ВХОДНАЯ ИОННАЯ ОПТИКА КВАДРУПОЛЬНЫХ МАСС-СПЕКТРОМЕТРОВ С ИНДУКТИВНО СВЯЗАННОЙ ПЛАЗМОЙ. ЧАСТЬ 2. АСИММЕТРИЧНЫЕ СИСТЕМЫ С ПАРАЛЛЕЛЬНЫМ СМЕЩЕНИЕМ ИОНОВ

V. T. Surikov, A. A. Pupyshev

Аннотация


Систематизированы литературные и другие сведения о входной ионной оптике квадрупольных масс-спектрометров с индуктивно связанной плазмой. Данная часть обзора посвящена асимметричным системам с отклоняющими устройствами, предназначенными для параллельного смещения потока ионов. Выявлены причины выбора такой оптики и ее преимущества, разобраны варианты ее устройства, которые можно разделить на две хронологические группы – до и после сочетания с мультипольными газопродуваемыми реакционно-столкновительными ячейками. Обсуждены особенности конструкции и функционирования разных типов ячеек, а также ионных дефлекторов. Рассмотрено поведение экстрагированных частиц плазмы внутри разных участков ионной оптики. В частности, критически рассмотрена первоначальная теория, объясняющая природу положительного эффекта мягкого режима экстракции ионов, вводимых в оптику, взамен предложено альтернативное объяснение.

Главное внимание уделено конструкции, расположению и cвойствам двух вышеназванных хронологических групп оптики в серийных масс-спектрометрах: ранней (1983-2000 гг.), использованной в PMS 100/200/2000, HP 4500, Agilent 7500a/i/s, ICPM 8500, EMS 200 и TS Sola; последующей (1999-2014 гг.), снабженной гексапольными ячейками в Platform ICP/XS, PQExCell, XSeriesI/II, ICP-MS 2000 или октапольными ячейками в модельном ряду Agilent 7500c/cs/ce/cx/7700/8800/7900. Рассмотрена концептуальная новизна ионной оптики трехмультипольного масс-спектрометра Agilent 8800 ICP-QQQ, принципиально отличающейся размещением перед октапольной ячейкой предварительного квадруполя, что обеспечило наилучшую  в настоящее время эффективность по избавлению от спектральных наложений, повышению достоверности получаемых результатов и улучшению пределов обнаружения, подтвержденную многочисленными авторами на примере анализа множества разнообразных проб сложного состава.  

Ключевые слова: масс-спектрометрия с индуктивно связанной плазмой, асимметричная ионная оптика, дефлекторы, параллельное смещение ионов, мультипольные ячейки

DOI: http://dx.doi.org/10.15826/analitika.2014.18.3.001

 


Полный текст:

PDF (Russian)

Литература


Surikov V.T. [Beginning of history of inductively coupled plasma-mass spectrometry. First experimental and serial spectrometers]. Analitika i Кontrol’ [Analytics and control], 2002, vol. 6, no. 3, pp. 323-334 (in Russian).

Surikov V.T., Pupyshev A.A. [Input ion optics of inductively coupled plasma quadrupole mass-spectrometers. Part I. Systems with cylinder symmetry and straight-line axis]. Analitika i Kontrol’ [Analytics and control], 2011, vol. 15, no. 3, pp. 256-280 (in Russian).

Surikov V.T., Pupyshev A.A. [Evolution of ion optics of inductively coupled plasma quadrupole mass-spectrometers. Part 1: systems with cylinder symmetry and straight- line axis]. Problemy spektroskopii i spektrometrii. Mezhvuzovskii sbornik nauchnykh trudov [Problems of spectroscopy and spectrometry. Interuniversity proc. of scientific papers]. Ekaterinburg, SEI HPE USTU-UPI, 2005, no. 20. pp. 97-124 (in Russian).

Surikov V.T., Pupyshev A.A. [Input ion optics of inductively coupled plasma quadrupole mass-spectrometers and its evolution]. Dep. in VINITI 26.10.2005. № 1368-В2005. USTU-UPI – ISSC UB RAS. 59 p. (in Russian).

Surikov V.T., Pupyshev A.A. [Evolution of ion optics of inductively coupled plasma quadrupole mass-spectrometers. Part 2: systems with curved optical axis]. Problemy spektroskopii i spektrometrii. Mezhvuzovskii sbornik nauchnykh trudov [Problems of spectroscopy and spectrometry. Interuniversity proc. of scientific papers]. Ekaterinburg, SEI HPE USTU-UPI, 2005, no. 20. pp. 125-140 (in Russian).

Thomas R. Practical guide to ICP-MS. A tutorial for beginners. Third edition. CRC press, 2013, 446 p.

Montaser A., ed. Inductively coupled plasma mass spectrometry. N.Y., Wiley&Sons, 1998, 992 p.

Beauchemin D., Gregoire D.C., Günter D., Karanassios V., Mermet J.-M., Wood T.J. Discrete sample introduction techniques for inductively coupled plasma mass spectrometry. Amsterdam, Elsevier, 2000, 596 p.

Nelms S.M., ed. ICP mass spectrometry handbook. Oxford, Blackwell Publ. Ltd., 2005, 486 p.

Becker J.S. Inorganic mass spectrometry. Principles and applications. Chichester, Wiley, 2007, 496 p.

Barshick C.M., Duckworth D.C., Smith D.H., eds. Inorganic mass spectrometry. Fundamentals and applications. New York, Marcel Dekker Inc., 2000, 517 p.

Thomas R. A beginner’s guide to ICP-MS. Part V: The ion focusing systems. Spectroscopy, 2001, vol. 16, pp. 38-44.

