Современное состояние проблемы распознавания радиолокационных изображений надводных кораблей средствами космического мониторинга

L. G. Dorosinskiy, N. S. Vinogradova

Аннотация


Проблема синтеза и анализа алгоритмов обработки радиолокационных изображений пространственно-распределенных целей, полученных средствами космического мониторинга, была и остается одной из наиболее значимых как с теоретических, так и практических позиций для обеспечения безопасности мореплавания, контроля за незаконной добычей рыбы, мониторинга и управления кризисными ситуациями, такими как естественные бедствия, миграционные потоки и другие.

Одним из наиболее распространенных приложений названной проблемы является распознавание надводных кораблей, которому и посвящен данный обзор, выполненный по иностранным источникам.

В связи с этим предлагаемый обзор, содержащий достаточно подробный анализ современных методов решения названной задачи, предложенных широким кругом авторов в последние десятилетия, будет полезен создателям и исследователям средств космического наблюдения за состоянием морской поверхности.

Ключевые слова


пространственно-распределенная цель; надводный корабль; радиолокационное изображение; обнаружение; распознавание; отношение сигнал/шум; разрешающая способность

Полный текст:

PDF

Литература


Kechagias-Stamatis O., Aouf N. Automatic Target Recognition On Synthetic Aperture Radar Imagery: A Survey. IEEE Aerospace and Electronic Systems Magazine. 2021;36(3):56–81. DOI: 10.1109/MAES.2021.3049857.

Dong G., Kuang G., Wang N., Zhao L., Lu J. SAR Target Recognition via Joint Sparse Representation of Monogenic Signal. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2015;8(7):3316–3328. DOI: 10.1109/ JSTARS.2015.2436694

Bolourchi P., Moradi M., Demirel H., Uysal S. Random Forest Feature Selection for SAR-ATR. 2018 UKSim­AMSS 20th International Conference on Modelling and Simulation. 27–29 March 2018. Cambridge, UK. IEEE; 2018. Pp. 91–96. DOI 10.1109/UKSim.2018.00028

Zhao Q., Brennan V., Xu D., Wang Zh. Synthetic Aperture Radar Automatic Target Recognition with Three Strategies of Learning and Representation. Optical Engi­ neering. 2000;39(5):1230–1244. DOI: 10.1117/1.602495

Wang Y., Han P., Lu X., Wu R., Huang Ji. The performance comparison of Adaboost and SVM applied to SAR ATR. 2006 CIE International Conference on Radar. 6–19 October 2006. Shanghai, China. IEEE; 2007. Pp. 1–4. DOI: 10.1109/ICR.2006.343515

Chen Ch., Huang K., Gao G. Small-Target Detection between SAR Images Based on Statistical Modeling of Log-Ratio Operator. Sensors. 2019;19(6):1431–1440. DOI: 10.3390/s19061431

Huang P., Qiu W. A robust decision fusion strategy for SAR target recognition. Remote Sensing Letters. 2019;9(6):507–514. DOI: 10.1080/2150704X.2018.1444287

Song S., Xu B., Li Z., Yang J. Ship Detection in SAR Imagery via Variational Bayesian Inference. IEEE Geoscience and Remote Sensing Letters. 2016;13(3):319–323. DOI: 10.1109/LGRS.2015.2510378

Liu H., Li Sh. Decision fusion of sparse representation and support vector machine for SAR image target recognition. Neurocomputing. 2013;113:97–104. DOI: 10.1016/j. neucom.2013.01.033

Bolourchi P., Moradi M., Demirel H., Uysal S. Improved SAR target recognition by selecting moment methods based on Fisher score. Signal, Image and Video Process­ ing. 2020;14:39–47. DOI: 10.1007/s11760-019-01521-5

Touzi R., Lopes A., Bousquet P. A Statistical and Geometrical Edge Detector for SAR Images. IEEE transactions on geoscience and remote sensing. 1988;26(6):764–773. DOI: 10.1109/36.7708

Dai H., Du L., Wang Y., Wang Z. Modified CFAR Algorithm Based on Object Proposals for Ship Target Detection in SAR Images. IEEE Geoscience and Remote Sensing Letters. 2016;13(12):1925–1929. DOI: 10.1109/LGRS.2016.2618604

