Exploring Local Labor Markets and Knowledge Spillover from a Spatial Perspective

Febry Wijayanti

Abstract


Relevance. Cities serve as vital hubs for socioeconomic activities, fostering convergence in local labor markets characterized by high productivity, premium wages, and knowledge spillover. Jakarta Metropolitan, as Indonesia's economic center, embodies these advantages, prompting the need for a spatial investigation of their regional association.

Research Objective. This study examines the unique attributes of the labor market in the Jakarta Metropolitan Area. The analysis encompasses anomalies such as the impact of premium wages on local labor productivity and the influence of education levels, as a proxy for knowledge spillover, on urban labor productivity.

Data and Methods. Utilizing microdata from Sakernas and macrodata from BPS for 2017-2019, this study offers a comprehensive analysis of the Jakarta Metropolitan Area. By synthesizing cross-level data, the intricate interplay between productivity, wages, and area size becomes evident, particularly the tendency for skilled individuals to gravitate toward larger urban centers. Employing spatial regression, the analysis takes into account local characteristics in regions.

Results. Density and education have a positive correlation, while the number of holders of bachelor's degrees has a surprisingly negative impact on productivity. Notably, higher aggregate education levels enhance regional productivity throughout the Jakarta Metropolitan Area, except for highly educated individuals. The level of education influences the minimum wage in a region, driven by spatial disparities in the educational infrastructure and quality. The number of educated people also influences wages in and across regions, prompting migration to regions with higher salaries.

Conclusions. By integrating microdata and macrodata and employing spatial regression techniques, this study shows the connection between education, productivity, and regional dynamics, particularly in the Jakarta Metropolitan Area. These findings challenge the assumption that possessing a high level of education guarantees higher productivity and remuneration, demonstrating the need for education reforms that align with labor market demands and bolster the economy.


Keywords


local labor market; knowledge spillover; urban area; wage premium; productivity; Indonesia

Full Text:

PDF

References


Acar, M. (2003). Agricultural Unskilled Labor Mobility: Does It Matter? Journal of Economic Integration, 18(1), 164–187. https://doi.org/10.11130/jei.2003.18.1.164

Allen, E. R., Asian Development Bank, & Allen, E. R. (2016). Analysis of Trends and Challenges in the Indonesian Labor Market. Asian Development Bank (ADB) Paper on Indonesia, 16(16), 1–38. https://doi.org/10.1016/J.RCP.2015.08.004

Anselin, L., & Bera, A. K. (1998). Spatial Dependence in Linear Regression Models with an Introduction to Spatial Econometrics. In A. Ullah & D. E. A. Giles (Eds.), Handbook of Applied Economic Statistics (pp. 237–289). https://doi.org/10.1201/9781482269901

Chen, L., Hasan, R., & Jiang, Y. (2020). Urban Agglomeration and Firm Innovation: Evidence from Asia. In ADB Economics Working Paper Series (Vol. 616). https://doi.org/10.22617/WPS200195-2

Ciccone, A. (2002). Agglomeration effects in Europe. European Economic Review, 46(2), 213–227. https://doi.org/10.1016/S0014-2921(00)00099-4

Combes, P., Duranton, G., Gobillon, L., Puga, D., & Roux, S. (2012). The Productivity Advantages of Large Cities: Distinguishing Agglomeration from Firm Selection. Econometrica, 80(6), 2543–2594. https://doi.org/10.3982/ecta8442

Combes, P.-P., Duranton, G., &Gobillon, L. (2007). Spatial wage disparities: Sorting matters! Journal of Urban Economics, 63(2), 723–742. https://doi.org/10.1016/j.jue.2007.04.004

Darmofal, D. (2015). Spatial Lag and Spatial Error Models. In Spatial Analysis for the Social Sciences (pp. 96–118). Cambridge University Press. https://doi.org/10.1017/CBO9781139051293.007

de la Roca, J., & Puga, D. (2017). Learning byworking in big cities. Review of Economic Studies, 84(1), 106–142. https://doi.org/10.1093/restud/rdw031

Di Giacinto, V., Micucci, G., &Tosoni, A. (2020). The agglomeration of knowledge-intensive business services firms. Annals of Regional Science, 65(3), 557–590. https://doi.org/10.1007/s00168-020-00995-3

Díaz-Dapena, A., Fernández-Vázquez, E., Rubiera-Morollón, F., Díaz Dapena, A., Fernández Vázquez, E., & Rubiera Morollón, F. (2017). Labor Density and Wages in Spain: Evidence from Geographically Disaggregated Data. Growth and Change, 00(00), 1–16. https://doi.org/10.1111/grow.12233

