МЕТОДИЧЕСКИЕ АСПЕКТЫ U/PB ДАТИРОВАНИЯ ЦИРКОНОВ НА МНОГОКОЛЛЕКТОРНОМ МАСС-СПЕКТРОМЕТРЕ С ИНДУКТИВНО-СВЯЗАННОЙ ПЛАЗМОЙ NEPTUNE PLUS С ПРИСТАВКОЙ ДЛЯ ЛАЗЕРНОЙ АБЛЯЦИИ NWR 213
Аннотация
Представлена методика анализа изотопного состава Pb и U в цирконах и процедура обработки данных, реализованные на масс-спектрометре с индуктивно-связанной плазмой Neptune Plus (фирма Thermo Scientific), оборудованном одним центральным неподвижным коллектором Фарадея и восемью подвижными, и приставке для лазерной абляции NWR 213 (фирма ESI). Определены оптимальные параметры для измерения изотопных отношений Pb/U, Pb/Th и Pb/Pb: расходы плазмообразующего, вспомогательного и пробоподающего потоков газа Ar, транспортирующего газа Не, мощность радиочастотного генератора, конфигурация коллекторов Фарадея, временные параметры регистрации сигнала. Выполнен анализ неопределенности измерения изотопных отношений, изучен вклад эффекта фракционирования на результаты измерения при различных операционных параметрах приставки для лазерной абляции, проведена корректировка дискриминации ионов по массе и оценено присутствие нерадиогенного свинца в стандартах цирконов. Даны рекомендации по выбору стандартов при исследовании цирконов. Отработана схема определения изотопных отношений Pb/U, Pb/Th и Pb/Pb с последующим расчетом возраста цирконов. Показаны различия эффектов элементного фракционирования в цирконах Mud Tank, 91500 и GJ–1, используемых в качестве стандартов, обусловленные различиями в степени их радиационного повреждения. По разработанному алгоритму рассчитан возраст этих стандартов (по конкордии для циркона Mud Tank значение возраста составило 735 ± 12 млн. лет (СКВО = 1.2, 2σ = 2 %), для циркона 91500 – 1054 ± 17 млн. лет (СКВО = 1.05, 2σ = 2 %) и для циркона GJ–1 – 606 ± 31 млн. лет (СКВО = 0.38, 2σ = 5 %)); показано удовлетворительное согласие с полученными ранее данными.
Ключевые слова: лазерная абляция, кратер, масс-спектрометрия, изотопные отношения, датирование U/Pb, цирконы, элементное фракционирование, дискриминация ионов по массе
Полный текст:
PDF (Russian)Литература
Horn I., Rudnick R.L., McDonough W.F. Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS: application to U-Pb geochronology. Chemical Geology, 2000, vol. 167, pp. 405-425. doi: 10.1016/S0009-2541(99)00168-0
Mattinson J.M. Zircon U-Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology, 2005, vol. 220, pp. 47-66. doi: 10.1016/j.chemgeo.2005.03.011
Parrish R.R. and Noble S.R. Zircon U-Th-Pb geochronology by isotope dilution-thermal ionization mass spectrometry (ID-TIMS). Reviews in Mineralogy and Geochemistry, 2003, vol. 53, pp. 183-213. doi: 10.2113/0530183
Chang Z., Vervoort J., McClelland W.C., Knaack C. U-Pb dating of zircon by LA-ICP-MS. Electronic Journal of the Earth Sciences, 2006, vol. 7, no. 5, pp. 1-14. V. 7, № 5. P. 1 -14. doi: 10.1029/2005GC001100
Kosler J., Sylvester P.J. Present trends and the future of zircon in geochronology: Laser ablation ICP-MS. Reviews in Mineralogy and Geochemistry. Mineralogical Society of America. 2003, vol. 53, pp. 243-275. doi: 10.2113/0530243
Parrish R.R. U-Pb dating of monazite and its application to geological problems. Canadian Journal of Earth Sciences, 1990, vol. 27, pp. 1431-1450. doi: 10.1139/e90-152
Warren C.J., Grujie D., Kellett D.A., Cottle J., Jamieson R.A., Ghalley K.S. Probing the depth of the India-Asia collision: U-Th-Pb monazite chronology of granulites from NW Bhutan. Tectonics, 2011, vol. 30, no. 2. doi: 10.1029/2010TC002738
Goudie D.J., Fisher C.M., Hanchar J.M., Crowley J.L., Ayers J.C. Simultaneous in situ determination of U-Pb and Sm-Nd isotopes in monazite by laser ablation ICP-MS. Geochem. Geophys. Geosyst, 2014, vol. 15, no. 6, pp. 2575-2600. doi: 10.1002/2014GC005431
Kosler, J., Tubrett M.N., Sylvester P.J. Application of laser ablation ICP-MS to U-Th-Pb dating of monazite. Geostand. Geoanal. Res, 2001, vol. 25, pp. 375-386. doi: 10.1111/j.1751-908X.2001.tb00612.x