Kalinitchenko I. Ion optical system for a mass spectrometer. Pat. АU, no. 750860, 2002.

Kalinitchenko I. Ion optical system for a mass spectrometer. Pat. US, no. 6614021, 2003.

Hieftje G.M. Towards the next generation of plasma source mass spectrometers. J. Anal. At. Spectrom., 1992, vol. 7. no. 6, pp. 783-790. DOI: 10.1039/JA9920700783.

Agilent 7500. Inductively coupled plasma mass spectrometry. Сourse № Н8974А. Student manual. Agilent Technol., 2001, 408 p.

Ross B.S., Hieftje G. Alteration of the ion-optic lens configuration to eliminate mass-depent matrix-interference effects in inductively coupled plasma-mass spectrometry. Spectrochim. Acta. Part B, 1991, vol. 46, no. 9, pp. 1263-1373.

Turner P. Off-axis interface for a mass spectrometer. Pat. US, no. 5426301, 1995.

Denouer E.R., Jacques D., Debrach E., Tanner S.D. Determination of trace elements in uranium: practical benefits of a new ICP-MS lens system. Atom. Spectrosc., 1995. vol. 40, pp. 1-6.

Pupyshev A.A., Surikov V.T. Mass-spektrometriia s induktivno sviazannoi plazmoi. Obrazovanie ionov [Inductively coupled plasma-mass spectrometry. Formation of ions] Second edition. Saarbrücken, LAP, 2012, 397 p (in Russian).

Date A.R., Gray A.L. Plasma source mass spectrometry using an inductively coupled plasma and a high resolution quadrupole mass filter // Analyst, 1981, vol. 106, pp. 1255-1267.

Date A.R., Gray A.L. Progress in plasma source mass spectrometry. Spectrochim. Acta. Part B, 1983, vol. 38, no. ½, pp. 29-30.

Montaser A., Tan H., Ishii I., Nam S.-H., Cai M. Argon inductively coupled plasma mass spectrometry with thermospray, ultrasonic, and pneumatic nebulization. Anal. Chem., 1991, vol. 63, no. 22, pp. 2660-2665. DOI: 10.1021/ac00022a021.

Zhang H., Nam S.-H., Cai M., Montaser A. Atmospheric-pressure helium inductively coupled plasmas for elemental mass spectrometry. Appl. Spectrosc., 1996, vol. 50, no. 4, pp. 427-435. DOI: 10.1366/00037002963906140.

Olivares J.A., Houk R.S. Ion sampling for inductively coupled plasma mass spectrometry. Anal. Chem., 1985, vol. 57, no. 13, pp. 2674-2679. DOI: 10.1021/ac00290a054.

Douglas D.J. Some current perspectives on ICP-MS. Canad. J. Spectrosc., 1989, vol. 34, no. 2, pp. 38-49.

Warren A.R., Allan L.A., Pang H.-M., Houk R.S., Janghorbani M. Simultaneous measurements of ion ratios by inductively coupled plasma-mass spectrometry with a twin-quadrupole instrument. Appl. Spectrosc., 1994, vol. 48, no. 11, pp. 1360-1366. DOI: 10.1366/0003702944027958.

Allen L.A., Pang H.-M., Warren A.R., Houk R.S. Simultaneous measurements of ion ratios in solids by laser ablation with a twin quadrupole inductively coupled plasma mass spectrometer. J. Anal. At. Spectrom., 1995, vol. 10, no. 3, pp. 267-271. DOI: 10.1039/JA9951000267.

Allen L.A., Leach J.J., Pang H.-M., Houk R.S. Precise measurement of ion ratios in solid samples using laser ablation with a twin quadrupole inductively coupled plasma mass spectrometer. J. Anal. At. Spectrom., 1997, vol. 12, no. 2, pp. 171-176. DOI: 10.1039/A603310E.

Mukai H., Ambe Y., Morita M. Flow injection inductively coupled plasma mass spectrometry for the determination of platinum in airborne particulate matter. J. Anal. At. Spectrom., 1990, vol. 5, no. 1, pp. 75-80. DOI: 10.1039/JA990500075.

Potter D. A commercial perspective on the growth and development of the quadrupole ICP-MS market. J. Anal. At. Spectrom., 2008, vol. 23, no. 5, pp. 690-693. DOI: 10.1039/b717322a.

Hunt J. Celebrating 25 years of inductively coupled plasma-mass spectrometry. Amer. Lab., 2008, September, pp. 1-4.

Haraguchi H., Furuta N. Analytical atomic spectrometry in Japan over the last 25 years. J. Anal. At. Spectrom., 2010, vol. 25, no. 9, pp. 1371-1377. DOI: 10.1039/C005496H.

Kawabata K., Kishi Y., Kawaguchi O., Watanabe Y., Inoue Y. Detеrmination of rare-earth elements by inductively coupled plasma mass spectrometry with ion chromatography. Anal Chem., 1991, vol. 63, no. 19, pp. 2137-3140. DOI: 10.1021/ac00019a013.

Inoue Y., Kawabata K. Speciation of organotin compounds by inductively coupled plasma mass spectrometry combined with liquid chromatography. J. Mass Spectrom. Soc. Jap., 1993, vol., 41, no. 4, pp. 245-252.

Santosa S.J., Tanaka S., Yamanaka K. Inductively coupled plasma mass spectrometry for sequential determination of trace metals in rain and river waters using electrothermal vaporization. Anal. Lett., 1995, vol. 28, no. 3, pp. 509-534. DOI: 10.1080/00032719508001113.

Sushida K. Development of ICP-MS and its applications to ultra-trace elemental analysis of semiconductor materials. J. Mass Spectrom. Soc. Jap., 1997, vol. 45, no. 2, pp. 159-174.