Duranton, G., & Puga, D. (2020). The Economics of Urban Density. The Journal of Economic Perspectives, 34(3), 3–26. https://doi.org/10.1257/jep.34.3.3

Elhorst, J. P. (2014a). Spatial Econometrics: From Cross-Sectional Data to Spatial Panels (Vol. 479). Springer. https://doi.org/10.1007/978-3-642-40340-8

Elhorst, J. P. (2014b). Spatial Panel Models. In M. M. Fischer & P. Nijkamp (Eds.), Handbook of Regional Science (pp. 1637–1652). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-23430-9_86

Glaeser, E. L., & Maré, D. C. (2001). Cities and skills. Journal of Labor Economics, 19(2), 316–342. https://doi.org/10.1086/319563

Glaeser, E. L., &Resseger, M. G. (2010). The complementarity between cities and skills. Journal of Regional Science, 50(1), 221–244. https://doi.org/10.1111/j.1467-9787.2009.00635.x

Glaeser, E. L., & Xiong, W. (2017). Urban Productivity in The Developing World. In NBER Working Paper (Issue 23279).

Golgher, A. B., & Voss, P. R. (2016). How to Interpret the Coefficients of Spatial Models: Spillovers, Direct and Indirect Effects. Spatial Demography, 4(3), 175–205. https://doi.org/10.1007/s40980-015-0016-y

Gould, E. D. (2007). Cities, Workers, and Wages: A Structural Analysis of the Urban Wage Premium. Review of Economic Studies, 74, 477–506. https://doi.org/10.1111/j.1467-937X.2007.00428.x

Groot, S. P. T., & de Groot, H. L. F. (2020). Estimating the Skill Bias in Agglomeration Externalities and Social Returns to Education: Evidence from Dutch Matched Worker-Firm Micro-Data. De Economis, 168(1), 53–78. https://doi.org/10.1007/s10645-019-09354-w

Halfdanarson, B., Heuermann, D. F., &Südekum, J. (2008). Human capital externalities and the urban wage premium: Two literatures and their interrelations. In IZA Discussion Paper (Issue 3493). https://doi.org/10.1177/0042098009352363

Henderson, J. V., & Turner, M. A. (2020). Urbanization in the Developing World. The Journal of Economic Perspectives, 34(3), 150–173.

Henrekson, M. (2020). How labor market institutions affect job creation and productivity growth. IZA World of Labor, 38v2, 1–10. https://doi.org/10.15185/izawol.38.v2

Kesidou, E., & Romijn, H. (2008). Do Local Knowledge Spillovers Matter for Development? An Empirical Study of Uruguay’s Software Cluster. World Development, 36(10), 2004–2028. https://doi.org/10.1016/j.worlddev.2008.01.003

Kesidou, E., & Szirmai, A. (2008). Local Knowledge Spillovers, Innovation and Economic Performance in Developing Countries: A discussion of alternative specifications. In UNUMERIT Working Paper Series (Vols. 2008–033).

Kijek, A., & Kijek, T. (2019). Knowledge Spillovers: An Evidence from The European Regions. Journal of Open Innovation: Technology, Market, and Complexity, 5(68), 1–15. https://doi.org/10.3390/joitmc5030068

Kuswardana, I., DjalalNachrowi, N., AuliaFalianty, T., & Damayanti, A. (2021). The effect of knowledge spillover on productivity: Evidence from manufacturing industry in Indonesia. Cogent Economics and Finance, 9(1), 1–31. https://doi.org/10.1080/23322039.2021.1923882

Lamorgese, A. R., Olivieri, E., &Paccagnella, M. (2019). The Wage Premium in Italian Cities. Italian Economic Journal, 5(2), 251–279. https://doi.org/10.1007/s40797-019-00099-8

Lee, B. S., Hong, S. H., &Wohar, M. E. (2017). City Size, Labor Productivity and Wages in Korea. Singapore Economic Review, 63(1), 1–26. https://doi.org/10.1142/S0217590817500138

LeSage, J., & Pace, R. K. (2009a). Introduction to spatial econometrics. In Introduction to Spatial Econometrics. Taylor & Francis Group, LLC. https://doi.org/10.1111/j.1467-985x.2010.00681_13.x

LeSage, J., & Pace, R. K. (2009b). Introduction to Spatial Econometrics. Chapman & Hall/CRC.

