ИНФОРМАТИВНОСТЬ ВЫХОДНЫХ СИГНАЛОВ «ЭЛЕКТРОННОГО НОСА» НА ПЬЕЗОСЕНСОРАХ

T. A. Kuchmenko, A. A. Shuba

Аннотация


Обсуждается влияние температуры, влажности, режимов измерения, собственных характеристик пьезорезонаторов, природы и массы сорбента, природы и содержания аналита, типа проб на выходные данные массива пьезосенсоров, в том числе на параметры, используемые для идентификации веществ в смесях, и пути устранения или минимизации этого влияния. Показано, что аналитическая информация «электронного носа» на пьезосенсорах не более зависима от условий эксперимента, чем популярные, широко распространенные методы анализа. Описана информативность выходных сигналов массива сенсоров, используемых для идентификации веществ. Установлены идентификационные параметры массива пьезосенсоров для обнаружения аминов, органических кислот, спиртов, этилацетата, ацетона в равновесной газовой фазе над водными растворами. Продемонстрировано влияние порядка расположения сенсоров в массиве на значения трехэлементных идентификационных параметров. Предложена схема применения идентификационных параметров, в том числе неселективных, для обнаружения органических веществ по совпадению не менее двух параметров. Доказана возможность применения данных параметров для идентификации аминов, кислот, спиртов, кетонов в равновесной газовой фазе над водными растворами их смесей. Данный подход характеризуется высокой чувствительностью и специфичностью и может быть использован для идентификации веществ в равновесной газовой фазе над пробами с большим содержанием воды (кровь,  моча, лимфа, пот, соки, напитки).

Ключевые слова: пьезосенсоры, электронный нос, вещества-маркеры, аналитический сигнал, идентификационные параметры, информативность.

DOI: http://dx.doi.org/10.15826/analitika.2017.21.2.001

 


Полный текст:

PDF (Russian)

Литература


REFERENCES

Problemy analiticheskoi khimii. Kn. 12: Biokhimicheskie metody analiza. [Problems of analytical chemistry, vol. 12: Biochemical methods of analysis], ed. by B. B. Dzantiev, Moscow: Nauka Publ., 2010. 391 p. (in Russian).

Problemy analiticheskoi khimii. Kn. 14: Khimicheskie sensory. [Problems of analytical chemistry, vol. 12: Chemical sensors], ed. by Iu. G. Vlasov, Moscow: Nauka Publ., 2011. 399 p. (in Russian).

Revelsky A.I., Revelsky I.A., Miller B., Oriedo V. Simultaneous determination of fatty, dicarboxylic and amino acids based on derivatization with isobutyl chloroformate followed by gas chromatography - positive ion chemical ionization mass spectrometry. Journal of Chromatography B, 2004, vol. 800, no. 1-2, pp. 101-107.

Sukharev A., Ermolaeva T.N., Beda N.A., Mamaeva S.A., Ermolaev V.G. [Immunochemical study of lactoferrin, degradation products of fibrinogen, immunoglobulins and protein fractions in mixed saliva of a promising non-invasive test to assess the health status with clinical examination]. Sovremennye naukoemkie tekhnologii [Modern high technology], 2006, no. 6, p. 79 (in Russian).

Pavlou A. K., Magan N., McNulty C., Jones J. M., Sharp D., Brown J., Turner A.P.F. Use of an electronic nose system for diagnoses of urinary tract infections. Biosensors and Bioelectronics, 2002, vol. 17, no 10, pp. 893-899.

Bernabei M., Pennazza G., Santonico M., Corsi C., Roscioni C., Paolesse R., Di Natale C., D’Amico A. A preliminary study on the possibility to diagnose urinary tract cancers by an electronic nose. Sensors and Actuators B: Chemical, 2008, vol. 131, no. 1. pp. 1-4. doi: 10.1016/j.snb.2007.12.030.

Bel’skii V.E. [Solubilization of saturated vapor and gases in biological media]. Khimiko-farmatsevticheskii zhurnal [Chemical and Pharmaceutical journal], 2000, vol. 34, no 11, pp. 42-45 (in Rissian).

Buszewski B., Ulanowska A., Kowalkowski T., Cieslinski K. Identification of volatile lung cancer markers by gas chromatography-mass spectrometry: Comparison with discrimination by canines. Anal. Bioanal. Chem., 2012, vol. 404, pp. 141–146. doi: 10.1007/s00216-012-6102-8.

Gaspar E. M., Lucena A.F., Duro da Costa J., Chaves das Neves H. Organic metabolites in exhaled human breath—A multivariate approach for identification of biomarkers in lung disorders. J. Chromatogr. A, 2009, vol. 1216, no. 14, pp. 2749-2756. doi: 10.1016/j.chroma.2008.10.125.