Kishi Y. A benchtop inductively coupled plasma mass spectrometer. Hewlett-Packard Journ., 1997, vol. 48, pp. 72-79.

Yamada N., Sakata K., Nawa S. Inductively coupled plasma mass spectroscopic apparatus. Pat. US, no. 5939718, 1999.

Sakata K., Yamada N., Midorikawa R., Wirfel J.C., Potter D.L., Martinez A.G.M. Inductively coupled plasma mass spectrometer and method. Pat. US, no. 6265717 B1, 2001.

Müller M. Entwicklung eines Verfahrens zur Ultraspurenbestimmung der Platingruppenelemente in Umwelt- und geologishen Proben mit einem ICP-QMS unter Verwendung der Isotopenverdünnungsanalyse sowie geeigneter Separationstechniken. Diss. Dr. rer. nat. Mainz (Germany), 2001. 151 p.

Heumann K.G., Gallus S.M., Rädlinger G., Vogl J. Precision and accuracy in isotope ratio measurements by plasma source mass spectrometry. J. Anal. At. Spectrom., 1998, vol. 13, no. 9, pp. 1001-1008. DOI: 10.1039/A801965G.

ICP-MS. Inductively coupled plasma mass spectrometry. A Primer. Agilent Technol., Inc. 2005. Publ. № 5989-3526EN. 86 p.

Morton K. New product line up for Agilent ICP-MS. Agilent ICP-MS Journ., 2003, no. 15, р. 3.

Tye C., Sakata K. The new soft extraction mode. Agilent ICP-MS Journ., 2000, no. 8. p. 7.

Sakata K., Yamada N., Sugiyama N. Ion trajectory simulation of inductively coupled plasma mass spectrometry based on plasma-interface behavior. Spectrochim. Acta. Part B, 2001, vol. 56, no. 7, pp. 1249-1261.

Fairman B., Wahlen R. Speciation analysis of organotin compounds by HPLC-ICP-MS. Spectrosc. Europe., 2001, vol. 13, no. 5, pp. 16-22.

Agilent 7500 series ICP-MS. CE Handbook. Agilent Technol. 2005. № G3270-90222. 737 p.

Agilent 7500 series ICP-MS. Hardware manual. Agilent Technol., Inc. 2008. № G3270-90106. 334 p.

Agilent 7500 ICP-MS techniques and operation. Course number H8974A. Student manual. Agilent Technol., Inc. 2008. 356 p.

Agilent 7500 ICP-MS СhemStation (G1834B). Operator’s manual. Agilent Technol., 2005. 659 p.

Pupyshev A.A., Sermiagin B.A. Diskriminatsiia ionov po masse pri izotopnom analize metodom mass-spektrometrii s induktivno sviazannoi plazmoi [Mass discrimination of ions in isotope analysis by inductively coupled plasma-mass spectrometry]. Ekaterinburg, SEI HPE USTU-UPI, 2006, 132 p (in Russian).

Park C.J. Attenuation of background molecular ions and determination of isotope ratios by inductively coupled plasma mass spectrometry at cool plasma condition. Bull. Korean. Chem. Soc., 1997, vol., 18, no. 7, pp. 706-710.

Brown R., Gray D.J., Tye D. Hydride generation ICP-MS (HG-ICP-MS) for the ultra low level determination of mercury in biota. Water, Air and Soil Pollution, 1995, vol. 80, no. 1-4, pp. 1237-1245. DOI: 10.1007/BF01189787.

Holland G., Eaton A.N., eds. Applications of plasma source mass spectrometry. Cambridge, RSC, 1991, 222 р.

Hu K., Houk R.S. Inductively coupled plasma mass spectrometry with an electrically floating sampling interface. J. Amer. Soc. Mass Spectrom., 1993, vol. 4, no. 9, pp. 733-741.

Niu H. Fundamental studies of the plasma extraction and ion beam formation processes in inductively coupled plasma mass spectrometry. Diss. PhD. Ames (Iowa, USA), 1995. 276 p.

Douglas D.J. Method and apparatus having RF biasing for sampling a plasma into a vacuum chamber. Pat. US, no. 4682026, 1987.

Houk R.S., Hu K. Plasma sampling interface for inductively coupled plasma mass spectrometry (ICP-MS). Pat. US, no. 5218204, 1993.

Du Z. A new tandem quadrupole mass analyser. Diss. PhD. The University of British Columbia (Canada). 2000. 149 p.

Ramyalaksmi G., Vankatesh P., Hepcy kalagani D., Ravindra reddy K., Archana E., Manjuvani S. A review on inductively coupled plasma mass spectroscopy. Int. J. Drug. Dev. & Res., 2012, vol. 4, no. 4, pp. 69-79.

ICPM-8500 Shimadzu inductively coupled plasma mass spectrometer. 20 р. Available at: http://www.antteknik.com/documents/catalogs/ICPM-8500_113-E006A.pdf (accessed 30.06.2014).

ICPS and ICP-MS verification analysis technique for Cd, Pb and Hg. 49 p. Available at: http://www.thairohs.org/index.php?option=com_docman&task=doc_view&gid=85 (accessed 15.03.2013).

Asada S. Presenting an advanced ICP-MS for environmental analysis of metal poluttants. Development of Shimadzu’s MS Technology, innovation 33, p. 13. Available at: http://www.shimadzu.com/about/magazine/oh80jt000000anfi-att/33_2.pdf (accessed 30.06.2014).

