ИДЕНТИФИКАЦИЯ И ХРОМАТОГРАФИЧЕСКОЕ ОПРЕДЕЛЕНИЕ БИОАКТИВНЫХ КОМПОНЕНТОВ В ОБРАЗЦАХ РАСТВОРИМОГО КОФЕ

E. A. Tishchenko, T. G. Tsiupko, V. V. Milevskaia, А. Z. Temerdashev

Аннотация


Работа посвящена идентификации хлорогеновых кислот и их лактонов, а также определению основных изомеров этих кислот и кофеина в растворимом кофе методом ВЭЖХ-УФ-МС. Обсуждены особенности ВЭЖХ определения биоактивных компонентов (алкалоидов и фенольных соединений) в кофе. Выбраны условия хроматографического разделения основных фенольных соединений – изомеров хлорогеновых кислот (ХГК) и их производных, а также кофеина в растворимом кофе. В результате проведенных исследований идентифицированы мажорные компоненты, соответствующие основным изомерам кофеилхинных кислот (КХК) – 5-О-кофеилхинной (5-О-КХК), 3-О- кофеилхинной (3-О-КХК) и кофеину. С использованием литературных данных и результатов ВЭЖХ-УФ-МС анализа в испытуемых образцах растворимого кофе идентифицированы изомеры кофеилхинных, ферулоилхинных (ФХК) и дикофеилхинных (диКХК) кислот, а также некоторые их лактоны. Обнаружены компоненты со значениями m/z их депротонированных ионов, которые соответствуют кумароилхинной, ферулоил-кофеилхинным кислотам и некоторым конъюгатам производных коричной кислоты и триптофана. Определено содержание 5-О-КХК, 3-О-КХК и кофеина в тринадцати проанализированных образцах растворимого кофе, которое варьируется в диапазонах  3.4-11.6, 5.3-23.0 и 23.5-42.4 мг/г соответственно. Показано, что содержание ХГК в растворимом кофе может являться эффективным показателем качества данного продукта.

Ключевые слова: ВЭЖХ-УФ-МС, изомеры хлорогеновых кислот, лактоны хлорогеновых кислот, кофеин, растворимый кофе

DOI: http://dx.doi.org/10.15826/analitika.2017.21.3.008


Полный текст:

PDF (RUSSIAN)

Литература


REFERENCES

Evlashenkova I.V., Askalepova О.I., Aleshina I.G. [Determination of caffeine content in tea and coffee by classical analytical methods]. Izvestiia vuzov. Pishchevaia tekhnologiia [Proceedings of Higher Education. Food technology], 2000, no. 2-3, pp 88-90 (in Russian).

Gopinandhan T.N., Banakar M., Ashwini M.S. Basavaraj K. A comparative study on caffeine estimation in coffee samples by different methods. Int. J.Curr. Res. Chem. Pharma. Sci., 2014, vol. 1, no. 8. pp. 4-8.

Santos J.R., Rangel A.O.S.S. Development of a chromatographic low pressure flow injection system: Application to the analysis of methylxanthines in coffee. Analytica Chimica Acta, 2012, no. 715, pp. 57- 63. doi: 10.1016/j.aca.2011.12.002.

López-Martınez L., López-de-Alba P.L., Garcıa-Campos R., De León-Rodrıguez L.M. Simultaneous determination of methylxanthines in coffees and teas by UV-Vis spectrophotometry and partial least squares. Analytica Chimica Acta, 2003, vol. 493, pp. 83-94. doi: 10.1016/S0003-2670(03)00862-6.

Yashin A. Ya. [HPLC of phenolic acids - antioxidants with amperometric detection]. Sorbtsionnye i Khromatograficheskie Protsessy [Sorption and Chromatographic Processes], 2014, vol. 14, no. 3, pp. 419-427 (in Russian).

Belguidoum K., Amira-Guebailia H., Boulmokh Y., Houache O. HPLC coupled to UV–vis detection for quantitative determination of phenolic compounds and caffeine in different brands of coffee in the Algerian market. Journal of the Taiwan Institute of Chemical Engineers, 2014, vol. 45, no. 4, pp. 1314-

doi: 10.1016/j.jtice.2014.03.014.

Moreira D.P., Monteiro M.C., Ribeiro-Alves M., Donangelo C.M., Trugo L.C. Contribution of chlorogenic acids to the iron-reducing activity of coffee beverages. J. Agric. Food Chem, 2005, vol. 53, no. 5, pp. 1399-1402. doi: 10.1021/jf0485436.

Cano-Marquina A., Tarín J.J, Cano A. The impact of coffee on health. Maturitas, 2013, vol. 75, pp. 7-21. doi: 10.1016/j.maturitas.2013.02.002.

Esquivel P., Jiménez V.M. Functional properties of coffee and coffee by-products. Food Research International, 2012, vol. 46, pp. 488-495. doi: 10.1016/j.foodres.2011.05.028.

