СПЕКТРАЛЬНОЕ ОПРЕДЕЛЕНИЕ ФОСФОРА С ИСПОЛЬЗОВАНИЕМ ЕГО ЭЛЕКТРОТЕРМИЧЕСКОГО ИСПАРЕНИЯ И АТОМИЗАЦИИ В ПРИСУТСТВИИ РАЗЛИЧНЫХ ХИМИЧЕСКИХ МОДИФИКАТОРОВ (ОБЗОР)

Alexander A. Pupyshev, Polina V. Zaitceva, Maria V. Zaitceva

Аннотация


Определение низких содержаний фосфора в пробах разнообразного состава наиболее часто проводят различными спектроскопическими методами анализа с использованием техник электротермического испарения (ЭТИ) и электротермической атомизации (ЭТА). В статье, учитывая общность термохимических процессов преобразования веществ в этих устройствах от исходной пробы до частицы, генерирующей аналитический сигнал, сопоставлено по операционным условиям анализа и достигаемым аналитическим характеристикам большое количество уже применяемых спектроскопических методов определения фосфора. Наиболее полное сопоставление проведено для атомно-абсорбционного анализа с ЭТА и молекулярно-абсорбционного анализа с ЭТИ без использования и с введением в ЭТА и ЭТИ различных химических модификаторов. Рассмотрены возможные пути потерь фосфора на стадии пиролиза, механизмы его атомизации и образования молекулярных соединений при электротермической атомизации и электротермическом испарении. Основное внимание уделено эффективности действия химических модификаторов (повышению температуры стадии пиролиза, улучшению чувствительности и точности определений, снижению фоновых помех и др.): нитратов лантана и палладия, фторидов (HF, NaF, KF, CsF и NH4F) и некоторых других химических веществ. Рассмотрены экспериментально доказанные и предполагаемые механизмы действия различных химических модификаторов, проявляемые при определении фосфора. Отмечена перспективность применения атомно-абсорбционных спектрометров высокого разрешения с непрерывным источником спектра для определения фосфора по его атомному или молекулярному поглощению, для эффективного учета фонового поглощения.

Ключевые слова: фосфор, атомно-абсорбционный анализ, молекулярно-абсорбционный анализ, спектроскопические методы анализа, стадия пиролиза, атомизация, испарение, химический модификатор

DOI: http://dx.doi.org/10.15826/analitika.2016.20.4.010


Полный текст:

PDF (Russian)

Литература


REFERENCES

L'vov B.V., Khartsyzov A.D. The atomic absorption determination of phosphorus using a graphite cell. J. Appl. Spectrosc., 1969, vol. 11, no. 1, pp. 712-714. doi: 10.1007/BF00612523.

L'vov B.V., Khartsyzov A.D. Determination of sulfur, phosphorus, iodine, and mercury by atomic absorption in the vacuum UV. J. Appl. Spectrosc., 1969, vol. 11, no. 3, pp. 1010-1012. doi: 10.1007/BF00607833.

Havezov I., Russeva E., Jordanov N. Flameless atomic-absorption determination of phosphorus using ZrC coated graphite atomizer tubes. Fresenius Z. Anal. Chem, 1979, vol. 296, pp. 125-127. doi: 10.1007/BF00495174.

Persson J-A, Frech W. Investigation of reaction involved in electrothermal atomic absorption procedures. Part 8. A theoretical and experimental study of factors influencing the determination of phosphorus. Anal. Chim. Acta, 1980, vol. 119, pp. 75-79. doi: 10.1016/S0003-2670(00)00032-5.

Saeed K., Thomassen Y. Spectral interferences from phoshate matrices in the determination of arsenic, antimony, selenium and tellurium by electrothermal atomic absorption spectrometry. Anal. Chim. Acta, 1981, vol. 130, pp. 281-287. doi: 10.1016/S0003-2670(01)93005-3.

Russeva E., Havezov I., Spivakov B.Ya., Shkinev V.M. Electrothermal atomic-absorption determination of traces of arsenic and phosphorus in copper-nickel alloys. Fresenius Zeitschrift für analytische Chemie, 1983, vol. 315, no. 6, pp. 499-501. doi: 10.1007/BF00493795.