Goso X.C. Identification of the sources of, and subsequent minimization of the uncertainties associated with the measurement of minor elements in PGM furnace matte by ICP-MS. Diss. Master Technol. Chem. Johannesburg (SAR), 2007. 170 p.

Nakagawa Y. Inductively coupled plasma mass spectrometry apparatus. Pat. US, no. 4999492, 1991.

Koppenaal D.W., Eiden G.C., Barinaga C.J. Collision and reaction cells in atomic mass spectrometry: development, status, and applications. J. Anal. At. Spectrom., 2004, vol. 19, no. 5, pp. 561-576. DOI: 10.1039/b403510k.

Koppenaal D.W., Eiden G.C. Foreword: collision and reaction cell techniques in atomic mass spectrometry. J. Anal. At. Spectrom., 2004, vol. 19, no. 5, p. 15N. DOI: 10.1039/b405895j.

Leikin A.Iu., Iakimovitch P.V. [Systems for suppression of spectral interferences in inductively coupled plasma-mass spectrometry]. Zhurn. Analit. Khimii [J. Anal. Chem.], 2012, vol. 67, no. 8, pp. 752-762 (in Russian).

Thomas R. A beginner’s guide to ICP-MS. Part IX – mass analysers: collision/reaction cell technology. Spectroscopy, 2002, vol. 17, pp. 42-48.

Tanner S.D., Baranov V.I., Bandura D.R. Reaction cells and collision cells for ICP-MS: a tutorial review. Spectrochim. Acta. Part B, 2002, vol. 57, no. 9, pp. 1361-1452.

Feldmann I., Jakubowski N., Stuewer D. Application of a hexapole collision and reaction cell in ICP-MS. Part I: instrumental aspects and operational optimization. Fresenius J. Anal. Chem., 1999, vol. 365, no. 5, pp. 415-421.

O’Brien S.E., Acon B.W., Boulyga S.F., Becker J.S., Dietze H.-J., Montaser A. Rеduction of molecular ion interferences with hexapole collision cell in direct injection nebulization-inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom., 2003, vol. 18, no. 3, pp. 230-238. DOI: 10.1039/B209047N.

Mason P.R.D., Kaspers K., van Bergen M.J. Determination of sulfur isotope ratios and concentrations in water samples using ICP-MS incorporating hexapole ion optics. J. Anal. At. Spectrom., 1999, vol. 14, no. 7, pp. 1067-1074. DOI: 10.1039/A902037C.

Xie Q., Kerrich R. Isotope ratio measurement by hexapole ICP-MS: mass bias effect, precision and accuracy. J. Anal. At. Spectrom, 2002, vol. 17, no. 1, pp. 69-74. DOI: 10.1039/B106417G.

Du Z., Houk R.S. Atteniation of metal oxide ions in inductively coupled plasma mass spectrometry with hydrogen in a hexapole collision cell. J. Anal. At. Spectrom., 2000, vol. 15, no. 4, pp. 383-388. DOI: 10.1039/A905046I.

Mcluckey S.A., Wells J.M. Mass analysis at the advent of the 21st century. Chem. Rev., 2001, vol. 101, no. 2, pp. 571-606. DOI: 10.1021/cr990087a.

Becker J.S., Dietze H.-J. Inorganic mass spectrometric methods for trace, ultratrace, isotope, and surface analysis. Int. J. Mass Spectrom., 2000, vol. 197, no. 1-3, pp. 1-35.

Becker J.S. ICP-MS: determination of long-lived radionuclides. Spectrosc. Europe., 2002, vol. 14, no. 6, pp. 8-16.

Boulyga S.F., Becker J.S. Improvement of abundance sensitivity in quadrupole based ICP-MS instrument with a hexapole collision cell. J. Anal. At. Spectrom., 2002, vol. 17, no. 9, pp. 1202-1206. DOI: 10.1039/B203086C.

Izmer A.V., Boulyga S.F., Becker J.S. Determination of 129I/127I isotope ratios in liquid solutions and environmental soil samples by ICP-MS with hexapole collision cell. J. Anal. At. Spectrom., 2003, vol. 18, no. 11, pp. 1339-1345. DOI: 10.1039/B306446H.

Izmer A. ICP-MS and their application. Method development using ICP-MS and LA in environmental and material science. Diss. Dr. rer. nat. Mainz (Germany), 2006. 115 p.

Speakman J., Haines R.C., Turner P.J., Merren T.O., Jarvis S.A. Plasma mass spectrometer. Pat. US, no. 6222185 B1, 2001.

Speakman J., Haines R.C., Turner P.J., Merren T.O., Jarvis S.A. Plasma mass spectrometer. Pat. US, no. 6545270 B2, 2003.

Speakman J., Haines R.C., Turner P.J., Merren T.O., Jarvis S.A. Plasma mass spectrometer. Pat. US, no. 6707032 B2, 2004.

Speakman J., Merren T.O., Haines R.C., Jarvis S.A., Turner P.J. Plasma mass spectrometer. Patent EP, no. 1246225 B1, 2011.

Platform-ICP user’s guide. Micromass Ltd. Code 6666465, issue 3, 72 p.

Bunce L., Mitchell D. The Platform XS ICP-MS. GV Instruments, 2005, 76 p.

Becker J.S. Recent developments in isotope analysis by advanced mass spectrometric techniques. J. Anal. At. Spectrom., 2005, vol. 20, no. 11, pp. 1173-1184. DOI: 10.1039/B508895J.

X Series ICP-MS training course lectures. Thermo Electron Corp., 2002. Part № 3601078. 128 p.

X Series ICP-MS engineering and service manual. Thermo Elemental, 2001, 176 p.

X Series ICP-MS. Practicality, productivity, performance. Thermo Electron Corp., 2004, 12 p.