Gardner J.W., Shin H.W., Hines E.L. An electronic nose system to diagnose illness. Sensors and Actuators B: Chemical, 2000, vol. 70, no 1–3, pp. 19-24. doi: 10.1016/S0925-4005(00)00548-7.

Weiss T., Angerer J. Simultaneous determination of various aromatic amines and metabolites of aromatic nitro compounds in urine for low level exposure using gas chromatography–mass spectrometry. J. of Chromatography B, 2002, vol. 778, no. 1-2, pp. 179-192.

Deng, Y.-H., Wang H., Zhong L., Zhang H.-S. Trace determination of short-chain aliphatic amines in biological samples by micellar electrokinetic capillary chromatography with laser-induced fluorescence detection. Talanta, 2009, vol. 77, no 4, pp. 1337-1342. doi: 10.1016/j.talanta.2008.09.013.

Rudnicka J., Kowalkowski T., Ligor T., Buszewski B. Determination of volatile organic compounds as biomarkers of lung cancer by SPME–GC–TOF/MS and chemometrics. J. of Chromatography B, 2011, vol. 879, no. 30, pp. 3360-3366. doi: 10.1016/j.jchromb.2011.09.001.

Senthilmohan S. T., Kettle A. J., McEwan M. J, Dummer J., Edwards S. J., Wilson P. F., Epton M. J. Detection of monobromamine, monochloramine and dichloramine using selected ion flow tube mass spectrometry and their relevance as breath markers. Rapid Commun Mass Spectrom, 2008, vol. 22, no. 5, pp. 677-681. doi: 10.1002/rcm.3418.

Phillips M., Cataneo R.N., Ditkoff B.A., Fisher P., Greenberg J., Gunawardena R., Kwon C.S., Rahbari-Oskoui F., Wong C. Volatile markers of breast cancer in the breath. The Breast J, 2003, vol. 9, no. 3, pp. 184-191.

Di Natale C., Macagnano A., Martinelli E., Paolesse R., D’Arcangelo G., Roscioni C., Finazzi-Agro A., D'Amico A. Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. Biosens. Bioelectron, 2003, vol.18, no. 10, pp. 1209-1218.

Carrola J, Rocha C.M., Barros A.S., Gil A.M., Goodfellow B.J., Carreira I.M. Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of urine. J Proteome Res, 2011, vol. 10, no. 1, pp. 221-230. doi: 10.1021/pr100899x.

Silva C.L., Passos M., Camara J.S. Investigation of urinary volatile organic metabolites as potential cancer biomarkers by solid-phase microextraction in combination with gas chromatography-mass spectrometry. Br J Cancer, 2011, vol. 105, no. 12, pp. 1894-1904. doi: 10.1038/bjc.2011.437.

Xue R., Dong L., Zhang S., Deng C., Liu T., Wang J., Shen X. Investigation of volatile biomarkers in liver cancer blood using solid-phase microextraction and gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom, 2008, vol. 22, no 8, pp. 1181-1186. doi: 10.1002/rcm.3466.

Chen S., Mahadevan V., Zieve L. Volatile fatty acids in the breath of patients with cirrhosis of the liver. J. Lab. Clin. Med, 1970, vol. 75, no. 4, pp. 622-627.

Van den Velde S., Nevens F., Van Hee P., van Steenberghe D., Quirynen M. GC–MS analysis of breath odor compounds in liver patients. J. Chromatogr. B, 2008, vol. 875, no. 2, pp. 344-348. doi: 10.1016/j.jchromb.2008.08.031.

Pavlou A.K., Magan N., Sharp D., Brown J., Barr H., Turner A.P. An intelligent rapid odour recognition model in discrimination of Helicobacter pylori and other gastroesophageal isolates in vitro. Biosens. Bioelectron, 2000, vol. 15, no. 7-8, pp. 333-342. doi: 10.1016/S0956-5663(99)00035-4.

Socolowsky S., Hohne C., Sandow D. The direct detection of volatile fatty acids by gas chromatography in microbiological diagnosis. Zeitschrift Med. Lab. Diagn. 1990, vol. 31, pp. 445-452.

Kokoszka J., Nelson R.L., Swedler W.I., Skosey J., Abcarian H. Determination of inflammatory bowel disease activity by breath pentane analysis. Dis. Colon. Rectum, 1993, vol. 36, no. 6, pp. 597-601.

Sedghi S., Keshavarzian A., Klamut M., Eiznhamer D., Zarling E.J. Elevated breath ethane levels in active ulcerative colitis: evidence for excessive lipid peroxidation. Am. J. Gastroenterol, 1994, vol. 89, no. 12, pp. 2217-2221.