Vignoli J.A., Viegas M.C., Bassoli D.G., Benassi M.T. Roasting process affects differently the bioactive compounds and the antioxidant activity of arabica and robusta coffees. Food Research International, 2014, vol. 61, pp. 279-285. doi: 10.1016/j.foodres.2013.06.006.

Perrone D., Farah A., Donangelo C.M., de Paulis T., Martin P.R. Comprehensive analysis of major and minor chlorogenic acids and lactones in economically relevant Brazilian coffee cultivars. Food Chemistry, 2008, vol. 106, pp. 859–867. doi: 10.1016/j.foodchem.2007.06.053.

Farah A., Donangelo C. M. Phenolic compounds in coffee. Braz. J. Plant Physiol, 2006, vol. 18, no 1, pp. 12-25. doi: 10.1590/S1677-04202006000100003.

Farah A. Coffee Constituent. Coffee: emerging health effects and disease prevention, edited by Yi-Fang Chu. Wiley-Blackwell, 2012, ch.2, pp. 21-58. doi: 10.1002/9781119949893.ch2.

Craig A.P., Fields C., Liang N., Kitts D., Erickson A. Performance review of a fast HPLC-UV method for the quantification of chlorogenic acids in green coffee bean extracts. Talanta, 2016, vol. 154, pp. 481-485. doi: 10.1016/j.talanta.2016.03.101.

Liang N., Liang W., Kennepohl P., Kitts D.D. Interactions between major chlorogenic acid isomers and chemical changes in coffee brew that affect antioxidant activities. Food Chemistry, 2016, vol. 213, pp. 251-259. doi: 10.1016/j.foodchem.2016.06.041.

Trugo L.C., Macrae R. A study of the effect of roasting on the chlorogenic acid composition of coffee using HPLC. Food Chem, 1984, vol. 15, pp. 219-227. doi: 10.1016/0308-8146(84)90006-2.

Moon J.K., Yoo H.S., Shibamoto T. Role of roasting conditions in the level of chlorogenic acid content in coffee beans: correlation with coffee acidity. J. Agric. Food Chem, 2009, vol. 57, no. 12. pp. 5365-5369. doi: 10.1021/jf900012b.

Trugo L.C., Macrae R. Chlorogenic Acid Composition of Instant Coffees. Analyst, 1984, vol. 109, pp.263-266. doi: 10.1039 / AN9840900263.

Farah А., De Paulis T., Daniel P. Moreira D.P., Trugo L.C., Martin P.R. Chlorogenic acids and lactones in regular and water-decaffeinated arabica coffees. J. Agric. Food Chem, 2006, vol. 54, no. 2, pp. 374-381. doi: 10.1021/jf0518305.

Bennat C., Engelhardt U.H., Kiehne A., Wirries F-M., Maier H.G. HPLC analysis of chlorogenic acid lactones in roasted coffee. Z. Lebensm Unters Forsch, 1994, vol. 199, pp. 17-21. doi: 10.1007/BF01192945.

Farah А., De Paulis T., Trugo L.C., Martin P.R. Effect of roasting on the formation of chlorogenic acid lactones in coffee. J. Agric. Food Chem, 2005, vol. 53, pp. 1505-1513. doi: 10.1021/jf048701t.

Delgado-Andrade C., Rufian-Henares J.A., Morales F.J. Assessing the antioxidant activity of melanoidins from coffee brews by different antioxidant methods. Agric. Food Chem, 2005, vol. 53, no. 20, pp. 7832-7836. doi: 10.1021/jf048500p.

Sunarharum W.B., Williams D.J., Heather E. Smyth H.E. Complexity of coffee flavor: A compositional and sensory perspective. Food Research International, 2014, vol. 62, pp. 315-325. doi: 10.1016/j.foodres.2014.02.030.

Zhu J., Qi S., Li J., Chen X. Low-temperature bath/high-conductivity zone/stacking micellar electrokinetic chromatography for the analysis of phenolic acids in coffee drink. Journal of Chromatography A, 2013, vol. 1212, pp.137-144. doi: 10.1016/j.chroma.2008.10.027.

Moores R.G., McDermott D.L., Wood T.R. Determination of chlorogenic acid in coffee. Analytical Chemistry, 1948, vol. 20, no. 7, pp. 620-624. doi: 10.1021 / ac60019a007.

Belay А., Gholap A. V. Characterization and determination of chlorogenic acids (CGA) in coffee beans by UV-Vis spectroscopy. African Journal of Pure and Applied Chemistry, 2009, vol. 3, no. 11, pp. 234-240. doi: 10.5897 / AJPAC.

GOST ISO 4052–2013. Kofe. Opredelenie soderzhaniia kofeina. Kontrol’nyi metod [Interstate Standart 4052–2013. Coffee. Determination of caffeine content. Control method]. Moscow, Standartinform Publ., 2015. 16 p. (in Russian).

Meinhart A. D., Bizzotto C. S., Ballus C. A., Prado M.A., Bruns R. E., Filho J.T., Godoy H.T. Optimisation of a CE method for caffeine analysis in decaffeinated coffee. Food Chem, 2010, vol. 120, pp. 1155-1161. doi: 10.1016/j.foodchem.2009.11.048.