XSeries ICP-MS lens supply PCB service manual. Thermo Electron Corp, 2005, 35 p.

Brennetot R., Pierry L., Atamyan T., Favre G., Vailhen D. Optimisation of the operating conditions of a quadrupole ICP-MS with hexapole collision/reaction cell for the analysis of selenium-79 in spent nuclear fuel using experimental design. J. Anal. At. Spectrom., 2008, vol. 23, no. 10, pp. 1350-1358. DOI: 10.1039/B802820F.

Favre G. Etude des reactions “ions-molécules” en phase gazuese dans les dispositifs de collision-réaction: Application à la resolution directe des interferences spectroscopiques en ICP-MS. Тhèses … Dr. Chimie Analytique. Université d'Evry-Val d'Essonne.2008. 159 p.

Favre G., Brennetot R., Chartier F., Tortajada J. Interference of instrumental parameters on the kinetic energy of ions and plasma temperature for hexapole collision/reaction-cell-based inductively coupled plasma quadrupole mass spectrometry. Appl. Spectrosc., 2009, vol. 63. no. 2, pp. 207-213. DOI: 10.1366/000370209787392111.

Thermo Scientific XSeries 2 ICP-MS. Technical note 40717, 2008, 4 p.

Kuznetsov G.B. [ХSeriesII ICP-MS with third-generation cell ССТED. Application of kinetic energy discrimination in CCT for lowering of oxide ions level]. Mass-spektrometriia [Mass-spectrometry], 2006, vol. 3, no. 1, pp. 69-70 (in Russian).

XSERIES 2. Embrace all elements. Thermo Fisher Scientific. Available at: http://www.sol-analiticas.com/PDF/embrace_all_%7Felements.pdf (accessed 28.05.2013)

Guillong M., Danyushevski L., Walle M., Ravaggi M. The effect of quadrupole ICPMS interface and ion lens design on argide formation. Implication for LA-ICPMS analysis of PGE’s in geological samples. J. Anal. At. Spectrom., 2011, vol. 26. no. 7, pp. 1401-1407. DOI: 10.1039/c1ja10035a.

Karandashev V.K., Leikin A.Iu., Zhernokleeva K.V. [Lowering of matrix effects in ICP-MS by optimizing settings of ion optics]. Zhurn. Analit. Khimii [J. Anal. Chem.], 2014, vol. 69, no. 1, pp. 26-34 (in Russian). DOI: 10.7868/S0044450214010101.

ICP-MS 2000. Available at: http://www.skyrayjustin.m.ec21.com/mobile/productDetail.jsp?productId=7007612 (accessed 29.06.2014).

Gluodenis T., Potter D., McCurdy E. New developments in ICP-MS. Amer. Lab., 2001, February, pp. 32-38.

Leonhard P., Pepelnik R., Prange A., Yamada N., Yamada T. Analysis of diluted sea-water at the ng L-1 level using an ICP-MS with an octopole reaction cell. J. Anal. At. Spectrom., 2002, vol. 17, no. 3, pp. 189-196. DOI: 10.1039/B110180N.

Marguí E. Analytical methodologies based on X-ray fluorescence spectrometry (XRF) and inductively coupled plasma mass spectroscopy (ICP) for the assessment of metal dispersal around mining environmental. Diss. PhD. Girona (Spain), 2006. 274 p.

Colon M. Analytical strategies based on inductively coupled plasma spectroscopy (ICP) and diffusive gradients in thin films (DGT) techniques for the assessment of environmental pollution indicators. Diss. PhD. Girona (Spain), 2010. 218 p.

Darrouzès J., Bueno M., Lespès G., Potin-Gautier M. Operational optimization of ICP-octopole collision/reaction cell-MS for applications to ultratrace selenium total and speciation determination. J. Anal. At. Spectrom., 2005, vol. 20, no. 2, pp. 88-94. DOI: 10.1039/B410142A.

Potter D. A new addition to the family – introduction the Agilent 7500c octopole reaction system. Agilent ICP-MS Journ., 2000, no. 8, p. 3.

Special 7500c applications edition. Agilent ICP-MS Journ., 2001, no 10, 8 p.

Amr M.A. The collision/reaction cell and its application in inductively coupled plasma mass spectrometry for the determination of radioisotopes: a literary review. Adv. Appl. Sci. Res., 2012, vol. 3, no. 4, pp. 2179-2191.

Wilbur S. Application of ICP-MS in homeland security. Amer. Lab., 2004. September, pp. 20-26.

Yamada N., Takahashi J., Sakata K. The effects of cell-gas impurities and kinetic energy discrimination in an octopole cell ICP-MS under non-thermalized conditions. J. Anal. At. Spectrom., 2002, vol. 17, no. 10, pp. 1213-1222. DOI: 10.1039/B205416G.

7500cs octopole reaction system ICP-MS. Technical overview. Agilent Technol., Inc., 2003. Publ. № 5988-9881EN, 4 p.

Morton K. New product line of Agilent ICP-MS. Agilent ICP-MS Journ., 2003, no. 15. p. 3.

Potter D., Morton K. Technical features of the new Agilent 7500cs. Agilent ICP-MS Journ., 2003, no. 15. pp. 4-5.

Takahashi J., Youno K. Analysis of sulphuric and phosphoric acids by 7500cs. Agilent ICP-MS Journ., 2003, no. 15, pp. 6-7.

Morton K. A new direction for 7500 series ICP-MS. Agilent ICP-MS Journ., 2004, no. 19, p. 2

Lokits K.E. Interfacing conventional and capillary flow to argon plasma: elemental detection for bio-analytical applications. Dis. PhD. Cincinnati (USA). 2008. 114 p.