Raj N., Sethunadh R., Aparna P. R. Object detection in SAR image based on bandlet transform. Journal of Visual Communication and Image Representation. 2016;40(A):376–383. DOI: 10.1016/j.jvcir.2016.07.010

Gao G., Liu L., Zhao L., Shi G., Kuang G. An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images. IEEE transactions on geoscience and remote sensing. 2009;47(6):1685–1697. DOI: 10.1109/ TGRS.2008.2006504

Kaplan L. M., Murenzi R. Evaluation of CFAR and texture based target detection statistics on SAR imagery. In: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing. 15 May 1998. Seattle, WA, USA. IEEE; 2002. Pp. 2141–2144. DOI: 10.1109/ICASSP.1998.681569

Wang R., Chen J.-W., Wang Y., Jiao L., Wang M. SAR Image Change Detection via Spatial Metric Learning With an Improved Mahalanobis Distance. IEEE Geoscience and Remote Sensing Letters. 2020;17(1):77–81. DOI: 10.1109/LGRS.2019

Song S., Xu B., Yang J. SAR Target Recognition via Supervised Discriminative Dictionary Learning and Sparse Representation of the SAR-HOG Feature. Remote Sensing. 2016;8(8):686. DOI: 10.3390/rs8080683

Zhao Q., Principe J. C. Support Vector Machines For Synthetic Aperture Radar Automatic Target Recognition. IEEE Transactions on Aerospace and Electronic Systems. 2001;37(2):643–654. DOI: 10.1109/7.937475

Nicoli L. P., Anagnostopoulos G. C. Shape-based recognition of targets in Synthetic Aperture Radar images using elliptical Fourier Descriptors. In: Proceedings of SPIE. Vol. 6967. Automatic Target Recognition XVIII. 19–20 March 2008. Orlando, Florida, USA. SPIE; 2008. Pp. 148–159. DOI: 10.1117/12.777806

Ruiz P., Mateos J., Camps-Valls G., Molina R. Bayesian Active Remote Sensing Image Classification. IEEE Transactions on Geoscience and Remote Sensing. 2014;52(4):2186–2196. DOI: 10.1109/TGRS.2013.2258468

Wei Y., Jiao L., Liu F., Yang S., Wu Q., Sanga G. Fast DDL Classification for SAR Images with L(1, inf) Constraint. IEEE Access. 2019;7:68991–69006. DOI: 10.1109/ ACCESS.2019.2918352

Waske B. M., Waske B. Classifier ensembles for land cover mapping using multitemporal SAR imagery. Journal of Photogrammetry and Remote Sensing. 2009;64(5):450– 457. DOI: 10.1016/j.isprsjprs.2009.01.003

Tongyuan Z., Yang W., Dai D., Sun H. Polarimetric SAR Image Classification Using Multifeatures Combination and Extremely Randomized Clustering Forests. EURASIP journal on advances in signal processing. 2010;2:1–9. DOI: 10.1155/2010/465612

Zhu Zh., Woodcock C. E., Rogan J., Kellndorfer J. Assessment of spectral, polarimetric, temporal, and spatial dimensions for urban and peri-urban land cover classifica tion using Landsat and SAR data. Remote Sensing of Environment. 2011;117:72–82. DOI: 10.1016/j.rse.2011.07.020

Topouzelis K., Psyllos A. Oil spill feature selection and classification using decision tree forest on SAR image data. ISPRS Journal of Photogrammetry and Remote Sens­ ing. 2012;68:135–143. DOI: 10.1016/j.isprsjprs.2012.01.005

Du T., Li L. SAR Automatic Target Recognition Based on Attribute Scattering Center Model and Discriminative Dictionary Learning. IEEE Sensors Journal. 2019;19(2):4598–4611. DOI: 10.1109/JSEN.2019.2901050

Tian Z., Wang L., Zhan R., Hu J., Zhang J. Classification via weighted kernel CNN: application to SAR target recognition. International Journal of Remote Sensing. 2018;39(23):9249–9268. DOI: 10.1080/01431161.2018.1531317