Kunc S. Direct determination of phosphorus by graphite furnace atomic absorption spectrometry. Chim. Acta turc, 1986, vol. 14, no. 1, pp. 1-11.

Curtius A.J., Schlemmer G., Welz B. Determination of phosphorus by graphite furnace atomic absorption spectrometry Part 1. Determination in the absence of a modifier. J. Anal. Atom. Spectrom, 1986, vol. 1, pp. 421-427. doi: 10.1039/JA9860100421.

Curtius A.J., Schlemmer G., Welz B. Determination of phosphorus by graphite furnace atomic absorption spectrometry. Part 2. Comparison of different modifiers. J. Anal. Atom. Spectrom., 1987, vol. 2, pp. 115-124. doi: 10.1039/JA9870200115.

Curtius, A.J., Schlemmer, G., Welz B. Determination of phosphorus by graphite furnace atomic absorption spectrometry. Part 3. Analysis of biological reference materials. J. Anal. At. Spectrom, 1987, vol. 2, pp. 311-315. doi: 10.1039/JA9870200311.

Kubota T., Uchida K., Ueda T., Okutani T. Determination of phosphorus by electrothermal atomic absorption spectrometry with a phosphorus hollow-cathode lamp as light source. Anal. Chim. Acta, 1988, vol. 208, pp. 351-355.

Havezov I., Russeva E. Graphite-furnace atomization of phosphorus. Anal. Chim. Acta, 1989, vol. 219, pp. 127-134. doi: 10.1016/S0003-2670(00)80340-2.

Kubota T., Okutani T. Determination of total dissolved phosphorus in natural waters by graphite furnace AAS after preconcentration with molybdate form anion-exchange resin. Bunseki Kagaku, 1990, vol. 39, no. 9, pp. 507-512.

Hendrikse P.W., Dieffenbacher A. Determination of phosphorus in oils and fats by direct graphite furnace atomic absorption furnace atomic absorption spectrometry: results of a collaborative study and the standardized method. Pure & Appl. Chem, 1991, vol. 63, no. 8, pp. 1191-1196.

Hendrikse P.W., Slikkerveer F.J., Folkersma A., Dieffenbacher A. Determination of phosphorus in oils and fats by direct graphite furnace atomic absorption spectrometry. Chem. Int, 1992, vol. 14, no. 1, pp. 27.

Kubota T., Okutani T., Inamoto T., Takimoto K. A mechanism for sensitivity improvement for phosphorus with a zirconium modifier in graphite furnace AAS. Bunseki Kagaku, 1992, vol. 41, no. 1, pp. 57-62. doi: http://doi.org/10.2116/bunsekikagaku.41.57.

Alvarado J., Cristiano A.R., Curtius A.J. Fluoride as a chemical modifier for the determination of phosphorus by electrothermal atomic absorption spectrometry. J. Anal. At. Spectrom, 1995, vol. 10, pp. 483-486. doi: 10.1039/JA9951000483.

Hernández E., Alvarado J., Arenas F., Vélez M. Thermal stabilization of phosphorus during electrothermal atomic absorption spectrometry using sodium fluoride as chemical modifier. J. Anal. At. Spectrom, 1997, vol. 12, pp. 1391-1396. doi: 10.1039/A704689H.

Resano M., Belarra M.A., Castillo J.R., Vanhatcke F. Direct determination of phosphorus in two different plastic materials (PET and PP) by solid sampling-graphite furnace atomic absorption spectrometry. J. Anal. At. Spectrom, 2000, vol. 15, pp. 1383-1388. doi: 10.1039/B005614F.

Zakharov Yu.A, Motyguilin E.K., Girmutdinov A. Kh. Direct determination of phosphorus in vegetable oils by electrothermal atomic absorption spectrometry. J. Anal. Chem., 2000, vol. 55, no. 7, pp. 649-652. doi: 10.1007/BF02827999.