Wilbur S., Soffey E., McCurdy E. A closer look at design elements of 7500ce. Agilent ICP-MS Journ., 2004, no. 19, pp. 4-5.

Agilent 7500 series ICP-MS. Simpler. Faster. More accurate. Agilent Technol. Inc., 2007. Publ. № 5989-64100EN. 12 p.

The Agilent 7700 Series ICP-MS. Agilent Technol. Inc., 2009. Publ. № 5990-4025EN. 16 p.

Agilent 7700 Series ICP-MS Techniques and Operation. Course number R1777. Student lecture manual. Agilent Technol., Inc. 2009.

7700 series ICP-MS special issue. Agilent ICP-MS Journ., 2009, no 39, 8 p.

Agilent 7700 Series ICP-MS. MassHanter Workstation. Quick start guide. Agilent Technol., Inc. 2009. G7200-90210, 44 p.

Agilent 7700 Series ICP-MS. Hardware Maintenance Manual. Agilent Technol., Inc. 2010. G3280-9002. 162 p.

Agilent 7700 series ICP-MS animation. Available at: www.youtube.com/watch?v=XTG-dofakE (accessed 30.06.2014).

Agilent 7700x ICP-MS. Available at: http://bbs.instrument.com.cn/shtml/20110827/3488843/; http://bbs.instrument.com.cn/topic.asp?threadid=3488843 (accessed 15.01.2013).

Atomic spectroscopy applications in the contract environmental laboratory. Primer. Agilent Technol., Inc., 2013, 202 p.

Agilent 8800 triple quadrupole ICP-MS posters. Compendium of Winter Plasma Conf., Tucson, Arizona. 2012. Agilent Technol., Inc. 2012. Publ. № 5990-9755EN, 25 p.

8800 triple quadrupole ICP-MS. Special issue. Agilent ICP-MS Journ., 2012, no. 49, 8 p.

Lee A., Yang V., Hsu J., Wu E., Shih R., Mizobuchi K. Ultratrace measurement of calcium in UPW using ICP-QQQ. Agilent ICP-MS Journ., 2013, no. 52, p. 6.

Agilent 8800 triple quadrupole ICP-MS. Technology transformed. Performance redefined. Agilent Technol., Inc. 2012. 5991-0079EN. 12 p.

Fernández S.D., Sugishama N., Ruiz Encinar J., Sanz-Medel A. Triple quad ICPMS (ICPQQQ) as a new tool for absolute quantitative proteomics and phosphoproteomics. Anal. Chem., 2012, vol. 84, no. 14, pp. 5851-5857. DOI: 10.1021/ac3009516.

Balcaen L., Woods G., Resano M., Vanhaeske F. Accurate determination of S in organic matrices using isotope dilution ICP-MS/MS. J. Anal. At. Spectrom., 2013, vol. 28, no. 1, pp. 33-39. DOI: 10.1039/C2JA30265A.

Tanimizu M., Sigiyama N., Ponzevera E., Bayon G. Determination of ultra-low 236U/238U isotope ratios by tandem quadrupole ICP-MS/MS. J. Anal. At. Spectrom., 2013, vol. 28, no. 9, pp. 1372-1376. DOI: 10.1039/C3JA50145K.

Ohno T., Muramatsu Y., Shikamori Y., Tayama C., Okabe N., Matsuzaki H. Determination of ultratrace 129I in soil samples by triple quadrupole ICP-MS and its application to Fukushima soil samples. J. Anal. At. Spectrom., 2013, vol. 28, no. 8, pp. 1283-1287. DOI: 10.1039/C3JA50121C.

Ohno T., Muramatsu Y. Determination of radioactive cesium isotope ratios by triple quadrupole ICP-MS and its application to rainwater following the Fukushima Daiichi nuclear power plant accident. J. Anal. At. Spectrom., 2014, vol. 29, no. 2, pp. 347-351. DOI: 10.1039/C3JA50291K.

Böting K., Treu S., Leonhard P., Heiß C., Bings N.H. First experimental proof of asymmetric charge transfer in ICP-MS/MS (ICP-QQQ-MS) through isotopically enriched oxygen as cell gas. J. Anal. At. Spectrom., 2014, vol. 29, no. 3, pp. 578-582. DOI: 10.1039/C3JA50234A.

McCurdy E., Woods G. ICP-MS-MS delivers accurate trace-level arsenic analysis in complex samples. Spectroscopy, 2012, vol. 27. Special issues no. 10, pp. 18-29.

McCurdy E., Woods G. Triple-quadrupole ICP-MS provides improved performance for difficult polyatomic and isobaric overlaps on lead isotopes. Spectroscopy, 2013, vol. 28. Special issues no. 11, pp. 28-34.

Bornhorst J., Chakraborty S., Meyer S., Lohren H., Brinkhaus S.G., Knight A.L., Caldwell G.A., Karst U., Schwerdtle T., Bowman A., Aschner M. The effects of pdr1, djr1.1 and pink1 loss in manganese-induced toxity and the role of α-synuclein in C.elegans. Metallomics, 2014, vol. 6., no. 3, pp. 476-490. DOI: 10.1039/C3MT00325F.

Balcaen L., Bolea-Fernandez E., Resano M., Vanhaecke F. Accurate determination of ultra-trace levels of Ti in blood serum using ICP-MS/MS. Anal. Chim. Acta, 2014, vol. 809, pp. 1-8.

Agilent 8800 ICP-QQQ application handbook. Primer. Agilent Technol., Inc. 2013. Publ. № 5991-2802EN, 92 p.