Lv J., Liu Y. Data Augmentation Based on Attributed Scattering Centers to Train Robust CNN for SAR ATR. IEEE Access. 2019;7:25459–25473. DOI: 10.1109/ ACCESS.2019.2900522

Wang L., Xu X., Dong H., Gui R., Yang R., Pu F. Exploring Convolutional Lstm for Polsar Image Classification. IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium. 22–27 July 2018. Valencia, Spain. IEEE; 2018. Pp. 8452–8455. DOI: 10.1109/IGARSS.2018.8518517

Ji X. X., Zhang G. Adaptive boosting for SAR automatic target recognition. IEEE Trans­ actions on Aerospace and Electronic Systems. 2007;43(1):112–125. DOI: 10.1109/ TAES.2007.357120

Min R., Quan H., Cui Z., Cao Z., Pi Y, Xu Z. SAR Target Detection Using AdaBoost via GPU Acceleration. IGARSS 2019–2019 IEEE International Geoscience and Re­ mote Sensing Symposium. July 28 — August 2 2019. Yokohama, Japan. IEEE; 2019. Pp. 1180–1183. DOI: 10.1109/IGARSS.2019.8899296

Wen X. B., Zhang H., Jiang Z. T. Multiscale Unsupervised Segmentation of SAR Imagery Using the Genetic Algorithm. Sensors. 2008;8(3):1704–1711. DOI: 10.3390/ s8031704

Bhanu B., Lin Y. Genetic algorithm based feature selection for target detection in SAR images. Image and Vision Computing. 2003; 21(7):591–608. DOI: 10.1016/ S0262-8856(03)00057-X

Marino A., Sanjuan-Ferrer M.J., Hajnsek I., Ouchi K. Ship detectors exploiting spectral analysis of SAR images. 2014 IEEE Geoscience and Remote Sensing Symposium. 13–18 July 2014. Quebec City, QC, Canada. IEEE; 2014. Pp. 978–981. DOI: 10.1109/ IGARSS.2014.6946590

Zhang X., Xiong B., Dong G., Kuang G. Ship Segmentation in SAR Images by Improved Nonlocal Active Contour Model. Sensors. 2018;18(12):420–434. DOI: 10.3390/s18124220

Leng X., Ji K., Yang K., Zou H. A Bilateral CFAR Algorithm for Ship Detection in SAR Images. IEEE Geoscience and Remote Sensing Letters. 2015;12(7):1536–1540. DOI: 10.1109/LGRS.2015.2412174

Gao G. A Parzen-Window-Kernel-Based CFAR Algorithm for Ship Detection in SAR Images. IEEE Geoscience and Remote Sensing Letters. 2011;8(3):557–561. DOI: 10.1109/LGRS.2010.2090492

Bisceglie M., Galdi C. CFAR detection of extended objects in high resolution SAR images. IEEE Transactions on Geoscience and Remote Sensing. 2005;43(4):833–843. DOI: 10.1109/TGRS.2004.843190

Ji K., Xing X., Chen W., Zou H., Chen Ju. Ship classification in TerraSAR-X SAR images based on classifier combination. 2013 IEEE International Geoscience and Remote Sensing Symposium — IGARSS. 21–26 July 2013. Melbourne, VIC, Australia. IEEE; 2014. Pp. 2589–2592. DOI: 10.1109/IGARSS.2013.6723352

Osman H. M., Blostein S. D. New cost function for backpropagation neural networks with application to SAR imagery classification. In: Proceedings of SPIE — The Inter­ national Society for Optical Engineering. Vol. 3718. Automatic Target Recognition IX. 24 August 1999. Society of Photo Optical; 1999. DOI: 10.1117/12.359941

Xiong W., Yongli X., Libo Y., Yaqi C. A New Ship Target Detection Algorithm based on SVM in High Resolution SAR Images. Remote Sensing Technology and Application. 2018;33(1):119–127. DOI: 10.1145/3133264.3133273

