ГИГРОСКОПИЧЕСКИЙ ГРАВИМЕТРИЧЕСКИЙ КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ. ОБЗОР

Anatoly G. Tereshchenko

Аннотация


Гигроскопический гравиметрический метод химического анализа заключается в определении массы поглощенных паров воды сухой навеской пробы при определенной относительной влажности воздуха и температуре. Эта масса пропорциональна концентрации гетерогенной гигроскопичной примеси. Рассмотрены теоретические основы метода: изотерма гигроскопически чистого вещества и изотермы веществ, содержащих примеси (гетерогенные и гомогенные), их связь с диаграммами растворимости двух веществ в воде. Приведена изотерма сорбции технического продукта с двумя примесями и обсуждена возможность определения этих примесей гигроскопическим методом. Равновесное влагопоглощение образца за счет суммарного влияния всех растворимых примесей дает возможность оценить содержание основного компонента в веществе. Экспериментально метод может основываться на выдержке навески в эксикаторе, изопиестикаторе или в приборах динамической сорбции влаги. Обосновываются требования к относительной влажности воздуха, при которой необходимо проводить эксперимент. Рекомендованы области использования метода, обращается внимание на то, что в качестве абсорбируемых паров может быть не только вода, но и органические растворители, а в качестве объекта анализа не только твердые, но и газообразные вещества. При простой экспериментальной технике метод обеспечивает анализ содержания основного компонента (от 99 до 99.999 % мас.) и растворимых примесей (от 1 до 0.001 % мас.).

Ключевые слова: гравиметрический метод, сорбция паров воды, гигроскопические примеси, основной компонент, теоретические основы, количественный анализ, область применения. 

DOI: http://dx.doi.org/10.15826/analitika.2016.20.2.001

Полный текст:

PDF (Russian)

Литература


Kelner R. Analiticheskaia khimiia. Problemy i podhody [Analytical chemistry. Problems and solutions], 2 volumes, Moscow, Mir, Izdatel`stvo AST, 2004 (in Russian).

Zolotov Yu.A. Osnovy analiticheskoi himii. V 2 kn. Kn.2. Metody khimicheskogo analiza.Uchebnik [Foundations of analytical chemistry, Book 2: Chemical analysis methods. Coursebook], 3d edition, Moscow, Vysshaia Shkola, 2004. 503 p. (in Russian).

Vasil'ev V.P. Analiticheskaia khimiia. V 2 kn. Kn.1. Gravimetricheskii i titrimetricheskii metody analiza [Analytical chemistry. In 2 books. Book 1: Gravimetric and titrimetric analyses], Moscow, Vysshaia Shkola, 1989. 320 p. (in Russian).

Novyi spravochnik khimika i tehnologa. Analiticheskaia khimiia. Ch.1.[New guidelines for chemists and technologists. Analytical chemistry. Part 1], St Petersburg, ANO NPO Mir i Sem’ia, 2002. 389 p. (in Russian).

Tereshchenko O.V., Tereshchenko A.G. Ispol'zovanie tekhniki izopiesticheskikh izmerenii v kolichestvennom analize [Using the technique of isopiestic measurements in quantitative analysis] Dep. v VINITI 14.06.78, no.1766/78dep., Tomsk Polytechnic Institute, 8 p. Available at http://www.lib.tpu.ru/fulltext/m/2011/m23.pdf (accessed 15.02.2016) (in Russian).

Hamskii E.V. [On sorption kinetics of hygroscopic moisture and hygroscopic points]. Zhurnal prikladnoi khimii, 1963, vol.36, no.1, pp. 85-90 (in Russian).

Bogatova N.F., Buderaskaia G.G., Tovbin M.V. [Investigation on water vapor adsorption on sodium chloride crystallites]. Adsorbtsiia i adsorbenty [Adsorption and adsorbents], 1972, vol. 1, pp. 123-126 (in Russian).

Tereshchenko A.G. Gigroskopichnost' i slezhivaemost' rastvorimykh veshchestv [Hygroscopicity and caking of soluble substances]. Tomsk, TPU Publishing, 2011, 79 p. Available at http://www.lib.tpu.ru/fulltext/m/2011/m18_1.pdf (accessed 15.02.2016) (in Russian).

Tereshchenko A.G., Ivanov G.V., Tereshchenko O.V. [Hygroscopic properties of methylamine perchlorate]. Izv. VUZ. Khimiia i khimicheskaia tehnologiia [Proceedings of the universities. Chemistry and Chemical Engineering], 1976, no. 8, pp. 1228-1230 (in Russian).

Tereshchenko A.G., Kurochkin E.S., Tereshchenko O.V. [Effect of magnesium nitrate on hygroscopic properties of ammonium nitrate]. Azotnaia Promyshlennost’ [Nitrogen industry], 1977, no. 4, pp. 13-19 (in Russian).