Li, Y., Lu, K., & Wang, K. (2021). Inequality in the initial wage of college graduates at the college-level perspective. Sustainability, 13(13788), 1–15. https://doi.org/10.3390/su132413788

Lu, Z. (2022). Human Capital Spillovers from Special Economic Zones: Evidence from Yangtze Delta in China. Economies, 10(5), 1–15. https://doi.org/10.3390/economies10050099

Manning, C., &Pratomo, D. S. (2018). Labour Market Developments in the Jokowi Years. Journal of Southeast Asian Economies, 35(2), 165–184. https://doi.org/10.1355/ae35-2d

Moretti, E. (2010). Local labour markets. In D. Card & O. Ashenfelte (Eds.), Handbook of Labor Economics (Vol. 4b, Issues 1237–1313, pp. 93–110). North Holland. https://doi.org/10.4324/9780203828892

Muhaimin, A. A., Gamal, A., Setianto, M. A. S., & Larasati, W. L. (2022). The spatial justice of school distribution in Jakarta. Heliyon, 8(e11369), 1–12. https://doi.org/10.1016/j.heliyon.2022.e11369

Prasertsoong, N., &Puttanapong, N. (2022). Regional Wage Differences and Agglomeration Externalities: Micro Evidence from Thai Manufacturing Workers. Economies, 10(12), 1–22. https://doi.org/10.3390/economies10120319

Setyawan, D., Wardhana, I. W., &Khairunnisah, K. (2020). Determinants of Labor Market in Jakarta Metropolitan Area: a Survival Analysis of Commuters. MPRA Paper, 106113, 1–18. https://doi.org/https://mpra.ub.uni-muenchen.de/106113/

Shi, X., Chen, Y., Xia, M., & Zhang, Y. (2022). Effects of the Talent War on Urban Innovation in China: A Difference-in-Differences Analysis. Land, 11(9), 1–22. https://doi.org/10.3390/land11091485

Sugiyarto, G., Oey-gardiner, M., &Triaswati, N. (2006). Labor Markets in Indonesia: Key Challenges and Policy Issues. In J. Felipe & R. Hasan (Eds.), Labor Market in Asia: Issues and Perspectives (J. Felipe, Issue November 2005, pp. 301–366). Palgrave Macmillan for the Asian Development Bank. https://doi.org/10.1057/9780230627383_6

Sveikauskas, L. (1975). The Productivity of Cities. The Quarterly Journal of Economics, 89(3), 393–413. https://doi.org/10.2307/1885259

Tadjoeddin, M. Z., & Mercer-Blackman, V. (2018). Urbanization and Labor Productivity in Indonesia. In E. Ginting, C. Manning, & K. Taniguchi (Eds.), Indonesia Enhancing Productivity Through Quality Jobs (Issue February, pp. 130–169). Asian Development Bank.

Taniguchi, K., Francisco, R., & Naval, D. (2018). Education, skills, and labor Productivity. In E. Ginting, C. Manning, & K. Taniguchi (Eds.), Indonesia Enhancing Productivity Through Quality Jobs (pp. 170–204). Asian Development Bank.

Venhorst, V. A. (2017). Human capital spillovers in Dutch cities: consumption or productivity? Annals of Regional Science, 59(3), 793–817. https://doi.org/10.1007/s00168-016-0754-9

Wijayanti, F. (2018). Younger vs. older workers in ASEAN countries: substitutes or complements? R-Economy, 4(3), 151–157. https://doi.org/10.15826/recon.2018.4.4.020

Wijayanti, F., &Turgel, I. D. (2021). Migration Flow and Social Protection Policy: Case Study Indonesia-Malaysia. Journal of Indonesian Applied Economics, 9(1), 41–48. https://doi.org/10.21776/ub.jiae.2021.009.05

Yin, J., Yang, Z., & Guo, J. (2022). Externalities of Urban Agglomerations: An Empirical Study of the Chinese Case. Sustainability, 14(11895), 1–19. https://doi.org/10.3390/su141911895

Zgarrick, D. P., Bujnoch, T., & Desselle, S. P. (2020). Wage Premiums as a Means to Evaluate the Labor Market for Pharmacy Technicians in the United States: 1997–2018. Pharmacy, 8(42), 1–9.https://doi.org/10.3390/pharmacy8010042




DOI: https://doi.org/10.15826/recon.2023.9.3.015

Copyright (c) 2023 Febry Wijayanti

Сertificate of registration media Эл № ФС77-80764 от 28.04.2021
Online ISSN 2412-0731