Ji K., Leng X., Wang H., Zhou S., Zou H. Ship detection using weighted SVM and M–CHI decomposition in compact polarimetric SAR imagery. 2017 IEEE Interna­ tional Geoscience and Remote Sensing Symposium (IGARSS). 23–28 July 2017. Fort Worth, TX, USA. IEEE; 2017. Pp. 890–893. DOI: 10.1109/IGARSS.2017.8127095

Snapir B., Waine T. W., Biermann L. Maritime Vessel Classification to Monitor Fisheries with SAR: Demonstration in the North Sea. Remote Sensing. 2019;11(3):353. DOI: 10.3390/rs11030353

Yang R., Pan Z., Jia X., Zhang L., Deng Y. A Novel CNN-Based Detector for Ship Detection Based on Rotatable Bounding Box in SAR Images. IEEE Journal of Select­ ed Topics in Applied Earth Observations and Remote Sensing. 2021;14:1938–1958. DOI: 10.1109/JSTARS.2021.3049851

Yang R., Wang G., Pan Z., Lu H., Zhang H., X. Jia A Novel False Alarm Suppression Method for CNN-Based SAR Ship Detector. IEEE Geoscience and Remote Sensing Letters. 2021;18(8):1401–1405. DOI: 10.1109/LGRS.2020.2999506

Lin Z., Ji K., Leng X., Kuang G. Squeeze and Excitation Rank Faster R-CNN for Ship Detection in SAR Images. IEEE Geoscience and Remote Sensing Letters. 2019;16(5):751–755. DOI: 10.1109/LGRS.2018.2882551

Ke X., Zhang X., Zhang T., Shi J., Wei S. SAR Ship Detection Based on an Improved Faster R-CNN Using Deformable Convolution. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. 11–16 July 2021. Brussels, Belgium. IEEE; 2021. Pp. 3565–3568. DOI: 10.1109/IGARSS47720.2021.9554697

Dong G., Kuang G. Target Recognition in SAR Images via Classification on Riemannian Manifolds. IEEE Geoscience and remote sensing letters. 2015;12(1):199–203. DOI: 10.1109/LGRS.2014.2332076

Yan F., Mei W., Chunqin Zh. SAR Image Target Recognition Based on Hu Invariant Moments and SVM. In: Proceedings of the Fifth International Conference on In­ formation Assurance and Security. 18–20 August 2009. Xi’an, China. IEEE; 2009. Pp. 585–588. DOI: 10.1109/IAS.2009.289

Lu Z., Jiang G., Guan Yu., Wang Q., Wu Ji. A SAR Target Recognition Method Based on Decision Fusion of Multiple Features and Classifiers. Scientific Programming. 2021. Art. ID 1258219. DOI: 10.1155/2021/1258219

Fiscella B., Giancaspro A., Nirchio F., Pavese P., Trivero P. Oil spill detection using marine SAR images. International Journal of Remote Sensing. 2000;21(18):3561–3566. DOI: 10.1080/014311600750037589

Mountrakis G., Im Ju., Ogole C. Support vector machines in remote sensing: A review. Journal of Photogrammetry and Remote Sensing. 2010;66(3):247–259. DOI: 10.1016/j. isprsjprs.2010.11.001

Parikh H., Patel S., Patel V. Classification of SAR and PolSAR images using deep learning: a review. International Journal of Image and Data Fusion. 2020;11(1):1–32. DOI: 10.1080/19479832.2019.1655489

Gierull C. H. Demystifying the Capability of Sublook Correlation Techniques for Vessel Detection in SAR Imagery. IEEE Transactions on Geoscience and Remote Sensing. 2019;57(4): 2031–2042. DOI: 10.1109/TGRS.2018.2870716

Ding B., Wen G., Huang X., Ma C., Yang X. Target Recognition in Synthetic Aperture Radar Images via Matching of Attributed Scattering Centers. IEEE Journal of select­ ed topics in applied Earth observations and remote sensing. 2017;10(7):3334–3347. DOI: 10.1109/JSTARS.2017.2671919

Tanase R., Datcu M., Raducanu D. A Convolutional deep belief network for polarimetric SAR data feature extraction. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). 10–15 July 2016. Beijing, China. IEEE; 2016. Pp. 7545–7548. DOI: 10.1109/IGARSS.2016.7730968.