Frost B.R., Chamberlain K.R., Schumacher J.C. Sphene (titanite): Phase relations and role as geochronometer. Chemical Geology, 2002, vol. 172, pp. 131-148. doi: 10.1016/S0009-2541(00)00240-0
Sun J.F., Yang J.H., Wu F.Y, Xie L.W., Yang Y.H., Liu Zh.Ch., Li X.H. In situ U-Pb dating of titanite by LA-ICPMS. Chin. Sci. Bull, 2012, vol. 57, pp. 2506-2516. doi: 10.1007/s11434-012-5177-0
Spencer K.J, Hacker B.R., Kylander-Clark A.R.C., Andersen T.B., Cottle J.M., Stearns M.A., Poletti J.E., Seward G.G.E. Campaign-style titanite U– Pb dating by laser-ablation ICP: Implications for crustal flow, phase transformations and titanite closure. Chemical Geology, 2013, vol. 341, pp. 84-101. doi: 10.1016/j.chemgeo.2012.11.012
Zack T., Luvizotto G.L., Barth M. and Stockli D. U/Pb rutile dating in granulite-facies rocks by LA-ICP-MS. American Geophysical Union. Fall Meet. Suppl. Abstract V34C-05, 2007, vol. 82.
Zack T., Stockli E.D.F., Luvizotto G.L., Barth M. G., Belousova E., Wolfe M.R., Hinton R.W. In situ U–Pb rutile dating by LA-ICP-MS: 208Pb correction and prospects for geological applications. Contrib Mineral Petrol, 2011, vol. 162, no. 3, pp. 515-530. doi: 10.1007/s00410-011-0609-4
Heaman L.M. and Le Cheminant A.N. Paragenesis and U-Pb systematics of baddeleyite (ZrO2). Chemical Geology, 1993, vol. 110, pp. 95-126. doi: 10.1016/0009-2541(93)90249-I
Ireland T.R. and Williams I.S. Considerations in zircon geochronology by SIMS. Reviews in Mineralogy and Geochemistry, 2003, vol. 53, pp. 215-241. doi: 10.2113/0530215
Sylvester P. (ed). Laser Ablation ICP–MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada, 2008. 364 p.
Jochum K.P., Stoll B. Reference materials for elemental and isotopic analysis. In: LA-ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada, 2008, vol. 40, pp. 147-168.
Black L.P., Gulson B.L. The age of the Mud Tank carbonatite, Strangways Range, Northern Territory. J.Aust. Geol.Geophys, 1978, vol. 3, pp. 227-232.
Jackson S.E., Norman J.P., William L.G., Belousova E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 2004, vol. 211, pp. 47-69. doi: 10.1016/j.chemgeo.2004.06.017
Wiedenbeck M., Alle P., Corfu F., Griffin W.L., Meier M., Oberli F., Vonquadt A., Roddick, J.C., Speigel W. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace-Element and REE Analyses. Geostandards Newsletter, 1995, vol. 19, no. 1, pp. 1-23. doi: 10.1111/j.1751-908X.1995.tb00147.x
Wiedenbeck M., Hanchar J.M., Peck W.H., Sylvester P., Valley J., Whitehouse M., Kronz A., Morishita Y., Nasdala L. Further Characterisation of the 91500 Zircon Crystal. Geostandards and Geoanalytical Research, 2004, vol. 28, no. 1, pp. 9-39. doi: 10.1111/j.1751-908X.2004.tb01041.x
Frei D., Gerdes A. Precise and accurate in situ U-Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS. Chemical Geology, 2009, vol. 261, pp. 261-270. doi: 10.1016/j.chemgeo.2008.07.025
Kooijman E., Berndt J., Mezger K. U-Pb dating of zircon by laser ablation ICP-MS: recent improvements and new insights. Eur. J. Mineral, 2012, vol. 24, pp. 5-21. doi: 10.1127/0935-1221/2012/0024-2170
Cocherie A., Robert M. Laser ablation coupled with ICP-MS applied to U-Pb zircon geochronology: A review of recent advances. Gondwana Research, 2008, vol. 14, pp. 597-608. doi: 10.1016/j.gr.2008.01.003
Kemp A.I.S., Foster G.L., Schersten A., Whitehouse M.J., Darling J., Storey C. Concurrent Pb–Hf isotope analysis of zircon by laser ablation multi-collector ICP-MS, with implications for the crustal evolution of Greenland and the Himalayas. Chemical Geology, 2009, vol. 261, pp. 244-260. doi: 10.1016/j.chemgeo.2008.06.019
Bouman С., Cocherie A., Wiese M., Schwieters J., Robert M. In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS (LA-MIC-ICP-MS). Application Note: 30021 (AN30021_E 10/11G). Thermo Fisher Scientific, 2004-2011, 6 p.
