Принципы построения автодинных интерферометров и возможности их применения в системах и устройствах оптического приборостроения

K. A. Ignatkov, A. S. Iskachev, A. S. Luchinin, I. V. Malygin, V. Ya. Noskov, V. V. Povetyev

Аннотация


Представлен обзор принципов построения автодинных интерферометров и возможностей их применения в системах и устройствах оптического приборостроения. При этом проанализировано современное состояние теории автодинных интерферометров, приведены основные уравнения, описывающие формирование сигналов, и рассмотрены особенности автодинных характеристик при различных уровнях отраженного излучения, характеризуемого параметром обратной связи. Представлены примеры реализации автодинных интерферометров и результаты их использования в метрологии. Отмечены перспективы применения автодинных интерферометров в системах и устройствах оптического приборостроения.

Ключевые слова


автодинная интерферометрия; лазерный автодинный интерферометр; частотная модуляция; сигнальные характеристики; параметры движения; лазерный диод; фотодиод

Полный текст:

PDF (English)

Литература


Василенко Ю. Г., Дубнищев Ю.Н., Коронкевич В.П., Соболев В.С., Столповский А.А., Уткин Е.Н. Лазерные доплеровские измерители скорости. Новосибирск: Наука; 1975. 164 c.

Коронкевич В.П., Соболев В.С., Дубнищев Ю.Н. Лазерная интерферометрия. Новосибирск: Наука; 1983. 212 c.

Коронкевич В.П., Ханов В.А. Лазерные интерферометры и их применение. Новосибирск: ИАиЭ СО АН СССР; 1984. 102 c.

Ashby D.E., Jephcott D.F. Measurement of plasma density using a gas laser in infrared interferometer. Journal of Applied Physics. 1963;3(7):13–15. DOI: 10.1063/1.1723556

Белоусова И.М., Данилов О.Б., Запрягаев А.Ф. Исследование спектра излучения He-Ne ОКГ при амплитудной модуляции обратным сигналом с доплеровским сдвигом частоты. Журнал технической физики. 1971;41(5):1028–1033.

Берштейн И.Л. Воздействие отраженного сигнала на работу лазера. Известия вузов. Радиофизика. 1973;16(4):526–530.

Берштейн И.Л., Степанов Д.П. Обнаружение и измерение малых обратных отражений лазерного излучения. Известия вузов. Радиофизика. 1973;16(4):532–535.

Казаринов Р.Ф., Сурис Р.А. Гетеродинный прием света инжекционным лазером. Журнал технической физики. 1974;66(3):1067–1078.

Morikawa T., Mitsuhashi Y. Return-beam-induced oscillations in self-coupled semiconductor lasers. Electronics Letters. 1976;12(17):435–436. DOI: 10.1587/transele.E95.C.1444

Туманов Б.Н., Левит Б.И., Бабич А.С. Автодинный эффект в газовых лазерах. Известия вузов. Радиофизика. 1978;21(9):1260–1267.

Burke W.J., Ettenberg M., Kressel H. Optical feed-back effects in CW injection lasers. Applied Optics. 1978;17(14):2233–2238. DOI: 10.1364/AO.17.002233

Левит Б.И. Исследование автодинного эффекта в квантовых генераторах: дис. … канд. физ.-мат. наук: 01.04.03. Н. Тагил; 1981. 193 с.

Гершензон Е.М., Калыгина В.М., Левит Б.И., Туманов Б.Н. Резонанс релаксационных колебаний в автодинных генераторах. Известия вузов. Радиофизика. 1981;24(8):1028–1034.

Гершензон Е.М., Туманов Б.Н., Бузыкин В.Т., Калыгина В.М., Левит Б.И. Общие характеристики и особенности автодинного эффекта в автогенераторах. Радиотехника и электроника. 1982;27(1):104–112.

Plantier G., Bes C., Bosch T. Behavioral Model of a Self-Mixing Laser Diode Sensor. IEEE Journal of Quantum Electronics. 2005;41(9):1157–1167. DOI: 10.1109/JQE.2005.853364

Giuliani G., Norgia M., Donati S., Bosch T. Laser diode self-mixing technique for sensing applications (Review article). Journal of Optics A: Pure and Applied Optics. 2002;4(6):283–294. DOI: 10.1088/1464-4258/4/6/371

Donati S., Norgia M. Overview of self-mixing interferometer applications

to mechanical engineering. Optical Engineering. 2018;57(5):051506. DOI: 10.1117/1.OE.57.5.051506

Bosch T., Servagent N., Donati S. Optical feedback interferometry for sensing application. Optical Engineering. 2001;40(1):20–27. DOI: 10.1117/1.1330701

Plantier G., Servagent N., Sourice А., Bosch T. Real-time parametric estimation of velocity using optical feedback interferometry. IEEE Transactions on Instrumentation and Measurement. 2001;50(4):915–919. DOI: 10.1109/19.948299

Plantier G., Servagent N., Bosch Th., Sourice А. Real-time tracking of time varying velocity using а self-mixing laser diode. IEEE Transactions on Instrumentation and Measurement. 2004;53(1):109–115. DOI: 10.1109/TIM.2003.821488

Bes С., Plantier G., Bosch T. Displacement measurements using а self-mixing laser diode under moderate feedback. IEEE Transactions on Instrumentation and Measurement. 2006;55(4):1101–1105. DOI: 10.1109/TIM.2006.876544

Усанов Д.А., Скрипаль Ал. В., Скрипаль Ан. В. Физика полупроводниковых радиочастотных и оптических автодинов. Саратов: Издательство Саратовского университета; 2003. 312 с.