Ai J., Tian R., Luo Q., Jin J., Tang B. Multi-Scale Rotation-Invariant Haar-Like Feature Integrated CNN-Based Ship Detection Algorithm of Multiple-Target Environment in SAR Imagery. IEEE Transactions on Geoscience and Remote Sensing. 2019;57(12):10070–10087. DOI: 10.1109/TGRS.2019.2931308

Yuan X., Tang T., Xiang D., Li Y., Su Y. Target recognition in SAR imagery based on local gradient ratio pattern. International Journal of Remote Sensing. 2014;35(3):857– 870. DOI: 10.1080/01431161.2013.873150

Ouchi K., Tamaki S., Yaguchi H., Iehara M. Ship Detection Based on Coherence Images Derived From Cross Correlation of Multilook SAR Images. IEEE Geoscience and remote sensing letters. 2004;1(3):184–187. DOI: 10.1109/LGRS.2004.827462

Iehara M., Ouchi K., Takami I., Morimura K., Kumano Sh. Detection of ships using cross-correlation of split-look SAR images. IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium. 9–13 July 2001. Sydney, NSW, Australia. IEEE; 2001. Vol. 4. Pp. 1807–1809. DOI: 10.1109/IGARSS.2001.977078

Wei J., Zhang J., Huang G., Zhao Z. On the Use of Cross-Correlation between Volume Scattering and Helix Scattering from Polarimetric SAR Data for the Improvement of Ship Detection. Remote Sensing. 2016;8(74):1–16. DOI: 10.3390/rs8010074

Marino A., Sanjuan-Ferrer M.J., Hajnsek I., Ouchi K. Ship Detection with Spectral Analysis of Synthetic Aperture Radar: A Comparison of New and Well-Known Algorithms. Remote sensing. 2015;7:5416–5439. DOI: 10.3390/rs70505416

Wang R., Shao S., An M., Li J., Wang S., Xu X. Soft Thresholding Attention Network for Adaptive Feature Denoising in SAR Ship Detection. IEEE Access. 2021;9:29090– 29105. DOI: 10.1109/ACCESS.2021.3059033

Liu C., Yang J., Zheng, J., Nie X. An Unsupervised Port Detection Method in Polarimetric SAR Images Based on Three-Component Decomposition and Multi-Scale Thresholding Segmentation. Remote Sensing. 2022;14(1):205. DOI: 10.3390/ rs14010205

Chen X., Wang C. Ship Detection for Complex Background SAR Images Based on a Multiscale Variance Weighted Image Entropy Method. IEEE Geoscience and Remote Sensing Letters. 2017;14(2):184–187. DOI: 10.1109/LGRS.2016.2633548

Huo W., Huang Y., Pei J., Zhang Q., Gu Q., Yang J. Ship Detection from Ocean SAR Image Based on Local Contrast Variance Weighted Information Entropy. Sensors. 2018;18(4):1196. DOI: 10.3390/s18041196

Messina M., Greco M., Fabbrini L., Pinelli G. Modified Otsu’s algorithm: A new computationally efficient ship detection algorithm for SAR images. 2012 Tyrrhenian Workshop on Advances in Radar and Remote Sensing (TyWRRS). 12–14 September 2012. Naples, Italy. IEEE; 2012. Pp. 262–266. DOI: 10.1109/TyWRRS.2012.6381140

Lang H., Xi Yu., Zhang X. Ship Detection in High-Resolution SAR Images by Clustering Spatially Enhanced Pixel Descriptor. IEEE Transactions on Geoscience and Remote Sensing. 2019;57(8):5407–5423. DOI: 10.1109/TGRS.2019.2899337

Proia N. and Pagé V. Characterization of a Bayesian Ship Detection Method in Optical Satellite Images. EEE Geoscience and Remote Sensing Letters. 2010;7(2):226–230. DOI: 10.1109/LGRS.2009.2031826

Pappas O., Achim A., Bull D. Superpixel-Level CFAR Detectors for Ship Detection in SAR Imagery. IEEE Geoscience and Remote Sensing Letters. 2018;15(9):1397–1401. DOI: 10.1109/LGRS.2018.2838263