Saleki-Gerhardt A., Ahlneck C., Zografi G. Assessment of disorder in crystalline solids. International Journal of Pharmaceutics, 1994, vol.101, no. 3, pp. 237-247.

Hogan S.E., Buckton G. The Application of Near Infrared Spectroscopy and Dynamic Vapor Sorption to Quantify Low Amorphous Contents of Crystalline Lactose. Pharm. Research, 2001, vol. 18, no. 1, pp. 112-116.

Williams D., Burnett D., Malde N. Characterizing amorphous materials with gravimetric vapour sorption techniques. Pharm. Techn. Europe, 2009, vol. 21, no. 4, pp. 41-45.

Feth M.P., Jurascheck J., Spitzenberg M., Dillenz J., Bertele G., Stark H. New Technology for the Investigation of Water Vapor Sorption–Induced Crystallographic Form Transformations of Chemical Compounds: A Water Vapor Sorption Gravimetry–Dispersive Raman Spectroscopy Coupling. J. Pharm. Sci., 2011, vol. 100, no. 3, pp. 1080-1092.

Sheokand S., Modi S.R., Bansal A.K. Dynamic vapor sorption as a tool for characterization and quantification of amorphous content in predominantly crystalline materials. J. Pharm. Sci., 2014, vol. 103, pp. 3364-3376.

Tereshchenko A.G. Izopiesticheskii metod. Ispol'zovanie nasyshchennykh rastvorov chistykh veshchestv v kachestve etalonov aktivnosti vody [Isopiestic method. Using saturated solutions of pure substances as the etalons of water activity]. Dep. v VINITI 07.10.2013, no. 281-V2013, Tomsk, Tomsk Polytechnic University, 27 p. Available at http://www.lib.tpu.ru/fulltext/m/2013/m14.pdf (accessed 15.02.2016) (in Russian).

Tereshchenko O.V., Maliutin S.A., Tereshchenko A.G. Forma predstavleniia spravochnykh dannykh po gigroskopichnosti rastvorimykh veshchestv i khimicheskikh produktov [Presenting data on hygroscopic properties of soluble substances and chemical products]. Dep. v ONIITEKHim (Cherkassy) 16.01.1984, no. 43hp-D84, Tomsk Polytechnic Institute, 24 p. Available at http://www.lib.tpu.ru/fulltext/m/2013/m12.pdf (accessed 15.02.2016) (in Russian).

Tereshchenko O.V., Maliutin S.A., Ovechenko L.G Tereshchenko A.G., Steklova I.V. Hygroscopic properties of sodium nitrate. Zhurnal prikladnoi himii [Journal of Applied Chemistry], 1985, no. 4, pp. 888-891 (in Russian).

Aleksandrov Ju.I. Tochnaia kriometriia organicheskikh veshchestv [Accurate cryometry of organic substances], Leningrad, Khimija, 1975, 160 p. (in Russian).

Aleksandrov Ju.I. Spornye voprosy sovremennoi metrologii v khimicheskom analize [Debatable questions of contemporary metrology in chemical analysis], St Petersburg, Khimija, 2003, 303 p. (in Russian).

Arlabosse P., Rodier E., Ferrasse J.H., Chavez S., Lecomte D. Comparison between static and dynamic methods for sorption isotherm measurements. Drying Techn.: An Intern. J, 2003, vol. 21, no. 3, pp. 479-497

Penner E.A., Schmidt S.J. Comparison between moisture sorption isotherms obtained using the new Vapor Sorption Analyzer and those obtained using the standard saturated salt slurry method. Food Measure, 2013, vol. 7, pp. 185-193.

Schmidt S.J., Lee J.W. Comparison between water vapor sorption isotherms obtained using the new dynamic dewpoint isotherm method and those obtained using the standard saturated salt slurry method. Int. J. Food Prop., 2012, vol. 15, no. 2, pp. 236-248.

Lewicki P.P., Pomaranska-Lazuka W. Errors in static desiccator method of water sorption isotherms estimation. Int. J. Food Prop., 2003, vol. 6, no. 3, pp. 557-563.

Laaksonen T.J., Roos Y.H., Labuza T.P. Comparisons of the use of desiccators with or without vacuum for water sorption and glass transition studies. Int. J. Food Prop., 2001, vol. 4, no. 3, pp. 545-563.

Roberts A., The design of an automatic system for the gravimetric measurement of water sorption. J. Therm. Anal. Calorimetry, 1999, vol. 55, pp. 389-396.

Rahman M.S., Al-Belushi R.H.. Dynamic Isopiestic Method (DIM): Measuring Moisture Sorption Isotherm of Freeze-Dried Garlic Powder and Other Potential Uses of DIM. Inter. J. Food Prop., 2006, vol. 9, no. 3, pp. 421-437.