Усанов Д.А., Скрипаль А.В. Полупроводниковые лазерные автодины для измерения параметров движения при микро- и наносмещениях. Саратов: Издательство Саратовского университета; 2014. 136 с.

Соболев В.С., Кащеева Г.А. Активная лазерная интерферометрия с частотной модуляцией. Автометрия. 2008;44(6):49–65.

Соболев В.С., Уткин Е.Н., Щербаченко А.М., Столповский А.А., Кащеева Г.А. Активная лазерная интерферометрия: состояние и перспективы. Автометрия. 2004;40(6):4–18.

Lang R., Kobayashi S. External optical feedback effects on semiconductor injection laser properties. IEEE Journal of Quantum Electronics. 1980;16(3):347–355. DOI: 10.1109/JQE.1980.1070479

Kobayashi S., Yamamoto Yо., Ito М., Kimura Т. Direct frequency modulation in AIGaAs semiconductor lasers. IEEE Journal of Quantum Electronics. 1982;18(4):582–595. DOI: 10.1109/JQE.1982.1071603

Kane D.M., Shore K.A. (ed.) Unlocking Dynamical Diversity. Optical Feedback Effects on Semiconductor Lasers. London: John Wiley & Sons Ltd; 2005. 375 p.

Wei Lu. Improving the performance of optical feedback self-mixing interferometry sensing. Doctor of Philosophy thesis, School of Electrical, Computer and Telecommunications Engineering, University of Wollongong. 2011. URL: https://ro.uow.edu.au/theses/3256 (accessed: 03.10.2024).

Donati S., Giuliani G., Merlo S. Laser diode feedback interferometer for measurement of displacements without ambiguity. IEEE Journal of Quantum Electronics. 1995;31(1):113–119. DOI: 10.1109/3.341714

Носков В.Я. Анализ влияния шумов на характеристики автодинных измерителей вибраций и малых перемещений. Измерительная техника. 2014; (9):49–53.

Scalise L., Yanguang Yu, Giuliani G., Plantier G., Bosch T. Self-mixing laser diode velocimetry: application to vibration and velocity measurement. IEEE Transactions on Instrumentation and Measurement. 2004;53(1):223–232. DOI: 10.1109/TIM.2003.822194

Plantier G., Servagent N., Bosch Т., Sourice А. Real-time tracking of time-varying velocity а self-mixing laser diode. IEEE Transactions on Instrumentation and Measurement. 2004;53(1):109–115. DOI: 10.1109/TIM.2003.821488

Raoul Х., Bosch Т., Plantier G., Servagent N. А double laser diode on board sensor for velocity measurements. IEEE Transactions on Instrumentation and Measurement. 2004;53(1):95–101. DOI: 10.1109/TIM.2003.821483

Gouaux F., Servagent N., Bosch Т. Absolute distance measurement with an optical feedback interferometer. Applied Optics. 1998;37(28):6684–6689. DOI: 10.1364/AO.37.006684

De Groot Р.J., Galatin G.М., Macomber S.В. Ranging and velocimetry signal generation in а backscatter-modulated laser diode. Applied Optics. 1988;27(21):4475–4480. DOI: 10.1364/AO.27.004475

Beheim G., Fritsch К. Range finding using frequency-modulated laser diode. Applied Optics. 1986;25(9):1439–1442. DOI: 10.1364/AO.25.001439

Giuliani G., Donati S., Passerini М., Bosch Т. Angle measurement bу injection detection in laser diode. Optical Engineering. 2001;40(1):95–99. DOI: 10.1117/1.1332276

Economou G., Youngquist R.G., Davies D.E.N. Limitations and noise in interferometric systems using frequency ramped single-mode diode lasers. Journal of Lightwave Technology. 1986;4(11):1601–1608. DOI: 10.1109/JLT.1986.1074672

Chebbour A., Gorecki C., Tribillon G. Range finding and velocimetry with directional discrimination using a modulated laser diode Michelson interferometer. Optics Communications. 1994;111(1–2):1–2. DOI: 10.1364/AO.25.001439

Amman M.-Ch., Bosch T., Lescure M., Myllylä R., Rioux M. Laser ranging: a critical review of usual techniques for distance measurement. Optical Engineering. 2001;40(1):10–19. DOI: 10.1117/1.1330700

Schneider R., Thurmel P., Stockmann M. Distance measurement of moving objects by frequency modulated laser radar. Optical Engineering. 2001;40(1):33–37. DOI: 10.1117/1.1332772

Gouaux F., Servagent N., Bosch T. Absolute distance measurement with an optical feedback interferometer. Applied Optics. 1998;37(28):6684–6689. DOI: 10.1364/AO.37.006684