Wang C., Bi F., Zhang W., Chen L. An Intensity-Space Domain CFAR Method for Ship Detection in HR SAR Images. IEEE Geoscience and Remote Sensing Letters. 2017;14(4):529–533. DOI: 10.1109/LGRS.2017.2654450

Wang C., Bi F., Zhang W., Chen L. An Improved Iterative Censoring Scheme for CFAR Ship Detection With SAR Imagery. IEEE Transactions on Geoscience and Remote Sensing. 2014;52(8):4585–4595. DOI: 10.1109/LGRS.2017.2654450

Ai J., Qi X., Yu W., Deng Y., Liu F., Shi L. A New CFAR Ship Detection Algorithm Based on 2-D Joint Log-Normal Distribution in SAR Images. IEEE Geoscience and Remote Sensing Letters. 2010;7(4):806–810. DOI: 10.1109/LGRS.2010.2048697

Xiao Q., Cheng Yu., Xiao M., Zhang Ju., Hongji Sh., Niu L., et al. Improved region convolutional neural network for ship detection in multiresolution synthetic aperture radar images. Concurrency and Computation Practice and Experience. 2020;32(22):1–10. DOI: 10.1002/cpe.5820

Kang M., Leng X., Lin Z., Ji K. A modified faster R-CNN based on CFAR algorithm for SAR ship detection. 2017 International Workshop on Remote Sensing with In­ telligent Processing (RSIP). 18–21 May 2017. Shanghai, China. IEEE; 2017. Pp. 1–4. DOI: 10.1109/RSIP.2017.7958815

Stagliano D., Lupidi A., Berizzi F. Ship detection from SAR images based on CFAR and wavelet transform. 2012 Tyrrhenian Workshop on Advances in Radar and Remote Sensing (TyWRRS). 12–14 September 2012. Naples, Italy. IEEE; 2012. DOI: 10.1109/ TyWRRS.2012.6381102

Schwegmann C. P., Kleynhans W., Salmon B. P., Mdakane L. A CA-CFAR and localized wavelet ship detector for Sentinel-1 imagery. 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). 26–31 July 2015. Milan, Italy. IEEE; 2015. Pp. 3707–3710. DOI: 10.1109/IGARSS.2015.7326628

Ma B., Yang H., Yang J. Ship Detection in Spaceborne SAR Images under Radio Interference Environment Based on CFAR. Electronics. 2022;11(24):4135. DOI: 10.3390/ electronics11244135

Wang C., Liao M., Li X. Ship Detection in SAR Image Based on the Alpha-stable. Sensors. 2008;8(8):4948–4960. DOI: 10.3390/s8084948

Cui X.-C., Su Y., Chen S.-W. A Saliency Detector for Polarimetric SAR Ship Detection Using Similarity Test. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2019;12(9):3423–3433. DOI: 10.1109/JSTARS.2019.2925833

Cheng J., Xiang D., Tang J., Zheng Y., Guan D.; Du B. Inshore Ship Detection in Large-Scale SAR Images Based on Saliency Enhancement and Bhattacharyya-like Distance. Remote Sensing. 2022;14(12):2832. DOI: 10.3390/rs14122832

Han L., Liu D., Guan D. Ship detection in SAR images by saliency analysis of multiscale superpixels. Remote Sensing Letters. 2022;13(7):708–715. DOI: 10.1080/215 0704X.2022.2068988

Liang Y., Sun K., Zeng Y., Li G., Xing M. An Adaptive Hierarchical Detection Method for Ship Targets in High-Resolution SAR Images. Remote Sensing. 2020;12(2):303. DOI: 10.3390/rs12020303

Zhang C., Liu P., Wang H., Jin Y. Saliency-Based Centernet for Ship Detection in SAR. IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Sym­ posium. 17–22 July 2022. Kuala Lumpur, Malaysia. IEEE; 2022. Pp. 1552–1555. DOI: 10.1109/IGARSS46834.2022.9883396