Nogueira T., do Lago C. L. Determination of caffeine in coffee products by dynamic complexation with 3,4-dimethoxycinnamate and separation by CZE. Electrophoresis, 2007, vol. 28, pp. 3570-3574. doi: 10.1002/elps.200700039.

Rostagno M.A., Manchón N., D’Arrigo M., Guillamón E., Villares A., García-Lafuente A., Ramos A., Martínez J.A. Fast and simultaneous determination of phenolic compounds and caffeine in teas, mate, instant coffee, soft drink and energetic drink by high-performance liquid chromatography using a fused-core column. Analytica Chimica Acta, 2011, vol. 685, pp. 204-211. doi: 10.1016/j.foodqual.2004.04.014.

Mills C.E., Oruna-Concha M.J., Mottram D.S., Gibson G.R., Spencer J.P.E. The effect of processing on chlorogenic acid content of commercially available coffee. Food Chem, 2013, vol. 141, no. 15, pp. 3335-3340. doi: 10.1016/j.foodchem.2013.06.014.

Perrone D., Donangelo C.M., Farah A. Fast simultaneous analysis of caffeine, trigonelline, nicotinic acid and sucrose in coffee by liquid chromatography–mass spectrometry/ D. Perrone. Food Chem, 2008, v. 110, pp. 1030-1035. doi: 10.1016/j.foodchem.2008.03.012.

GOST ISO 2048. Kofe i kofeinye produkty. Opredelenie soderzhaniia kofeina s ispol’zovaniem vysokoeffektivnoi zhidkostnoi khromatografii (HPLC). Standartnyi metod [Coffee and coffee products. Determination of caffeine content using high performance liquid chromatography (HPLC). Standard method]. Moscow, Standartinform Publ., 2014. 17 p. (in Russian).

Rodrigues N.P., Bragagnolo N. Identification and quantification of bioactive compounds in coffee brews by HPLC–DAD–MSn. Journal of Food Composition and Analysis, 2013, vol. 32, pp. 105-115. doi: 10.1016/j.jfca.2013.09.002.

Morishita H., Iwahashi H., Osaka N., Kido R. Chromatographic separation and identification of naturally occurring chlorogenic acids 1H nuclear magnetic resonance spectroscopy and mass spectrometry. Journal of Chromatography, 1984, vol. 315, pp. 253-260. doi: 10.1016 / S0021-9673 (01) 90742-3.

Monteiro М.С., Farah А. Chlorogenic acids in Brazilian Coffea arabica cultivars from various consecutive crops. Food Chem, 2012, vol.134, pp. 611-614. doi: 10.1016/j.foodchem.2012.02.118.

O’Driscoll D.J. Analysis of coffee bean extracts by use of ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. MethodsX, 2014, vol. 1, pp. 264-268. doi: 10.1016/j.mex.2014.10.006.

Schrader K., Kiehne A., Engelhardt U.H., Maier H.G. Determination of chlorogenic acids with lactones in roasted coffee. J Sci Food Agric, 1996, vol. 71, pp. 392-398. doi: 10.1002 / (SICI) 1097-0010 (199607) 71: 33,3.CO; 2-O.

Clifford M.N., Johnston K.L., Knight S., Kuhnert N. Hierarchical scheme for LC-MSn identification of chlorogenic acids. J. Agric. Food Chem, 2003, vol. 51. pp. 2900-2911. doi: 10.1021/jf026187q.

Clifford M.N., Knight S. The cinnamoyl–amino acid conjugates of green robusta coffee beans. Food Chem, 2004, vol. 87, pp. 457-463. doi: 10.1016/j.foodchem.2003.

Clifford M.N., Knight S., Surucu B., Kuhnert N. Characterization by LC-MSn of four new classes of chlorogenic acids in green coffee beans: dimethoxycinnamoylquinic acids, diferuloylquinic acids, caffeoyl-dimethoxycinnamoylquinic acids, and feruloyl-dimethoxycinnamoylquinic acids. J. Agric. Food Chem, 2006, vol. 54, no. 6, pp. 1957-1969. doi: 12.020. 10.1021/jf0601665.

Blinnikova O.M. Tovarovedenie i ekspertiza vkusovykh tovarov: uchebnoe posobie [Commodity and examination of goods flavor: training manual]. Michurinsk, MichGAU Publ., 2007. 234 p. (in Russian).

Clifford M.N. Chlorogenic acids and other cinnamates – nature, occurrence, dietary burden, absorption and metabolism. Journal of the Science of Food and Agriculture, 2000, vol. 80, pp. 1033-1043. doi: 10.1002/(SICI)1097-0010(20000515)80:73.0.CO;2-T.

GOST 32776-2014. Kofe rastvorimyi. Obshchie tekhnicheskie usloviia [Instant coffee. General specifications]. Moscow, Standartinform Publ., 2014. 16 p. (in Russian).


Ссылки

  • На текущий момент ссылки отсутствуют.