Dessuy M.B., Vale M.G.R., Lepri F.G., Borges D.L.G., Welz B., Silva M.M., Heitmann U. Investigation of artifacts caused by deuterium background correction in the determination of phosphorus by electrothermal atomization using high-resolution continuum source atomic absorption spectrometry. Spectrochim. Acta. Part B, 2008, vol. 63, pp. 337-348. doi: 10.1016/j.sab.2007.11.038.

Lyra F.H., Carneiro M.T.W.D., Brandao G.P., Pessoa H.M., Castro E.V.R. Direct determination of phosphorus in biodiesel samples by graphite furnace atomic absorption spectrometry using a solid sampling accessory. J. Anal. At. Spectrom., 2009, vol. 24, pp. 1262-1266. doi: 10.1039/b907071k.

Resano M., Briceno J., Belarra M.A. Direct determination of phosphorus in biological samples using a solid sampling-high resolution-continuum source electrothermal spectrometer: comparison of atomic and molecular absorption spectrometry. J. Anal. At. Spectrom, 2009, vol. 24, pp. 1343-1354. doi: 10.1039/B907937H

Routh M.W. Direct determination of phosphorus by atomic absorption. Agilent Technologies, 2010, 4 p.

Campos R.C., Correia C.L.T., Vieira F., Saint'Pierre T.D., Oliveira A.C., Goncalves R. Direct determination of P in biodiesel by high-resolution continuum source graphite furnace atomic absorption spectrometry. Spectrochim. Acta. Part B, 2011, vol. 66, pp. 352-355. doi: 10.1016/j.sab.2011.05.003.

Kumar S.J., Meeravali N.N., Manjusha R. A sensitive method for determination of phosphorous by continuum source graphite furnace atomic absorption spectrometry after a novel ionic liquid assisted cloud point extraction. J. Anal. At. Spectrom, 2013, vol. 28, pp. 585-592. doi: 10.1039/c3ja30266k.

Lepri F.G., Dessuy M.B., Vale M.G.R., Borges D.L.G., Welz B., Heitmann U. Investigation of chemical modifier for phosphorus in a graphite furnace using high-resolution continuum source atomic absorption spectrometry. Spectrochim. Acta. Part B, 2006, vol. 61, pp. 934-944. doi: 10.1016/j.sab.2006.08.001.

Heitmann U., Becker-Ross H., Florek S., Huang M.D., Okruss M. Determination of non-metals via molecular absorption using highresolution continuum source absorption spectrometry and graphite furnace atomization. J. Anal. Atom. Spectrom, 2006, vol. 21, pp. 1314-1320. doi: 10.1039/B607384K.

Knowles D.J., Marriott P., Slater S.J. MECA spectroscopy an appraisal of its application to the measurement of some naturally occurring phosphorus compounds. Proc. Anal. Div. Chem. Soc, 1978, vol. 15, no. 2, pp. 62-64.

Burguera J.L., Burguera M. Determination of some phosphorus-containing compounds by flow injection with a molecular emission cavity detector. Anal. Chim. Acta, 1985, vol. 170, pp. 331-336. doi: 10.1016/s0003-2670(00)81758-4

El-Hag I.H., Townshend A. Automation of molecular emission cavity analysis. Determination of phosphorus. J. Anal. Atom. Spectrom, 1986, vol. 1, pp. 383-386. doi: 10.1039/JA9860100383.

Bedrosian A.J., Skogerboe R.K., Morrison G.H. Direct emission spectrographic method for trace elements in biological materials. Anal. Chem., 1968, vol. 40, pp. 854-860. doi: 10.1021/ac60262a021.

Vinogradov A.P. Analiticheskaia khimiia fosfora [Analytical chemistry of phosphorus]. Moscow, Nauka Izd., 1974. 220 p. (in Russian).

Kelbl E.F. [Spectrometric methods of determination of phosphorus and phosphorus compounds]. Fosfor v okruzhaiushchei srede [Phosphorus in the environment], 1977, pp. 374-384 (in Russian).

Lezin V.I. [Spectral determination of phosphorus]. Zavodskaia laboratoriia [Factory Laboratory], 1978, vol. 44, no. 11, pp. 1348-1349 (in Russian).