Schwieters J., Bouman С., Deerberg M. Simultaneous in-situ Laser Ablation Analysis of Pb-U and Lu-Hf Isotope Ratios in Zircons using MC-ICPMS. Application Note 30191 (AN30191_E 12/09C). Thermo Fisher Scientific, 2009, 4 p.
Rosman K.J.R., Taylor P.D. P. Isotopic compositions of the elements 1997 (Technical Report). Pure and Applied Chemistry, 1998, vol. 70, no. 1, pp. 217-235. doi: 10.1063/1.556031
Pupyshev A.A., Sermiagin B.A. Diskriminatsiia ionov po masse pri izotopnom analize metodom mass-spektrometrii s induktivno sviazannoi plazmoi [Discrimination ions according to mass at isotopic analysis by mass spectrometry with inductively coupled plasma]. Yekaterinburg, Ural State Technical University, 2006. 132 p. (in Russian).
Orihashi Y., Nakai S., Hirata T. U-Pb Age Determination for Seven Standard Zircons using Inductively Coupled Plasma – Mass Spectrometry Coupled with Frequency Quintupled Nd-YAG ( λ = 213 nm) Laser Ablation System: Comparison with LA-ICP-MS Zircon Analyses with a NIST Glass Reference Material. Resource Geology, 2008, vol. 58, no. 2, pp. 101-123. doi: 10.1111/j.1751-3928.2008.00052.x
Korh A.E. Ablation behaviour of allanites during U-Th-Pb dating using a quadrupole ICP-MS coupled to a 193 nm excimer laser. Chemical Geology, 2014, vol. 371, pp. 46-59. doi: 10.1016/j.chemgeo.2014.01.021
Steely A.N., Hourigan J.K., Juel E. Discrete multi-pulse laser ablation depth profiling with a single-collector ICP-MS: Sub-micron U-Pb geochronology of zircon and the effect of radiation damage on depth-dependent fractionation. Chemical Geology, 2014, vol. 372, pp. 92-108. doi: 10.1016/j.chemgeo.2014.02.021
Horstwood M.S.A., Foster G.L., Parrish R.R., Noble S.R., Nowell G.M. Common-Pb corrected in situ U-Pb accessory mineral geochronology by LA-MC-ICP-MS. J. Anal. At. Spectrom, 2003, no. 18, pp. 837-846. doi: 10.1039/B304365G
Inductively Coupled Plasma Mass Spectrometry Handbook. Blackwell Publishing Ltd, 2005. 598 p.
Paton Ch., Woodhead J.D., Hellstrom J.C., Hergt J.M., Greig A., Maas R. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochemistry Geophysics Geosystems, 2010, vol. 11, pp. 1-36. doi: 10.1029/2009GC002618
Cocherie А., Robert М. LA-MC-ICP-MS applied to U-Pb zircon geochronology. Mass spectrometry handbook. Part 31, 2012, pp. 675-705. doi: 10.1002/9781118180730.ch31
Woodhead J.D., Hellstrom J., Hergt J.M., Greig A., Maas R. Isotopic and Elemental Imaging of Geological Materials by Laser Ablation Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 2007, vol. 31, no 4, pp. 331-343. doi: 10.1111/j.1751-908X.2007.00104.x
Solari L.A., Gomez-Tuena A., Bernal J.P., Perez-Arvizu O., Tanner M. U-Pb Zircon Geochronology with an Integrated LA-ICP-MS Microanalytical Workstation: Achievements in Precision and Accuracy. Geostandards and Research Geoanalytical, 2010, vol. 34, no. 1, pp. 5-18. doi: 10.1111/j.1751-908X.2009.00027.x
Muller W., Shelley M., Miller P., Broudec S. Initial performance metrics of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-volume laser-ablation cell. J. Anal. At. Spectrom, 2009, vol. 24, pp. 209-214. doi: 10.1039/B805995K
Hirata T., Iizuka T., Orihashi Y. Reduction of mercury background on ICP-mass spectrometry for in situ U-Pb age determinations of zircon samples. J. Anal. At. Spectrom, 2005, vol. 20, pp. 696-701. doi: 10.1039/B504153H
Machado N., Simonetti A. U-Pb dating and Hf isotopic composition of zircon by laser ablation-MC-ICP-MS (chapter 9). Mineralogical Association of Canada, 2001, pp. 121-146.