Pierre L.J., Sugiyama N. Power of a new ICP-MS: application to two challenging analysis // Goldschmidt 2013. Conf. Abstr. P. 1584.

Innovative breakthroughs in atomic spectrochemical analysis // An Agilent Technologies’ presentation at VinaLab 22 March 2013. 27 p. Available at: http://www.vinalab.org.vn/LabTest2013/baocao6.pdf (accessed 30.06.2014).

Noetzel U. ICP-MS and ICP-QQQ: difficult samples with ease // Agilent Technol., Inc. 2013. 54 p. Available at: http://www.team.cam.com/support/lectures/analytica_2013/Uwe%20Noetzel%20ICP-QQQ%208800.pdf (accessed 22.01.2014).

Simmons P., Wilbur S. Analysis of organophsphate pesticide residues in food and agricultural products using GC coupled to ICP-triple quadrupole mass spectrometer. Presentation on 23th Annual Quality Assurance Conf. EPA region 6. Dallas. TX. 2013. 19 p. Available at: http://www.epa.gov/region6/qa/presentations13/c13-sim-p.pdf (accessed 30.06.2014).

Agilent 8800 triple quadrupole ICP-MS animation. Available at: http://www.youtube.com/watch?v=b9BfkcxmltI; www.youtube.com/watch?v=KLJlz9Jylvz (accessed 30.06.2014).

Yamada N., Kitamoto J., Kuwabara T. Inductively coupled plasma MS/MS mass analyzer. Pat. US, no. 8610053 B2, 2013.

Kitamoto J. Atmospheric pressure plasma mass spectrometer. Pat. US, no. 848192331 B1, 2013.

Inductively coupled plasma MS/MS mass analyzer. Pat. applicat. US, no. 201301755442, 2013.

Agilent 7900 ICP-MS. Raise your expectations with the next generation of ICP-MS. Agilent Technol., Inc. Publ. № 5991-3719EN/RU. 2014. 8 p.

Agilent 7900 ICP-MS. Raise your expectations with the next generation of ICP-MS. Available at: www.youtube.com/watch?v=vvxtCW2YYDw (accessed 30.06.2014).

7900 ICP-MS. Special issue. Agilent ICP-MS Journ., 2014, no. 56, 8p.

McCurdy E. Introduction to the new Agilent 7900. Redefining ICP-MS performance // Spectroscopy Webinar. Febr. 2014. 49 p. Available at: http://www.spectroscopyonline.com/spectroscopy/data/articlestandard//spectroscopy/132014/838971/article.pdf (accessed 30.06.2014).

McCurdy E., Vanderstraeten F. Raise your expectations with the new 7900 Agilent ICP-MS for all sample types! Maps solutions to Win Seminar. 13 march 2014. 54 p. Available at: http://www.chem.agilent.com/Library/flyers/Public/1.7900_Agilent_ICP-MS_applications_for_soil_and_food_samples.pdf (accessed 30.06.2014).

Tanner S.D., Bandura D.R., Baranov V.I. Device and method preventing ion source gases from entering reaction/collision cells in mass spectrometry. Pat. US, 6630665 B2, 2003.

Tanner S.D., Bandura D.R., Baranov V.I. Device and method preventing ion source gases from entering reaction/collision cells in mass spectrometry. Pat. US, 6815667 B2, 2004.

Tanner S.D., Bandura D.R., Baranov V.I. Device and method preventing ion source gases from entering reaction/collision cells in mass spectrometry. Reiss. Pat. US, no. RE39627 E, 2007.

Tanner S.D., Bandura D.R., Baranov V.I. Device and method for preventing ion source gases from entering reaction/collision cells in mass spectrometry. Pat. appl. рubl. US, no. 2004/0056189 A1, 2004.

Szabo I. New ion-optical devices utilizing oscillatory electric fields. I. Principle of operation and analytical theory of multipole devices with two-dimensional electric fields. Int. J. Mass Spectrom. Ion Processes. 1986, vol. 73, no. 3, pp. 197-235.

Hägg C., Szabo I. New ion-optical devices utilizing oscillatory electric fields. II. Stability of ion motion in a two-dimensional hexapole field. Int. J. Mass Spectrom. Ion Processes. 1986, vol. 73, no. 3, pp. 237-275.

Hägg C., Szabo I. New ion-optical devices utilizing oscillatory electric fields. III. Stability of ion motion in a two-dimensional octopole field. Int. J. Mass Spectrom. Ion Processes. 1986, vol. 73, no. 3, pp. 277-294.

Hägg C., Szabo I. New ion-optical devices utilizing oscillatory electric fields. IV. Computer simulations of the transport of an ion beam through an ideal quadrupole, hexapole, and octopole operating in the RF-only mode. Int. J. Mass Spectrom. Ion Processes. 1986, vol. 73, no. 3, pp. 295-312.

Gerlich D. Applications of rf fields and collision dynamics in atomic mass spectrometry. J. Anal. At. Spectrom., 2004, vol. 19, no. 5, pp. 581-590. DOI: 10.1039/B404032P.

Bandura D.R., Baranov V.I., Tanner S.D. Method of operating a mass spectrometer to suppress unwanted ions. Pat. US, no. 6627912 B2, 2003.

Loucks H.D., Jr. Manufacturing precision multipole guides and filters. Pat. US, no. 6926783, 2005.

Bertsch J.L., Ugarov M. Converging multipole ion guide for ion beam shaping. Pat. US, no. 8193489 B2, 2012.

Tanner S.D. Characterization of ionization and matrix suppression in inductively coupled “cold” plasma spectrometry. J. Anal. At. Spectrom., 1995, vol. 10, no. 11, pp. 905-921. DOI: 10.1039/JA9951000905.

