Features of the Formation and Processing of Signals in an Autodyne Radar with Frequency Modulation Taking into Account the Nonlinearity of the Modulation Characteristic

В. Я. Носков, Е. В. Богатырев, К. А. Игнатков


The results of the study of the features of the formation and processing of signals of autodyne short-range radar systems (SRR) with frequency modulation (FM) involving non-linearity of the modulation characteristic are presented. The numerical simulation of the nonlinear influence of the modulation characteristic on the shape and spectrum of the autodyne signal is implemented on the basis of the mathematical model of the autodyne generator. We have established that even a small non-linearity of this characteristic causes a significant distortion of the shape and spectrum of the autodyne signal. A method of quasi-static correction of the law of frequency modulation of probing radiation using a digital signal processor is proposed, which does not require complication of the microwave part of the autodyne SRR with FM. The results of experimental studies of an 8-mm autodyne SRR made on the basis of a Gann diode oscillator with frequency control by varicap are presented.


Noskov V. Ya., Bogatyrev E. V., Ignatkov K. A., Shaidurov K. D. Features of the Formation and Processing of Signals in an Autodyne Radar with Frequency Modulation Taking into Account the Nonlinearity of the Modulation Characteristic. Ural Radio Engineering Journal. 2021;5(2):119–143. (In Russ.) DOI: 10.15826/urej.2021.5.2.003.

Ключевые слова

autodyne; autodyne signal;autodyne response; frequency modulation; nonlinearity; modulation characteristic; short-range radar; Gunn-diode oscillator

Полный текст:

Без имени (English)


Usanov D.A., Skripal Al.V., Skripal An.V., Postelga A.E. A microwave autodyne meter of vibration parameters. Instruments and Experimental Techniques. 2004;47(5):689–693. DOI: 10.1023/B:INET.0000043882.16801.3a

Alidoost S.A., Sadeghzade R., Fatemi R. Autodyne system with a single antenna. In: 11th Intern. Radar Symposium (IRS-2010). Lithuania, Vilnius. 2010. Vol. 2, pp. 406–409.

Usanov D.A., Postelga A.E. Reconstruction of complicated movement of part of the human body using radio wave autodyne signal. Biomedical Engineering. 2011;45(1):6–8. DOI: 10.1007/s10527-011-9198-9

Mirsaitov F.N., Safonova E.V., Boloznev V.V. Microwave autodyne vibrosensor in aeroengine diagnostics. European Frequency and Time Forum (EFTF). 2014. P. 140–143. DOI: 10.1109/EFTF.2014.7331447

Noskov V.Yu. A double-diode autodyne transceiver. Instruments and Experimental Techniques. 2015;58(4):505–509. DOI: 10.1134/S0020441215030240 (Russ.: DOI: 10.7868/S0032816215030246)

Noskov V.Yu., Ignatkov K.A., Chupakhin A.P. Application of twodiode autodynes in devices for radiowave control of product dimensions. Measurement Techniques. 2016;59(7):715–721. DOI: 10.1007/s11018-016-1035-9

Kim S; Kim B.-H., Yook J.-G., Yun G.-H. Proximity vital sign sensor using self-oscillating mixer. URSI Asia-Pacific Radio Science Conference (URSI AP-RASC). 2016. P. 1446–1448. DOI: 10.1109/ URSIAP-RASC.2016.7601402

Vetrova I.V., Doroshenko A.A., Postel’ga A.E., Usanov D.A. Remote control of the surface movement of an object using a two-channel SHF autodyne generator. Journal of Communications Technology and Electronics. 2019;64(4):409–416. DOI: 10.1134/S1064226919040119 (Russ.: DOI: 10.1134/S0033849419040119)

Efanov A.A., Diskus C.G., Stelzer A., Thim H.W., Lubke K., Springer A.L. Development of a low-cost 35 GHz radar sensor. Annals of Telecommunications. 1997;52(3):219–223. DOI: 10.1007/BF02996047

Noskov V.Ya., Varavin A.V., Vasiliev A.S., Ermak G.P., Zakarlyuk N.M., Ignatkov K.A., Smolskiy S.M. Modern hybrid-integrated autodyne oscillators of microwave and millimeter wave ranges and their application. Part 9. autodyne radar applications. Uspekhi sovremennoi radioelektroniki. 2016;(3):32–86. (In Russ.)