Okamoto Y., Kanda K., Kishiwada S., Fujiwara T. Determination of phosphorus and sulfur in environmental samples by electrothermal vaporization inductively coupled plasma atomic emission spectrometry. Applied spectroscopy, 2004, vol. 58, no. 1, pp. 105-110. doi: 10.1366/000370204322729531.

Masson P. Direct phosphorus determination on solid plant samples by electrothermal vaporization-inductively coupled plasma atomic emission spectrometry. J. Anal. At. Spectrom, 2011, vol. 26, pp. 1290-1293. doi: 10.1039/C0JA00156B.

Heltai Gy., Broekaert J.A.C., Burba P., Leis F. Study of a toroidal argon MIP and a cylindrical helium MIP for atomic emission spectrometry-II: Combination with graphite furnace vaporization and use for analysis of biological samples. Spectrochim. Acta. Part B, 1990, vol. 45, pp. 857-866. doi: 10.1016/0584-8547(90)80142-6.

Marshall J., Franks J. Multi-element analysis and reduction of spectral interferences using electrothermal vaporization inductively coupled plasma-mass spectrometry. At. Spectrom, 1990, vol. 11, pp. 177-186.

Hudges D.M., Gregoire D.C., Naka H., Chakrabarti C.L. The vaporization of phosphorus compounds and the use of chemical modifiers for the determination of phosphorus by electrothermal vaporization inductively coupled plasma mass spectrometry. Spectrochim. Acta. Part B, 1997, vol. 52, pp. 517-529. doi: 10.1016/S0584-8547(96)01595-9.

Dittrich K., Fuchs H. Analytical applications of furnace atomic non-thermal excitation spectrometry (FANES) and molecular non-thermal excitation spectrometry (MONES). Part 4. Determination of trace amounts of phosphorus by FANES. J. Anal. Atom. Spectrom, 1989, vol. 4, pp. 705-708. doi: 10.1039/JA9890400705.

Dittrich K., Fuchs H. Analytical applications of furnace atomic non-thermal excitation spectrometry (FANES) and molecular non-thermal excitation spectrometry (MONES). Part. 5. Study of the MONES of PO and HPO for the determination of trace amounts of phosphorus. J. Anal. Atom. Spectrom, 1990, vol. 5, no. 1, pp. 39-43. doi: 10.1039/JA9900500039.

Radtsig A.A. Parametry atomov i atomnykh ionov [The parameters of atoms and atomic ions]. Moscow, Energoatomizdat, 1986. 344 p. (in Russian).

A. Walsh. Atomic absorption spectroscopy (a review with 21 references) // Proceedings of the 10th Colloq. Spectrosc. Internat (Univ. Maryland, 1962). Spartan Books, Washington, 1963, pp. 127-142.

Sansonetti J.E., Martin W.C. Handbook of basic atomic spectroscopic data. J. Phys. Chem. Ref. Data, 2005, vol. 34, no. 4, pp. 1909-1915. doi: 10.1063/1.1800011.

L'vov B. V., Khartsyzov A. D. [The atomic absorption determination of phosphorus using a graphite cell]. Zhurnal prikladnoi spektroskopii [Journal of Applied Spectroscopy], 1969, vol. 11, no. 1, pp. 9-12. (in Russian).

Mroczek A., Wennrich R., Werner G., Schron W. Investigation of phosphorus release from different compounds in electrothermal vaporization inductively coupled plasma atomic emission spectrometry in the absence and presence of modifiers and its application to plant analysis. Spectrochim. Acta. Part B, 2000, vol. 55, pp. 1527-1538. doi: 10.1016/S0584-8547(00)00256-1.

Kirkbright G.F., M. Marshall. Direct determination of phosphorus by atomic absorption flame spectrometry. Anal. Chem., 1973, vol. 45, no. 9, pp. 1610-1613. doi: 10.1021/ac60331a014.

