ПРЯМОЕ ОПРЕДЕЛЕНИЕ ЗОЛОТА В СУСПЕНЗИЯХ СТАНДАРТНЫХ ОБРАЗЦОВ ГОРНЫХ ПОРОД И РУДЫ МЕТОДОМ ЭЛЕКТРОТЕРМИЧЕСКОЙ АТОМНО-АБСОРБЦИОННОЙ СПЕКТРОМЕТРИИ ВЫСОКОГО РАЗРЕШЕНИЯ
Ю.А. Захаров, Д.С. Ирисов, Р.В. Окунев, Р.Х. Мусин, Р.Р. Хайбуллин
Аннотация
Атомно-абсорбционный спектрометр высокого разрешения ContrAA-700 с графитовой печью применен для прямого определения золота в горных породах и рудах на уровне 10-6-10-3 % мас.В печь вводили навески 1 мг стандартных образцов золотосодержащей руды СЗР-4 (2.13 ± 0.05 г/т), черных сланцев Сухого Лога СЛг-1 (2.5 ± 0.3 г/т) и СЧС-1 (0.10 ± 0.02 г/т) в виде суспензий, приготовленных на смеси концентрированных HNO3 и HCl (1 : 3) с последующим семикратным разбавлением водой. Выявлено наличие плотного окружения спектральных линий золота тонко структурированнымиполосами поглощения разнообразных молекул матрицы. Резонансная линия поглощения Au 242.8 нм перекрыта левым крылом очень интенсивной полосы SiO. В два раза менее чувствительная линия Au 267.6 нм находится в узком промежутке между спектральными молекулярными компонентами. Из-за сильного подавления аналитического сигнала и интенсивного неселективного поглощения определение с использованием одностадийной атомизации крайне затруднено и может осуществляться при концентрации золота не менее 2 г/т. Использование приставки АТЗОНД-1 для осуществления двухстадийной зондовой атомизации позволило автоматически дозировать суспензии и снизить матричные помехи. За счет фракционирования паров пробы на вольфрамовом зонде линия Au 267.6 нм, в отличие от резонансной линии Au 242.8 нм, освобождается от спектральных наложений и обеспечивает более низкий предел количественного определения золота 0.05 г/т (Sr =30 %; n = 5; Р = 0.95).
Ключевые слова: атомно-абсорбционная спектрометрия, графитовый атомизатор, суспензия, золото, горная порода, черный сланец, двухстадийная зондовая атомизация
DOI: http://dx.doi.org/10.15826/analitika.2014.18.4.004
ЛИТЕРАТУРА
1. Бусев А.И., Иванов В.М. Аналитическая химия золота. М.: Наука, 1973. 263 с.
2. Сорбционно-атомно-эмиссионное определение золота, платины и палладия в горных породах и рудах с использованием сорбента ПСТМ-З / И.Е. Васильева [и др.] // Аналитика и контроль. 2010. Т. 14, № 1. С. 16-24.
3. Юделевич И.Г., Старцева Е.А. Атомно-абсорбционное определение благородных металлов. Новосибирск: Наука, 1981. 159 с.
4. ARapid Method for the Determination of Gold in Rocks, Ores and Other Geological Materials by F-AAS and GF-AAS After Separation and Preconcentration by DIBK Extraction for Prospecting Studies / V. Balaram [et al.] // MAPAN-Journal of Metrology Society of India. 2012. V. 27, № 2. P. 87-95.
5. Reddi G.S., Rao C.R.M. Analytical techniques for the determination of precious metals in geological and related materials // Analyst. 1999. V. 124. P. 1531-1540.
6. Швецов В.А. Пробирный анализ при разведке золоторудных месторождений: дис. … д-ра хим. наук. Иркутск, 2006. 259 с.
7. Методика определения содержания золота и серебра в геологических образцах с использованием сцинтилляционного атомно-эмиссионного анализа с высоким временным разрешением/ И.Е. Васильева [и др.] // Аналитика и контроль. 2010. Т. 14, № 4. С. 201-213.
8. Конышев В.О. Опыт оценки погрешностей опробования и совершенствование методологии разведки месторождения с бонанцевым распределением золота // Отечественная геология, 2004. № 6. С. 22-34.