Jefford P.А., Howes M.S. Modulation schemes in low-cost microwave field sensor. IEEE Transactions on Microwave Theory and Techniques. 1985;31(8):613–624. DOI: 10.1109/TMTT.1983.1131559

Noskov V.Ya., Bogatyrev E.V., Ignatkov K.A. Principle of constructing an airborne radar sensor for detecting fast-moving targets. Uspekhi sovremennoi radioelektroniki. 2019;12:16–22. (In Russ.)

Noskov V.Ya., Ignatkov K.A., Chupahin A.P., Vasiliev A.S., Ermak G.P., Smolskiy S.M. Signals of autodyne sensors with sinusoidal frequency modulation. Radioengineering, 2017;26(4):1182–1190. DOI:10.13164/re.2017.1182

Noskov V.Ya., Galeev R.G., Bogatyrev E.V., Ignatkov K.A., Shaidurov K.D. Autodyne Sensor Signals with Amplitude-Frequency Modulation of Radiation. Sensors, 2020;20(24):7077. DOI: 10.3390/s20247077

Komarov I.V., Smolskiy S.M. Fundamentals of Short-Range FM Radar. Norwood, MA: Artech House; 2003. 153 p.

Noskov V.Ya., Ignatkov K.A., Chupahin A.P., Vasiliev A.S., Ermak G.P., Smolskiy S.M. Signals of autodyne radars with frequency modulation according to symmetric saw-tooth law. Telecommunication and Radio Engineering. 2016;75(17):1551–1566. DOI: 10.1615/TelecomRadEng.v75.i17.40

Varavin A.V., Vasiliev A.S., Ermak G.P., Popov I.V. Autodyne Gunn-diode transceiver with internal signal detection for short-range linear FM radar sensor. Telecommunication and Radio Engineering. 2010;69(5):451–458. DOI: 10.1615/TelecomRadEng.v69.i5.80

Noskov V.Yu., Ignatkov K.A., Chupahin A.P., Vasiliev A.V., Ermak G.P., Smolskiy S.M. Peculiarities of signal formation of the autodyne short-range radar with linear frequency modulation. Visnyk NTUU KPI Seriia – Radiotekhnika Radioaparatobuduvannia. 2016;(67):50–57. DOI:10.20535/RADAP.2016.67.50-57

Noskov V.Ya., Vasilev A.S., Ermak G.P., Ignatkov K.A., Chupakhin A.P. Fluctuation characteristics of autodyne radars with frequency modulation. Radioelectronics and Communications Systems. 2017;60(3):123–131. DOI: 10.3103/S0735272717030049 (Russ.: DOI:10.20535/S0021347017030049)

Noskov V.Ya., Ignatkov K.A., Smolskiy S.M. Autodyne characteristic dependence on the uhf oscillators inherent parameters. Radioengineering. 2012;(6):24–46. (In Russ.)

Noskov V.Ya., Ignatkov K.A. Autodyne signals in case of random delay time of the reflected radiation. Telecommunication and Radio Engineering. 2013;72(16):1521–1536. DOI: 10.1615/TelecomRadEng. v72.i16.70

Usanov D.A., Skripal Al.V., Skripol An.V. Semiconductor RF and Optical Autodyne Physics. Saratov: Saratov University; 2003. 308 p. (In Russ.)

Komarov V.M., Plokhikh A.P., Andreeva T.M. Radar height and inclined range meters with continuous frequency-modulated radiation. Zarubezhnaya radioelektronika. 1991;(12):52–70. (In Russ.)

Ermak G.P., Popov I.V., Vasiliev A.S., Varavin A.V., Noskov V.Ya., Ignatkov K.A. Radar sensors for hump yard and rail crossing applications. Telecommunication and Radio Engineering. 2012;71(6):567–580. DOI: 10.1615/TelecomRadEng.v71.i6.80

Giuliani G., Norgia M., Donati S., Bosch T. Laser diode self-mixing technique for sensing applications (Review article). Journal of Optics A: Pure and Applied Optics. 2002;4(6):283–294. DOI: 10.1088/1464-4258/4/6/371

Sobolev V.S., Kashcheeva G.A. Self-mixing frequency-modulated laser interferometry. Optoelectronics, Instrumentation and Data Processing. 2008;44(6):519–529. DOI: 10.3103/S8756699008060058

Usanov D.A., Skripal A.V., Astakhov E.I. Determination of nanovibration amplitudes using frequency-modulated semiconductor laser autodyne. Quantum Electronics. 2014;44(2):184–188. DOI: 10.1070/QE2014v044n02ABEH015176