Wennrich R., Mroczek A., Dittrich K., Werner G.. Determination of nonmetals using ICP-AES-techniques. Fresenius J. Anal. Chem, 1995, vol. 352, pp. 461-469. doi: 10.1007/BF00323367.

Chiba K., Kurosawa M., Tanabe K., Haraguchi H. A microsampling technique utilizing an electrothermal tungsten-boat vaporization device for atmospheric pressure helium microwave-induced plasma emission spectrometry. Chemistry Letters, 1984, vol. 13, no. 1, pp. 75-78. doi: 10.1246/cl.1984.75.

Ferreira R.B., Oliveira S.R., Franzini V.P., Virgilio A, Raposo Jr J.L., Gomes Neto J.A. Evaluation of lines of phosphorus and potassium by high-resolution continuum source flame atomic absorption spectrometry for liquid fertilizer analysis. Atomic Spectroscopy, 2011, vol. 32, pp. 56-61.

William B. H. Direct determination of phosphorus in aqueous matrices by atomic absorption. Varian AA Resource Center, U.S.A, 1982, 7 p.

Hoft D., Oxman J., Gurira R. C. Direct determination of phosphorus in fertilizers by atomic absorption spectroscopy. J. Agr. And Food Chem, 1979, vol. 27, no. 1, pp. 145-147. doi; 10.1021/jf60221a047.

Hogen M.L. Detection of phosphorus on starch atomic absorption and the graphite furnace. Cereal Chemistry, 1983, vol. 60, no. 5, pp. 403-405.

Coskun N., Akman S. Determination of phosphorus in different food samples by means of solid sampling electrothermal atomic absorption spectrometry using Pd+Ca chemical modifier. Spectrochim. Acta. Part B, 2005, vol. 60, pp. 415–419. doi: 10.1016/j.sab.2005.01.003.

Dessuy M.B., Vale M.G.R., Lepri F.G., Welz B., Heitmann U. Investigation of phosphorus atomization using high-resolution continuum source electrothermal atomic absorption spectrometry. Spectrochim. Acta. Part B, 2007, vol. 62, pp. 429-434. doi: 10.1016/j.sab.2007.04.008.

Langmyhr F.J., Dahl I.M. Atomic absorption spectrometric determination of phosphorus in biological materials. Anal. Chim. Acta, 1981, vol. 131, pp. 303-306. doi: 10.1016/S0003-2670(01)93565-2.

Lepri F.G., Welz B., Dessuy M.B., Vale M.G.R., Bohrer D., Loos-Vollebregt M.T.C., Huang M.D., Becker-Ross H. Investigation of the feasibility to use Zeeman-effect background correction for the graphite furnace determination of phosphorus using high-resolution continuum source atomic absorption spectrometry as a diagnostic tool spectrometry. Spectrochim. Acta. Part B, 2010, vol. 65, pp. 24-32. doi: 10.1016/j.sab.2009.10.009.

Ohta K., Sugiyama T., Mizuno T. Determination of phosphorus in biological material using electrothermal atomisation atomic absorption spectrometry with a molybdenum tube atomizer. Analyst, 1990, vol. 115, no. 3, pp. 279-282. doi: 10.1039/AN9901500279.

Resano M., Florez M.R., Garcia-Ruiz E. High-resolution continuum source atomic absorption spectrometry for the simultaneous or sequential monitoring of multiple lines. A critical review of current possibilities. Spectrochim. Acta. Part B, 2013, vol. 88, pp. 85-97. doi: 10.1016/j.sab.2013.06.004.

Vigler M.S., Strecker A., Varnes A. Investigations of the determination of phosphorus in organic media by atomic absorption heated graphite atomizer. Applied Spectroscopy, 1978, vol. 32, no. 1. P. 60-62. doi: 10.1366/000370278774331855.

Whiteside P.J., Price W.J. Communication. Determination of phosphorus in steel by atomic-absorption spectrophotometry with electrothermal atomization. Analyst, vol. 102. pp. 618-620. doi: 10.1039/AN9770200618.