Komunjer L., Pezron I. A new experimental method for determination of solubility and hyper-solubility of hygroscopic solid. Powder Tech, 2009, vol. 190, pp. 75-78.

Bingol G., Prakash B., Pan Z. Dynamic vapor sorption isotherms of medium grain rice varieties. LWT - Food Sci. Tech., 2012, no. 48, pp. 156-163.

Mackin L., Zanon R., Park J.M., Foster K., Opalenik H., Demonte M. Quantification of low levels (< 10%) of amorphous content in micronised active batches using dynamic vapour sorption and isothermal microcalorimetry. Inter. J. Pharm., 2002, vol. 231, pp. 227-236.

Müller T., Krehl R., Schiewe J., Weiler C., Steckel H. Influence of small amorphous amounts in hydrophilic and hydrophobic APIs on storage stability of dry powder inhalation products. Europ. J. Pharm. Biopharm., 2015, vol. 92, pp. 130-138.

Pestov N.E. Fiziko-khimicheskie svoistva zernistykh i poroshkoobraznykh khimicheskikh produktov [Physical and chemical properties of grained and powdered chemical products], Moscow, Izd-vo AN SSSR, 1947, 239 p. (in Russian).

Platford R.F. Experimental Methods: Isopiestic / In “Activity Coefficients in Electrolyte Solutions”. Ed. R.M. Pytkowicz. Vol. 1. CRC Press, Boca Raton, FL, 1979, pp. 65-79.

Rard J.A., Platford R.F. Experimental Methods: Isopiestic. In Activity Coefficients in Electrolyte Solutions, 2 end ed., K.S. Pitzer ed. Chemical Rubber, Boca Raton, FL, 1991, pp. 209-277.

Tereshchenko A.G. Izopiesticheskii metod issledovaniia. Obzor konstruktsii priborov [Isopiestic investigation method. Review of the devices’ design]. Dep. v VINITI 12.07.2012, no. 303-V2012, Tomsk Polytechnic University, 105 p. Available at http://www.lib.tpu.ru/fulltext/m/2012/m19.pdf (accessed 15.02.2016) (in Russian).

Newman A.W., Reutzel-Edens S.M., Zografi G. Characterization of the “hygroscopic” properties of active pharmaceutical ingredients. J. Pharm. Sci., 2008, vol. 96, pp. 1047-1059.

Mikulin G.I. [Graphic and analytical processing of isopiestic measuremens of vapor pressure of mixed electrolyte solutions]. Voprosy fizicheskoi khimii rastvorov elektrolitov, Leningrad, Khimija, 1968, pp. 239-253 (in Russian).

Tereshchenko A.G., Chemeris L.A. Gigroskopichnost' galogenidov metilammoniia [Hygroscopy of ammonium halides]. Dep. v ONIITEHim (Cherkassy) 02.04.79, no. 2506/79dep. Tomsk Polytechnic Institute, 4 p. Available at http://www.lib.tpu.ru/fulltext/m/2010/m07.pdf (accessed 15.02.2016) (in Russian).

Roddy J.W., Coleman C.F. Reference solutes for isopiestic and dynamic vapor pressure osmometry in organic solvents: Triphenylmethane, azobenzene, and benzil in dry benzene. J. Inorg. Nuclear Chem., 1970, vol. 32, no.12, pp. 3891-3898.

Sardroodi J.J., Seyedahmadian S.M., Sadr M.H., KazemY. Isopiestic study of the solutions of MnCl2, CoCl2 and NiCl2 in methanol and ethanol at 298.15 K. Fluid Phase Equil., 2006, vol. 240, pp. 114-121.

Calvar N., Gomez E., Domínguez А., Macedo E. A. Vapour pressures, osmotic and activity coefficients for binary mixtures containing (1-ethylpyridinium ethylsulfate + several alcohols) at T = 323.15 K. J. Chem. Therm., 2010, vol. 42, pp. 625-630.

Müller T., Krehl R., Schiewe J., Smal R., Weiler C., Steckel H. Applicability of the one-step DVS method for the determination of amorphous amounts for further different hydrophilic and hydrophobic drugs. Europ. J. Pharm. Biopharm., 2015, vol. 94, pp. 333-341.

Young P.M., Chiou H., Tee T., Traini D., Chan H.-K., Thielmann F., Burnett D. The use of organic vapor sorption to determine low levels of amorphous content in processed pharmaceutical powders. // Drug Dev. Ind. Pharm., 2007, vol. 33, no. 1, pp. 91-97.

Müller T., Schiewe J., Smal R., Weiler C., Wolkenhauer M., Steckel H. Measurement of low amounts of amorphous content in hydrophobic active pharmaceutical ingredients with dynamic organic vapor sorption. Europ. J. Pharm. Biopharm., 2015, vol. 92, pp.102-111.


Ссылки

  • На текущий момент ссылки отсутствуют.