Regional population expenditure for foodstuffs in the Russian federation: componential and cluster analyses
Abstract
Keywords
Full Text:
PDFReferences
Ivanov, V. N. & Suvorov, A. V. (2006). Neravenstvo i bednost naseleniya. Opyt resheniya problemy v Rossii i za rubezhom [Inequality and poverty of population. Experience of solving the problem in Russia and abroad]. Problemy prognozirovaniya [Problems of forecasting], 3, 132–149.
Kolmakov, I. B. (2006). Prognozirovanie pokazateley differentsiatsii denezhnykh dokhodov naseleniya [Forecasting of differentiation indexes of population income]. Problemy prognozirovaniya [Problems of forecasting], 1, 136–163.
Rimashevskaya, N. M. (2006). Nekotoryye problemy sotsialnogo reformirovaniya v Rossii [Some problems of social reformation in Russia]. Problemy prognozirovaniya [Problems of forecasting], 2, 3–17.
Shevyakov, A. Yu. (2010). Neravenstvo dokhodov kak faktor ekonomicheskoy i demograficheskoy dinamiki [Income inequality as a factor of economic and demographic developments]. Moscow: Institute of Socio-Economic Studies of Population of Russian Academy of Sciences Publ., 43.
Ilyasov, B. G., Degtyareva, I. V., Makarova, E. A. & Valitov, R. R. (2013). Sistemnoye modelirovanie dinamiki formirovaniya dokhodov i raskhodov naseleniya s uchyotom ikh differentsiatsii [System modeling of the dynamics of revenues and expenses of the population, taking into account their differentiation]. Problemy upravleniya i modelirovaniya v slozhnykh sistemakh: tr. XV mezhdunar. konf. (19–22 iyunya 2012 g.) [Proceedings of International Conference “Problems of control and modeling in complex systems” (19–22 June 2012)]. Samara: Samara research center of RAS Publ., 179–193.
Ilyasov, B. G., Degtyareva, I. V., Makarova, E. A. & Valitov, R. R. (2012). Sistema intellektualnoy podderzhki prinyatiya resheniy pri upravlenii makroekonomicheskim vosproizvodstvennym protsessom na osnove imitatsionnogo modelirovaniya [The system of intellectual support of decision making in the management of macroeconomic reproduction process on the base of simulation modelling]. Vestnik UGATU [Bulletin of the Ufa State Aviation Technical University], 3, 217–229.
Barsegyan, A. A., Kupriyanov, M. S., Kholod, I. I., Tess, M. D. & Elizarov, S. I. (2009). Analiz dannykh i protsessov: ucheb. posobie [Data and process analysis: a study guide]. 3rd ed., Rev. and ext. St. Petersburg: BKhV-Peterburg Publ., 512.
Demidova, L. A., Kirakovskiy, V. V. & Pylkin, A. N. (2012). Prinyatie resheniy v usloviyakh neopredelennosti [Decision making in the conditions of uncertainty]. Moscow: Goryachaya liniya — Telekom Publ., 288.
Kulaichev, A. P. (2013). Metody i sredstva kompleksnogo analiza dannykh: uchebnoe posobie; 4-e izd., pererab. i dop. [Methods and complex data analysis tools: a study guide; 4th ed. rev. and ext.]. Moscow: FORUM Publ.; Infra-M Publ., 312.
Porshnev, S. V., Ovechkina, E. V., Mashchenko, M. V. et al. (2010). Kompyuternyy analiz i interpretatsiya empiricheskikh zavisimostey: ucheb. posobie [Computer analysis and interpretation of empirical dependences: a study guide]. Moscow: Binom-Press Publ., 336.
Mitra, S. & Acharya, T. (2003). Data Mining. Multimedia, Soft Computing, and Bioinformatics. Hoboken, New Jersey, John Wiley & Sons, Inc., 401.
Han, J. & Kamber, M. (2001). Data mining: Concepts and Techniques. San Mateo: Morgan Kaufmann Publishers, 550.
Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, Cr. D., Silverman, R., Wu, A. Y. (2002, July). An Efficient k-Means Clustering Algorithm. Analysis and Implementation IEEE transactions on pattern analysis and machine intelligence, 24(7), 881–892.
Ruppert, D. (2011). Statistics and Data Analysis for Financial Engineering. New York: Springer Science+Business Media, LLC, 638.
Vercellis, C. (2009). Business Intelligence: Data Mining and Optimization for Decision Making. New York: John Wiley & Sons Ltd, 436.
DOI: https://doi.org/10.15826/recon.2016.2.1.009
Copyright (c) 2018 Murat B. Guzairov, Irina V. Degtyareva, Elena A. Makarova
Сertificate of registration media Эл № ФС77-80764 от 23.04.2021
Online ISSN 2412-0731