Kubota T., Ueda T., Okutan T. Determination of phosphorus by atomic absorption spectrometry using a zirconium treated graphite tube. Bunseki Kagaku, 1984, vol. 33, pp. 633-637. doi: http://doi.org/10.2116/bunsekikagaku.33.12_633.

Kubota T., Ueda T., Okutan T. Determination of phosphorus in natural water by atomic absorption spectrometry after coprecipitation enrichment with zirconium hydroxide. Bunseki Kagaku, 1986, vol. 35, pp. 75-79. doi: http://doi.org/10.2116/bunsekikagaku.35.75

Lin S-W., Julshamn K. A comparative study of the determination of phosphorus by electrothermal atomic absorption spectrometry and solution spectrophotometry. Anal. Chim. Acta, 1984, vol. 158, pp. 199-206. doi:10.1016/S0003-2670(00)84827-8.

Lopez-Garcia I., Vinaz P., Romero-Romero R., Hernandez-Cordoba M. Fast determination of phosphorus in honey, milk and infant formulas by electrothermal atomic absorption spectrometry using a slurry sampling procedure. Spectrochim. Acta. Part B, 2007, vol. 62, pp. 48-55. doi: 10.1016/j.sab.2006.11.008.

Tittarelli P., Mascherpa A. Liquid chromatography with graphite furnace atomic absorption spectrometric detector for speciation of organophosphorus compounds. Anal. Chem, 1981, vol. 53, pp. 1466-1469. doi: 10.1021/ac00232a038.

Determination of P un Leachate. Application note HR-CS AAS – Graphite tube technique. Analytik Jena, 2007, pp. 4.

Driscol D.J., Clay D.A., Rogers C.H., Jungers R.H., Butler F.E. Direct determination of phosphorus in gasoline by flameless atomic absorption spectrometry. Anal. Chem, 1978, vol. 50, pp. 767-769. doi: 10.1021/ac50027a025.

Skogerboe R.K., Gravatt A.S., Morrison G.H. Flame spectrophotometric determination of phosphorus. Anal. Chem., 1967, vol. 39, no. 13, pp. 1602-1605. . doi: 10.1021/ac50156a033.

Huang M.D., Becker-Ross H., Florek S., Heitmann U., Okruss M. Determination of phosphorus by molecular absorption of phosphorus monoxide using a high-resolution continuum source atomic absorption spectrometer and an air–acetylene flame. J. Anal. At. Spectrom., 2006, vol. 21, pp. 338-345. doi: 10.1039/B512986a.

Welz B., Becker-Ross H., Florek S., Hietmann U. High-resolution continuum source AAS. WILEY-VCH Verlag GmbH & Co. KGaA, 2005, pp. 125-127.

Haraguchi H., Fuwa K. Determination of phosphorus by molecular absorption flame spectrometry using the phosphorus monoxide band. Anal. Chem, 1976, vol. 48, pp. 784-786. doi: 10.1039/B512986A.

Bechlin M.A., Neto J.A.G., Nobrega J.A. Evaluation of lines of boron, phosphorus and sulfur by high-resolution continuum source flame atomic absorption spectrometry for plant analysis. Microchem. Journal, 2013, vol. 109, pp. 134-138. doi: 10.1016/j.microc.2012.03.013.

Fuwa K., Haraguchi H., Okamoto K., Nagata T. Molecular absorption spectrometry of PO in flame. Bunseki Kagaku, 1972, vol. 21, no. 7, pp. 945-946. doi: http://doi.org/10.2116/bunsekikagaku.21.945.

Corbridge D. [Phosphorus]. Osnovy khimii, biokhimii, tekhnologii [An outline of its chemistry, biochemistry and technology]. Moscow, Mir, 1982. 680 p. (in Russian).

Aldous K.M., Dagnall R.M., West T.S. The flame-spectroscopic determination of sulphur and phosphorus in organic and aqueous matrices by using a simple filter photometer. Analyst, 1970, vol. 95, pp. 417-424. doi: 10.1039/AN9709500417.