Pearson N.J., Griffin W.L., O’Reilly S.Y. Mass fractionation correction laser ablation multiplecollector ICP-MS: implications for overlap corrections and precise and accurate IN SITU isotope ratio measurement. Mineralogical Association of Canada, 2008, vol. 40, pp. 93-116.
Votjakov S.L., Adamovich A.A. [On the processes of laser ablation and use of water standards in the LA-ICP-MS analysis of a number of minerals]. Litosfera [Lithosphere], 2011, no. 4, pp 56-69 (in Russian).
Nelms S.M. (ed). Inductively Coupled Plasma Mass Spectrometry Handbook. Blackwell Publishing Ltd, 2005. 598 p.
Messerly J.D. Current developments in laser ablation - inductively coupled plasma – mass spectrometry for use in geology, forensics, and nuclear nonproliferation research. PhD diss. Iowa, 2008. 124 p.
Sylvester P.J., Ghaderi M. Trace element analysis of scheelite by excimer laser ablation inductively coupled plasma mass spectrometry (ELA-ICP-MS) using a synthetic glass standard. Chemical Geology, 1997, vol. 141, pp. 49-65. doi: 10.1016/S0009-2541(97)00057-0
Kosler J., Fonneland H., Sylvester P., Tubrett M., Pedersen R.B. U-Pb dating of detrital zircons for sediment provenance studies – a comparison of LA-ICPMS and SIMS techniques. Chem. Geol, 2002, vol. 182, no. 2-4, pp. 605-618. doi: 10.1016/S0009-2541(01)00341-2
Analysis of Pb/U Ratios in Zircons Using Laser Ablation Coupled with XSERIES 2 ICP-MS. Application Note: 40789 (AN40789_E 01/08C). Thermo Fisher Scientific, 2008, 2 p.
Votjakov C.L., Shhapova Ju.V., Hiller V.V. Kristallokhimiia i fizika radiatsionno-termicheskikh effektov v riade U-Th-soderzhashchikh mineralov kak osnova dlia ikh khimicheskogo mikrozondovogo datirovaniia [Crystal chemistry and physics of radiation-thermal effects in a number of U-Th-containing minerals as a basis for their chemical microprobe dating]. Ekaterinburg, Institute of Geology and Geochemistry UB RAS, 2011. 340 p. (in Russian).
Murakami T., Chakoumakos B.C., Ewing R.C., Lumpkin G.R., Weber W.J. Alpha-decay event damage in zircon. American Mineralogist, 1991, vol. 76, no. 9-10, pp. 1510-1532
Johnston S, Gehrels G., Valencia V., Ruiz J. Small-volume U-Pb zircon geochronology by laser ablation-multicollector-ICP-MS. Chemical Geology, 2009, vol. 259, pp. 218-229. doi: 10.1016/j.chemgeo.2008.11.004
Gerdes A., Zeh A. Zircon formation versus zircon alteration — New insights from combined U-Pb and Lu-Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chemical Geology, 2009, vol. 261, pp. 230-243. doi: 10.1016/j.chemgeo.2008.03.00510.1002/2014GC005431
Andersen T. Appendix A3: COMPBCORR – Software for common lead correction of U-Th-Pb analyses that do not report 204Pb. Mineralogical Association of Canada, 2008, vol. 40, pp. 1-18.
Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 2002, vol. 192, pp. 59-79. doi: 10.1016/S0009-2541(02)00195-X
Horstwood M. S. A. Data reduction strategies, uncertainly assessment and resolution of LA-(MC-)ICP-MS isotope data. Mineralogical Association of Canada, 2008. vol. 40, pp. 283-304.
Ссылки
- На текущий момент ссылки отсутствуют.