Pelli M.A., Trovarelli G., Capodicasa E., De Medio G.E., Bassotti G. Breath alkanes determination in ulcerative colitis and Crohn’s disease. Dis. Colon. Rectum, 1999, vol. 42, no. 1, pp. 71-76.

Guernion N., Ratcliffe N.M., Spencer-Phillips P.T., Howe R.A. Identifying bacteria in human urine: current practice and the potential for rapid, near-patient diagnosis by sensing volatile organic compounds. Clin. Chem. Lab. Med, 2001, vol. 39, no. 10, pp. 893-906. doi: 10.1515/CCLM.2001.146.

Davies T., Hayward N.J. Volatile products from acetylcholine as markers in the rapid urine test using headspace gas-liquid chromatography. J. Chromat., 1984, vol. 307, no. 1, pp. 11-21.

Hayward N.J., Jeavons T.H., Nicholson A.J.C., Thorton A.G. Methyl mercaptan and dimethyl disulphide production from methionine by Proteus species detected by head-space gas-liquid chromatography. J. Clin. Microbiol., 1977, vol. 6, no. 3, pp. 187-194.

Hayward N.J., Jeavons T.H., Nicholson A.J.C., Thorton A.G. Development of specific tests for the rapid detection of Escherichia coli and all species of Proteus in urine. J. Clin. Microbiol., 1977, vol. 6, no. 3, pp. 195-201.

Kodogiannis V.S. Intelligent classification of bacterial clinical isolates in vitro, using an array of gas sensors. J. Intell. Fuzzy Syst., 2005, vol. 16, no. 14. pp. 1-14.

Kuchmenko T.A., Shuba A.A., Tyurkin I.A., Bityukova V.V. Estimation of the state of biological samples by the composition of the headspace using a multisensor system. J. Analyt. Chem., 2014, vol. 69, no. 5, pp. 485-494. doi: 10.1134/S1061934814050050.

Kuchmenko T.A., Shuba A.A., Cheremushkina I.V. Application of chemical sensors to the rapid assessment of the digestive tract of birds. J. Analyt. Chem., 2016, vol. 71, no. 11, pp. 1096-1103. doi: 10.1134/S1061934816110071.

Shuba A.A. Otsenka sostoianiia bioprob po resul’tatam detektirovaniia massivom p’ezosensorov legkoletuchikh aminov razlichnogo stroeniia i alifaticheskikh kislot. Diss. candidate khim. nauk [Assessment of biosamples condition by the results of volatile amines and aliphatic acids detection using array of piezoelectric sensors. Cand. chem. sci. diss.]. Voronezh, 2013. 235 p. (in Russian).

Kuchmenko T. A., Mishina A. A. Sorption specifics of volatile amines on thin films of acid-base indicators J. Analyt. Chem., 2011, vol. 66, no. 8, pp. 701-708. doi: 10.1134/S1061934811060116.

Kuchmenko T.A., Shuba A.A., Bel’skikh N.V. [An example of solution of identification tasks in the piezoelectric quartz crystal microbalance method]. Analitika i control’ [Analytics and control], 2012, vol. 16, no. 2. pp. 151-161 (in Russian).

Kuchmenko T.A., Shuba A.A., Drozdova E.V. Substantiation of the Operating Life of Gas Piezosensors in Detection of Vapors of Organic Compounds. Russian Journal of Applied Chemistry, 2015, vol. 88, no. 12, pp. 1997−2008. doi: 10.1134/S10704272150120150.

Drozdova E.V. Opredelenie organicheskikh legkoletuchikh toksikantov massivom p’ezosensorov dlia otsenki bezopasnosti polimernykh materialov. Diss. candidate khim. nauk [Determination of organic volatile toxicants using array of piezoelectric sensors for assessment of polymeric materials safety. Cand. chem. sci. diss.]. Voronezh, 2016. 231 p. (in Russian).

Kuchmenko T.A. Metod p’ezokvatsevogo microvzveshivaniia v gazovom organicheskom analize. Diss. dokt. khim. nauk [Method of piezoelectric quarts crystal microbalance in gas organic analysis. Dr. chem.. sci. diss.]. Saratov, 2003. 475 p. (in Russian).

Vershinin V.I., Derendiaev B.G., Lebedev K.S. Komp’iuternaia identifikatsiia organicheskikh soedinenii [Computer identification of organic compounds]. Moscow, Nauka Pbl., 2002. 182 p. (in Russian).


Ссылки

  • На текущий момент ссылки отсутствуют.