Huang M.D., Becker-Ross H., Florek S., Heitmann U., Okruss M. The influence of calcium and magnesium on the phosphorus monoxide molecular absorption signal in the determination of phosphorus using a continuum source absorption spectrometer and an air–acetylene flame. J. Anal. At. Spectrom, 2006, vol. 21, pp. 346–349. doi: 10.1039/B512993A.

Veillon C., Park J.Y. Use of the salet phenomenon in the determination of sulfur and phosphorus in agueous and organic samples. Anal. Chim. Acta, 1972, vol. 6, pp. 293-301. doi: 10.1016/S0003-2670(01)95005-6.

Kerber J.D., Barnett W.B., Kohn H. L. The determination of phosphorus by atomic absorption and flame emission spectroscopy. Atom. Absorpt. Newslett, 1970, vol. 9, no. 2, pp. 39-42.

Syty A. Determination of phosphorus in phosphate rock by cool flame emission spectrometry. Atom. Absorpt. Newslett, 1973, vol. 12, no. 1, pp. 1-2.

Calokerinos A.C., Hadjiioannou T.P. The determination of inorganic phosphorus compounds by using molecular emission cavity analysis. Anal. Chim. Acta, 1984, vol. 157, pp. 171-176. doi: 10.1016/S0003-2670(00)83618-1.

Belcher R., Bogdanski S. L., Osibanjo O., Townshend A. Molecular emission cavity analysis: Part VIII. The determination of organophosphorus compounds. Anal. Chim. Acta, 1976, vol. 84, pp. 1-13. doi: 10.1016/S0003-2670(01)82832-4.

Elliot W.N., Mostyn R.A. Determination of the phosphoric acid content of the acid component of etch primer paint by flame emission spectrophotometry. J. Oil and Colour Chem. Assoc, 1970, vol. 53, no. 11, pp. 989-993.

Elliot W.N., Heathcote C., Mostyn R.A. Determination of phosphorus in lubricating oils by cool-flame emission spectroscopy. Talanta, 1972, vol. 19, pp. 359-363. doi:10.1016/0039-9140(72)80087-0.

The identification of molecular spectra Chapman and Hall, London. ed. R.W.B. Pearse and A.G. Gaydon, 1963. 347 p.

Analytical flame spectroscopy. Ed. R. Mavrodineanu. Macmillan and Co LTD, Netherlands. 1970. 773 p.

Cedergren A., Frech W., Lundberg E. Estimation of oxygen pressure in graphite furnaces for atomic absorption spectrometry. Anal. Chem, 1984, vol. 56, no. 8, pp. 1382-1387. doi: 10.1021/ac00272a040.

Gunz D., Schnell E. Use of anion-exchange in combination with atomic absorption spectrophotometry for determination of phosphate and sulfate. Mikrochim. Acta. 1983, vol. 3, № 1-2, pp. 125.

L’vov B.V., Pelieva L.A. [Atomic absorption determination of phosphorus atomizer HGA during evaporation of the sample introduced into a heated oven probe]. Zhurnal analiticheskoi khimii [Journal of Analytical Chemistry], 1978, vol. 33, pp. 1572-1575 (in Russian).

Ediger R.D., Knott A.R., Peterson G.E., Beaty R.D. The determination of phosphorus by atomic absorption using the graphite furnace. At. Absorpt. Newslett, 1978, vol. 17, pp. 28-32.

Welz B., Curtius A.J., Schlemmer G., Ortner H.M., Birzer W. Scanning electron microscopy studies on surfaces from electrothermal atomic absorption spectrometry: III. The lanthanum modifier and the determination of phosphorus. Spectrochim. Acta. Part B, 1986, vol. 41, pp. 1175-1201. doi: 10.1366/000370278774331855.

Welz B., Voelkopf U., Grobenski Z. Determination of phosphorus in steel with a stabilized-temperature graphite furnace and zeeman-corrected atomic absorption spectrometry. Anal. Chim. Acta, 1982, vol. 136, pp. 201-214. doi: 10.1016/S0003-2670(01)95379-6.

[Atomic spectroscopy: Guide to Choosing of appropriate analysis method and device]. Perkin Elmer, 2008, 15 p.