Xu Ch., Yin Ch., Wang D., Han W. Fast ship detection combining visual saliency and a cascade CNN in SAR images. IET Radar, Sonar and Navigation. 2020;14(12):1879– 1887. DOI: 10.1049/iet-rsn.2020.0113

Zhang P., Luo H., Ju M., He M., Chang Z., Hui B. Brain-Inspired Fast Saliency-Based Filtering Algorithm for Ship Detection in High-Resolution SAR Images. IEEE Transactions on Geoscience and Remote Sensing. 2022;60:1–9. DOI: 10.1109/ TGRS.2021.3053257

Liu Y., Zhang M.-H., Xu P., Guo Z. SAR ship detection using sea-land segmentation-based convolutional neural network. 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP). 18–21 May 2017. Shanghai, China. IEEE; 2017. Pp. 1–4. DOI: 10.1109/RSIP.2017.7958806

Nie T., He B., Bi G., Zhang Y., Wang W. A Method of Ship Detection under Complex Background. International Journal of Geo­Information. 2017;6(6):159. DOI: 10.3390/ ijgi6060159

Hu, J., Zhi, X., Zhang, W., Ren, L., & Bruzzone, L. Salient Ship Detection via Background Prior and Foreground Constraint in Remote Sensing Images. Remote Sens­ ing. 2020;12(20):3370. DOI: 10.3390/rs12203370

Hu J., Zhi X., Zhang W., Ren L., Bruzzone L. New Hierarchical Saliency Filtering for Fast Ship Detection in High-Resolution SAR Images. IEEE Transactions on Geosci­ ence and Remote Sensing. 2017;55(1):351–362. DOI: 10.1109/TGRS.2016.2606481

Li N., Pan X., Yang L., Huang Z., Wu Z., Zheng G. Adaptive CFAR Method for SAR Ship Detection Using Intensity and Texture Feature Fusion Attention Contrast Mechanism. Sensors. 2022;22(21):8116. DOI: 10.3390/s22218116

Li N., Pan X., Yang L., Huang Zh., Wu Zh., Zheng G. Inshore Ship Detection Based on Level Set Method and Visual Saliency for SAR Images. Sensors. 2018;18(11):3877. DOI: 10.3390/s18113877

Yang M., Guo C., Zhong H., Yin H. A Curvature-Based Saliency Method for Ship Detection in SAR Images. IEEE Geoscience and Remote Sensing Letters. 2021;18(9):1590–1594. DOI: 10.1109/LGRS.2020.3005197

Song S., Xu B., Yang J. Ship Detection in Polarimetric SAR Images via Variational Bayesian Inference. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2017;10(6):2819–2829. DOI: 10.1109/JSTARS.2017.2687473

Wang Z., Du L., Su H. Target Detection via Bayesian-Morphological Saliency in High-Resolution SAR Images. IEEE Transactions on Geoscience and Remote Sensing. 2017;55(10):5455–5466. DOI: 10.1109/TGRS.2017.2707672

Yang R., Pan Zh., Jia X., Zhang L., Deng Yu. Ship detection in SAR images based on Bayesian classifier and improved data augmentation. IEEE International Geoscience and Remote Sensing Symposium. 28 July — 2 August 2019. Yokohama, Japan. IEEE; 2019.

Kim K., Hong S., Choi B., Kim E. Probabilistic Ship Detection and Classification Using Deep Learning. Applied Sciences. 2018;8(6):936. DOI: 10.3390/app8060936

Su X., Yang G., Sang H. Ship Detection in Polarimetric SAR Based on Support Vector Machine. Research Journal of Applied Sciences, Engineering and Technology. 2012;4(18):3448–3454.

Baek W.-K., Jung H.-S. Performance Comparison of Oil Spill and Ship Classification from X-Band Dualand Single-Polarized SAR Image Using Support Vector Machine, Random Forest, and Deep Neural Network. Remote Sensing. 2021;13(16):3203. DOI: 10.3390/rs13163203

Wang Y., Rajesh G., Mercilin Raajini X., Kritika N., Kavinkumar A., Shah Syed Bilal H. Machine Learning-based Ship Detection and Tracking Using Satellite Images for Maritime Surveillance. Journal of Ambient Intelligence and Smart Environments. 2021;13(5):361–371. DOI: 10.3233/AIS-210610

Yang X., Zhang J., Chen C., Yang D. An Efficient and Lightweight CNN Model With Soft Quantification for Ship Detection in SAR Images. IEEE Transactions on Geoscience and Remote Sensing. 2022;60:1–13. DOI: 10.1109/TGRS.2022.3186155.