Huang L.-S., Lin K.-C. Detection of iron species using inductively coupled plasma mass spectrometry under cold plasma temperature conditions. Spectrochim. Acta. Part B, 2001, vol. 56, no. 1, pp. 123-128.

Lutsak A.K., Pupyshev А.А. [The “cold” plasma mode in inductively coupled plasma-mass spectrometry] // Analitika i control` [Analytics and control], 1998, no. 2(4), pp. 15-19 (in Russian).

Mariott P. Means for removing unwanted ions from an ion transport system and mass spectrometer. Pat. US, no. 7202470 B1, 2007.

Marriott P. Means for removing unwanted ions from an ion transport system and mass spectrometer. Pat. US, no. 7230232 B2, 2007.

Mariott P. Means for removing unwanted ions from an ion transport system and mass spectrometer. Pat. US, no. 7339163 B2, 2008.

Marriott P. Means for removing unwanted ions from an ion transport system and mass spectrometer. Pat. application US, no. 2007/0228268 A1, 2007.

Tanner S.D., Douglas D.J., Cousins L. Method of plasma mass analysis with reduced space charge effects. Pat. US, no. 5381008, 1995.

Tanner S.D., Douglas D.J., Cousins L. Method of plasma mass analysis with reduced space charge effects. Pat. CA, no. 2162856, 1994.

Tanner S.D., Douglas D.J., Cousins L. Method of plasma mass analysis with reduced space charge effects. Pat. US, no. 5565679, 1996.

Tanner S.D., Cousins L.M., Douglas D.J. Reduction of space charge effect using a three-aperture gas dynamic vacuum interface for inductively coupled plasma-mass spectrometry. Appl. Spectrosc., 1994, vol. 48, no. 11, pp. 1367-1372. DOI: 10.1366/0003702944028100.

Tanner S.D., Douglas D.J., French J.B. Gas and ion dynamics of a three-aperture vacuum interface for inductively coupled plasma-mass spectrometry. Appl. Spectrosc., 1994, vol. 48, no. 11, pp. 1373-1378. DOI: 10.1366/0003702944028137.

Niu H., Houk R.S. Fundamental aspects of ion extraction in inductively coupled plasma mass spectrometry. Spectrochim. Acta. Part B, 1996, vol. 51, no. 8, pp. 779-815.

Misra S., Froelich P.N. Measurement of lithium isotope ratios by quadrupole-ICP-MS: application to seawater and natural carbonates. J. Anal. At. Spectrom., 2009, vol. 24, no. 11, pp. 1524-1533. DOI: 10.1039/B907122A.

Hirano K. Plasma ion source mass spectrometer. Pat. US, no. 7977649 B2, 2011.

Crain J.S., Houk R.S., Smith F.G. Matrix interferences in inductively coupled plasma-mass spectrometry: some effects of skimmer orifice diameter and ion lens voltages. Spectrochim. Acta. Part B, 1988, vol. 43, no. 9-11, pp. 1355-1364.

Rowan J.T., Houk R.S. Attenuation of polyatomic ion interferences in inductively coupled plasma mass spectrometry by gas-phase collisions. Appl. Spectrosc., 1989, vol. 43, no. 6, pp. 976-980. DOI: 10.1366/0003702894204065.

Tanner S.D., Baranov V.I. Bandpass reactive collision cell. Pat. US, no. 6140638, 2000.

Baranov V.I., Tanner S.D. A dynamic reaction cell for inductively coupled plasma mass spectrometry (ICP-DRC-MS). Part 1. The RF-field energy contribution in thermodynamics of ion-molecule reactions. J. Anal. At. Spectrom., 1999, vol. 14, no. 8, pp. 1133-1142. DOI: 10.1039/A809889A.

Tanner S.D., Baranov V.I. A dynamic reaction cell for inductively coupled plasma mass spectrometry (ICP-DRC-MS). II. Reduction of interferences produced within the cell. J. Amer. Soc. Mass Spectrom., 1999, vol. 10, no. 11, pp. 1083-1094.

Tanner S.D., Baranov V.I., Vollkopf U. A dynamic reaction cell for inductively coupled plasma mass spectrometry (ICP-DRC-MS). Part III. Optimization and analytical performance. J. Anal. At. Spectrom., 2000, vol. 15, no. 9, pp. 1261-1269. DOI: 10.1039/B002604M.

Surikov V.T., Pupyshev A.A. [Introduction of samples into inductive coupled plasma for spectrometric analysis]. Analitika i control` [Analytics and control], 2008, vol. 10, no. 2, pp. 112-125 (in Russian).

Hayashi H., Hara Y., Tanaka T., Hiraide M. Determination of halogens by low-pressure helium ICP-MS. Bunseki Kagaku, 2003, vol. 52, no. 4, pp. 275-278.

Surikov V.T., Pupyshev A.A. [Mass-spectrometry of negative ions in inductively coupled plasma]. Analitika i control` [Analytics and control], 2003, vol. 7, no. 1, pp. 3-8 (in Russian).

Pupyshev V.T., Surikov V.T. Application of negative ions in inductively coupled plasma-mass spectrometry. Spectrochim. Acta. Part B., 2004, vol. 59, no. 7, pp. 1021-1023.

Montes Baygόn M., Rodriguez Garsia A., Garsia Alonso J.I., Sanz-Medel A. Indirect determination of trace amount of fluoride in natural waters by ion chromatography: a comparison of on-line post-column fluorimetry and ICP-MS. Analyst, 1999, vol. 124, no. 1, pp. 27-31. DOI: 10.1039/A807079B.


Ссылки

  • На текущий момент ссылки отсутствуют.