms in Japan. International Regional Science Review, 32(1), 3–18.

Tatarkin, A. I. (2013). Samorazvitie territorialnykh sotsialno-ekonomicheskikh sistem kak potrebnost federativnogo obustroystva Rossii [Self-development of the territorial socio-economic systems as a requirement of the federal structure of Russia]. Ekonomika regiona [Economy of region], 4, 9–26.

Ahenbah, Yu. A. (2012). Modelirovanie mekhanizma vzaimodeystviya subektov regionalnoy ekonomiki na osnove kontseptsii formirovaniya i razvitiya nauchno-proizvodstvennykh klasterov [Modeling of the interaction mechanism of the subjects of regional economy on the basis of the formation concept and research-production clusters development]. FES: Finansyi. Ekonomika. Strategiya [FES. Finances. Economics. Strategy.], 11, 17–23.

Titov, V. V. (2005). Modelirovanie protsessov vzaimodeystviya v regionalnykh promyshlennykh klasterakh [Interaction processes modeling in the regional industrial clusters]. Polzunovskiy vestnik [The Polzunovsky bulletin], 4–3, 6–11.

Arbia, G., Espa, G. & Quah, D. (2008). A class of spatial econometric methods in the empirical analysis of clusters of firms in the space. Empirical Economics, 34(1), 81–103.

Yanling, L. & Ma, F. (2009). Game analysis of knowledge spillover in industrial cluster. Proceedings — International Conference on Management and Service Science. MASS 2009, 5305509.

Malova, D. V. (2012). Stsenarnyy analiz razvitiya regionalnykh innovatsionnykh klasterov na osnove dinamicheskogo modelirovaniya [The scenario analysis of the regional innovation clusters development on the basis of dynamic modelling]. Nauchnyye Trudy Volnogo ekonomicheskogo obschestva Rossii [Scientific works of the Free Economic Society of Russia], 164, 215–222.

Ratner, S. V. & Akinkina, M. M. (2011). Vybor parametrov optimalnogo upravlencheskogo vozdeystviya na regionalnyy neftegazovyy klaster na osnove imitatsionnogo modelirovaniya [Selection of the optimal administrative impact parameters for the regional oil and gas cluster on the basis of imitating modeling]. Regionalnaya ekonomika: teoriya i praktika [Regional economy. Theory and practice], 20, 2–11.

Smirnova, S. M. (2013). Modelirovanie stadii razvitiya promyshlennogo klastera [Modeling of the industrial cluster development stage]. Nauchnoye obozrenie [Scientific review], 8, 159–162.

Popp, A. & Wilson, J. (2007). Life cycles, contingency, and agency: Growth, development, and change in English industrial districts and clusters. Environment and Planning A, 39(12), 2975–2992.

Press, K. (2008). Divide to conquer? Limits to the adaptability of disintegrated, flexible specialization clusters. Journal of Economic Geography, 8(4), 565–580.

Suire, R. & Vicente, J. (2014). Clusters for life or life cycles of clusters: in search of the critical factors of clusters’ resilience. Entrepreneurship and Regional Development, 26(1–2), 142–164.

Tsai, B.-H. & Li, Y. (2009). Cluster evolution of IC industry from Taiwan to China. Technological Forecasting and Social Change, 76(8), 1092–1104.

Zeng, Y. & Xiao, R. (2014). Modelling of cluster supply network with cascading failure spread and its vulnerability analysis. International Journal of Production Research, 52(23), 6938–6953.

Uyomov, A. I. (1978). Sistemnyy podkhod i obschaya teoriya system [System approach and general theory of systems]. Moscow: Mysl Publ., 272.

Krichevskiy, M. L. (2005). Intellektualnyye metody v menedzhmente: monografiya [Intellectual methods in management: monograph]. St. Petersburg: Piter Publ., 304.

Malinetskiy, G. G., Potapov, A. B. & Podlazov, A. V. (2011). Nelineynaya dinamika: podkhody, rezultaty, nadezhdy: monografiya [Nonlinear dynamics. Approaches, results, hopes]. Moscow: Librokom Publ., 280.

Boush, G. D. (2013). Klastery v ekonomike: nauchnaya teoriya, metodologiya issledovaniya, kontseptsiya upravleniya: monografiya [Clusters in economics. Scientific theory, research methodology, concept of management]. Omsk: Omsk State University Publ., 408.

Shoham, Y. (1990). Agent Oriented Programming: Technical Report STAN-CS-90–1335. Computer Science Department, Stanford University, USA, 532.

Dzhukha, V. M., Kuritsyin A. V. & Shtrapova, I. S. (2012). Ekonomika otraslevykh rynkov: uchebnoye posobie [Economy of the sectoral markets: textbook]. Moscow: Knorus Publ., 288.

Barancheev, V. P., Maslennikova, N. P. & Mishin, V. M. (2012). Upravlenie innovatsiyami: uchebnik dlya bakalavrov [Management of innovations: textbook for bachelors]. Moscow: YuRAYT Publ., 711.

Kulikova, O. M. (2013). Algoritm podderzhki prinyatiya optimalnykh upravlencheskikh resheniy v usloviyakh neopredelennosti [Algorithm of support of the optimum administrative decisions adoption in the conditions of uncertainty]. Nauka o cheloveke: gumanitarnyye issledovaniya [Human science. Humanitarian research], 1(11), 256–260.




DOI: https://doi.org/10.15826/recon.2016.2.1.008

Copyright (c) 2018 Galina D. Boush, Oksana M Kulikova, Ivan K. Shelkov

© R-Economy, ISSN 2412-0731