Caraballo E.A.H., Alvarado J.D., Arenas F. Study of the electrothermal atomization of phosphorus in transversely-heated graphite atomizers. Spectrochim. Acta Part B, 2000, vol. 55, pp. 1451-1464. doi; http://dx.doi.org/10.1016/S0584-8547(00)00251-2.

Analysis of Phosphorus in Waste Water and Food Using Electrothermal Atomic Absorption Spectrophotometry (ETAAS). Application AD-0083. SHIMADZU, 2015. 2 p.

Hobbins W. B. Direct determination of phosphorus in aqueous matrices by atomic absorption. Varian Instrument, 1982, Number AA-19. 7 p.

ET ISO 10540-2 (2012). Animal and vegetable fats and oils - Determination of phosphorus content, Part 2: Method using graphite furnace atomic absorption spectroscopy. English, Ethiopian Standards Agency, 2012. 13 p.

Benesovsky F. Ullmanns Encyklopädie der Technischen Chemie. 4th edn. Verlag Chemie, 1975, vol. 9, pp. 122-136.

Hennig G. R. Interstitial compounds of graphite. Progress in Inorganic Chemistry. ed. Cotton F. A., 1959, vol. 1, pp. 125-205. doi: 10.1002/9780470166024.ch2.

Resano M., Florez M.R., Garcia-Ruiz E. Progress in the determination of metalloids and non-metals by means of high-resolution continuum source atomic or molecular absorption spectrometry. A critical review. Anal. Bioanal. Chem, 2014, vol. 406, no. 9-10, pp. 2239-2259. doi: 10.1007/s00216-013-7522-9.

Analytical methods for graphite tube atomizers. User’s guide. Australia, Agilent technology, 2006-2010. 226 p.

Reis A.P., Valente L.M.P., Reis A.P., Valente L.M.P. A simple and fast method for determination of phosphorus in fish diets and faeces used in animal nutritional studies. Food Anal. Methods, 2012, vol. 5, pp. 82-88. doi:10.1007/s12161-011-9209-1.

Hobbins W. B. Direct determination of phosphorus in organic matrices by atomic absorption. Varian Instrument, 1982, Number AA-20. 6 p.

Welz B., Schlemmer G., Mudakavi J.R. Palladium nitrate-magnesium nitrate modifier for graphite furnace atomic absorption spectrometry. Part 2. Determination of arsenic, cadmium, copper, manganese, lead, antimony, selenium and thallium in water. J. Anal. At. Spectrom, 1988, vol. 3, no. 5, pp. 695-701. doi: 10.1039/JA9880300695.

Lide D.R. CRC Handbook of Chemistry and Physics. 86th Edition. CRC Press, Taylor & Francis, Boca Raton, 2005. pp. 4–87.

Ortner H.M., Rohr U., Schlemmer G., Weinbruch S., Welz B. Corrosion of transversely heated graphite tubes by iron and lanthanum matrices. Spectrochimica Acta Part B, 2002, vol. 57, pp. 243–260. doi: http://dx.doi.org/10.1016/S0584-8547(01)00367-6.

Welz B., Schlemmer G., Mudakavi J.R. Palladium nitrate–magnesium nitrate modifier for electrothermal atomic absorption spectrometry: Part 5. Performance for the determination of 21 elements. J. Anal. At. Spectrom, 1992, vol. 7, pp. 1257–1271. doi: 10.1039/JA9920701257.

Ortner H.M., Bulska E., Rohr U., Schlemmer G., Weinbruch S., Welz B. Modifiers and coatings in graphite furnace atomic absorption spectrometry – mechanisms of action (a tutorial review). Spectrochim. Acta. Part B, 2002, vol. 57, pp. 1835–1853. doi: 10.1016/S0584-8547(02)00140-4.

Schlemmer G., Welz B. Palladium and magnesium nitrates, a more universal modifier for graphite furnace atomic absorption spectrometry. Spectrochim. Acta. Part B, 1986, vol. 41, pp. 1157–1165. doi: 10.1016/0584-8547(86)80175-6.


Ссылки

  • На текущий момент ссылки отсутствуют.