Osterwalder J.M., Rickett B.J. Frequency modulation in GaAlAs injection lasers at microwave frequency rates. IEEE Journal of Quantum Electronics. 1980;16(3):250–252. DOI: 10.1109/JQE.1980.1070461

Norgia M., Giuliani G., Donati S. Absolute distance measurement with improved accuracy using laser diode self-mixing interferometry in a closed loop. IEEE Transactions on Instrumentation and Measurement. 2007;56(5):1894–1900. DOI: 10.1109/TIM.2007.904551

Beheim G., Fritsch K. Range finding using frequency-modulated laser diode. Applied Optics. 1986;25(9):1439–1442. DOI: 10.1364/AO.25.001439

Shinohara Sh., Yoshida H., Ikeda H. Nishide K., Sumi M. Compact and high-precision angle finder with wide dynamic range and its application. IEEE Transactions on Instrumentation and Measurement. 1992;41(1):40–44. DOI: 10.1109/19.126628

Taimre T., Nikolic M., Bertling K., Lim Y.L., Rakic A.D., Bosch T. Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing. Advances in Optics and Photonics. 2015;7(3):570–631. DOI: 10.1364/AOP.7.000570

Randone E.M., Donati S. Self-mixing interferometer: analysis of the output signals. Optics Express. 2006;14(20):9188–9196. DOI: 10.1364/OE.14.009788

Lim Y. L., Bertling K., Dean P., Valavanis A., Alhathlool R., Khanna S. P., et al. Self-mixing signals in terahertz lasers. In: Conference on Optoelectronic and Microelectronic Materials Devices (COMMAD). 12–14 December 2012. Melbourne, VIC, Australia. IEEE; 2012. P. 105–106.

Valavanis A., Dean P., Lim Y.L., Alhathlool R., Nikolic M., Kliese R., et al. Self-mixing interferometry with terahertz quantum cascade lasers. IEEE Sensors Journal. 2013;13(1):37–43. DOI: 10.1109/JSEN.2012.2218594

Perchoux J., Campagnolo L., Lim Y.L., Rakic A.D. «Lens-free» self-mixing sensor for velocity and vibrations measurements. In: Conference on Optoelectronic and Microelectronic Materials and Devices (COMMAD). 12–15 December 2010. Canberra, ACT, Australia. IEEE; 2010. P. 65–67.

Norgia M., Pesatori A., Donati S. A lensless self-mixing blood-flow sensor. In: 2nd International Conference on Biophotonics. IEEE; 2011. P. 65–67.

Servagent N., Bosch T., Lescure M.A. Laser displacement sensor using the self-mixing effect for modal analysis and defect detection. IEEE Transactions on Instrumentation and Measurement. 1997;46(4):847–850. DOI: 10.1109/19.650786

Wang M., Lai G. Self-mixing microscope interferometer for the measurement of microprofile. Optics Communications. 2004;238(4):237–244. DOI: 10.1016/j.optcom.2004.04.052

Ocana R., Molina T. Mapping a vibrating surface by using laser self-mixing interferometry. In: Gorecki Ch., Asundi A.K., Osten W. (eds.) Proceedings of SPIE 9132. Optical Micro- and Nanometrology V. 15–17 April 2014. Brussels, Belgium. SPIE; 2014. P. 1–10. DOI: 10.1117/12.2052172

Giuliani G., Bozzi-Pietra S., Donati S. Self-mixing laser diode vibrometer. Measurement Science and Technology. 2003;14(1):24–32. DOI: 10.1088/0957-0233/14/1/304

Rui-hua Hong, Donati S., inventor. Optical measuring device and optical measuring method. Taiwan patent TW201534861A. G01B11/24 (2006.01). 2015 Sept 16.

Donati S., Giuliani G., Merlo S. Laser Diode Feedback Interferometer for the Measurements of Displacements without Ambiguity. IEEE Journal of Quantum Electronics. 1995;31(1):113–119. DOI: 10.1109/3.341714

Arasanz A., Azcona F.J., Royo S., Jha A., Pladellorens J. A new method for the acquisition of arterial pulse wave using self-mixing interferometry. Optics and Laser Technology. 2014;63:98–104. DOI: 10.1016/j.optlastec.2014.04.004

Atashkhooei R., Urresty J.-C., Royo S., Riba J.-R., Romeral L. Runout tracking in electric motors using self-mixing interferometry. IEEE/ASME Transactions on

Mechatronics. 2014;19(1):184–190. DOI: 10.1109/TMECH.2012.2226739

Gagnon E., Rivest J.-F. Laser range imaging using the self-mixing effect in a laser diode. IEEE Transactions on Instrumentation and Measurement. 1999;48(3):693–699. DOI: 10.1109/19.772198

Kliese R., Taimre T., Bakar A.A. A., Lim Y.L., Bertling K., Nikolic M., et al. Solving self-mixing equations for arbitrary feedback levels: a concise algorithm. Applied Optics. 2014. Vol. 53. No. 17. P. 3723–3736. DOI: 10.1364/AO.53.003723




DOI: https://doi.org/10.15826/urej.2024.8.3.001