He J., Wang Y., Liu H. Ship Classification in Medium-Resolution SAR Images via Densely Connected Triplet CNNs Integrating Fisher Discrimination Regularized Metric Learning. IEEE Transactions on Geoscience and Remote Sensing. 2021;59(4):3022–3039. DOI: 10.1109/TGRS.2020.3009284

Zhang T., Zhang X. High-Speed Ship Detection in SAR Images Based on a Grid Convolutional Neural Network. Remote Sensing. 2019;11(10):1206. DOI: 10.3390/ rs11101206

Li J., Qu C., Shao J. Ship detection in SAR images based on an improved faster R-CNN. 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA). 13–14 November 2017. Beijing, China. IEEE; 2017. Pp. 1–6. DOI: 10.1109/BIGSARDATA.2017.8124934.

Li Y., Zhang S., Wang W. -Q. A Lightweight Faster R-CNN for Ship Detection in SAR Images. IEEE Geoscience and Remote Sensing Letters. 2022;19:1–5. DOI: 10.1109/ LGRS.2020.3038901.

Zhang T., Zhang X., Li J., Xu X., Wang B., Zhan X., et al. SAR Ship Detection Dataset (SSDD): Official Release and Comprehensive Data Analysis. Remote Sensing. 2021;13(18):3690. DOI: 10.3390/rs13183690

Courmontagne P. An improvement of ship wake detection based on the radon transform. Signal Processing. 2005;85(8):1634–1654. DOI: 10.1016/j.sigpro.2005.02.013

Copeland A. C., Ravichandran G., Trivedi M. M. Localized Radon Transform-Based Detection of Ship Wakes in SAR Images. IEEE Transactions on Geoscience and Remote Sensing. 1995;33(1):35–45. DOI: 10.1109/36.368224.

Tello M., Lopez-Martinez C., Mallorqui J. J. Novel Algorithm for Ship Detection in SAR Imagery Based on the Wavelet Transform. IEEE Geoscience and Remote Sensing Letters. 2005;2(2):201–205. DOI: 10.1109/LGRS.2005.845033

Tings B., Pleskachevsky A., Velotto D., Jacobsen S. Extension of Ship Wake Detectability Model for Non-Linear Influences of Parameters Using Satellite Based X-Band Synthetic Aperture Radar. Remote Sensing. 2019;11(5):563. DOI: 10.3390/rs11050563

Xue F., Jin W., Qiu S., Yang Ji. Rethinking automatic ship wake detection: stateof-the-art CNN-based wake detection via optical images. IEEE Transactions on Geoscience and Remote Sensing. 2022;60:1–22. DOI: 10.1109/TGRS.2021.3128989

Gao C., Tao R., Kang X. Weak Target Detection in the Presence of Sea Clutter Using Radon-Fractional Fourier Transform Canceller. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2021;14:5818–5830. DOI: 10.1109/ JSTARS.2021.3078723

Graziano M. D. Preliminary Results of Ship Detection Technique by Wake Pattern Recognition in SAR Images. Remote Sensing. 2020;12(18):2869. DOI: 10.3390/ rs12182869

Karakuş O., Rizaev I., Achim A. Ship Wake Detection in SAR Images via Sparse Regularization. IEEE Transactions on Geoscience and Remote Sensing. 2019;58(3):1665– 1677. DOI: 10.1109/TGRS.2019.2947360

Hwang J.-I., Jung H.-S. Automatic Ship Detection Using the Artificial Neural Network and Support Vector Machine from X-Band Sar Satellite Images. Remote Sensing. 2018;10(11)1799–1817. DOI: 10.3390/rs10111799




DOI: https://doi.org/10.15826/urej.2024.8.1.003