9. Solid sampling-graphite furnace atomic absorption spectrometry for the direct determination of Au in samples of various natures / M. Resano [et al.] // J. Anal. At. Spectrom. 2005. V. 20. 479-481.
10. Атомно-абсорбционное определение золота и серебра в породах и рудах с помощью двухстадийной зондовой атомизации в графитовой печи / Ю.А. Захаров [и др.] // Аналитика и контроль. 2013. Т. 17, № 4. С. 414-422.
11. Welz B., Becker-Ross H., Florek S., Heitmann U. High-Resolution Continuum Source AAS: The Better Way to Do Atomic Absorption Spectrometry. Weinheim, WILLEY-VCH, Verlag GmbH&Co. KGaA. 2005. 295 p.
12. Gunduz S., Akman S. Determination of lead in rice grains by solid sampling HR-CS GFAAS // Food Chemistry. 2013. V. 141. P. 2634-2638.
13. Simultaneous determination of Mo and Ni in wine and soil amendments by HR-CS GF AAS / W. Boschetti [et al.] // Anal. Methods. 2014. V. 6. P. 4247-4256.
14. Determination of selenium in soil samples using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis / I.N.B. Castilho [et al.] // Anal. Methods. 2014. V. 6. P. 2870-2875.
15. Comparison of three different sample preparation procedures for the determination of traffic-related elements in airborne particulate matter collected on glass fiber filters / I.N.B. Castilho [et al.] // Talanta. 2012. V. 88. P. 689-695.
16. Solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry to monitor the biodistribution of gold nanoparticles in mice tissue after intravenous administration / M. Resano [et al.] // J. Anal. At. Spectrom. 2010. V. 25. P. 1864-1873.
17. Аппаратно-программный комплекс для атомно-абсорбционной спектрометрии с многостадийной зондовой атомизацией / Ю.А. Захаров [и др.] // Научное приборостроение. 2013. Т. 23. №4. C. 104-111.
18. Сайт Института геохимии им. А.П. Виноградова СО РАН [Электронный ресурс]: http://www.igc.irk.ru/Innovation/Standarts-obr/Catalog-2013.pdf (дата обращения: 01.07.2014).
19. Пупышев А.А. Атомно-абсорбционный спектральный анализ. М.: Техносфера, 2009. 782 с.
20. Slurry sampling for the determination of silver and gold in soils and sediments using electrothermal atomic absorption spectrometry / I. Lopez-Garcia [et al.] // Spectrochim. Acta. 2003. V. 58 B. P. 1715-1721.
21. Разработка источника атомно-абсорбционного спектра для одновременного многоэлементного анализа / С.С. Курилко и [др.] // Материалы XIII Международного симпозиума «Применение анализаторов МАЭС в промышленности», Новосибирск, 2013. С. 40-50.
22. Katskov D.A., Khanye G.E. Simultaneous Multi-Element Electrothermal Atomic Absorption Determination Using a Low Resolution CCD Spectrometer and Continuum Light Source: The Concept and Methodology // S. Afr. J. Chem. 2010. V. 63. P. 45-57.
23. Gibson J., Katskov D.A. Simultaneous Determination of Metals in Coal with Low-Resolution Continuum Source Atomic Absorption Spectrometer and Filter Furnace Atomizer // S. Afr. J. Chem. 2011. V. 64. P. 79-87.
24. Katskov D.A., Sadagov Yu.M. Design considerations regarding an atomizer for multi-element electrothermal atomic absorption spectrometry// Spectrochim. Acta. 2011. V. 66B. P. 451-460.
25. Kurfürst U. Solid Sample Analysis: Direct and Slurry Sampling Using GF-AAS and ETV-ICP. Berlin: Springer, 1998. 423 р.
26. Slurry sampling for direct analysis of solid materials by electrothermal atomic absorption spectrometry (ETAAS). A literature review from 1990 to 2000 / M.J. Cal-Prieto et [al.] // Talanta. 2002. V. 56. P. 1-51.
27. Концентрирование определяемых элементов на зонде в электротермическом атомизаторе / Ю.А. Захаров [и др.] // Журн. прикл. спектр. 2005. Т. 72, № 2. С. 256–259.
Полный текст:
PDF (Russian)Ссылки
- На текущий момент ссылки отсутствуют.