КОНЦЕНТРИРОВАНИЕ И ОПРЕДЕЛЕНИЕ БЕНЗОЙНОЙ И САЛИЦИЛОВОЙ КИСЛОТ В ВОДНЫХ СРЕДАХ И ПРОДУКТАХ ПИТАНИЯ

P. T. Sukhanov, A. G. Savvina, A. A. Kushnir, E. V. Poluzhenkova

Аннотация


 

Приведен обзор литературы по современным методам пробоподготовки и определения бензойной (БК) и салициловой кислот (СК) в различных водных средах и продуктах питания. Обсуждается применение органо-неорганических полимерных композиционных материалов на основе глин (бентонит, монтмориллонит, вермикулиты), коммерческих гранулированных активных углей, биоуглей, полимерных сорбентов природного и синтетического происхождения для концентрирования БК и СК из водных сред, в том числе из сточных вод и почвенных растворов. Описаны схемы получения и модифицирования сорбентов поверхностно-активными веществами, наночастицами и катионами металлов. Приведены значения предельной сорбции, уровни концентраций сорбируемых соединений, время достижения сорбционного равновесия, а также способы определения в концентратах сорбатов. Изложены способы выделения, изолирования, концентрирования или экстракции БК и СК из продуктов питания (алкогольные и безалкогольные напитки, молоко и молочные продукты, сиропы, крупы, овощи, фрукты и т.д.).  Для определения БК и СК в различных объектах рекомендуются хроматографические (высокоэффективная жидкостная, ионная, газовая, тонкослойная хроматография), электрохимические, спектрометрические методы анализа и капиллярный электрофорез. Приведены условия детектирования аналитов, применяемые подвижные и неподвижные фазы, условия элюирования, составы фоновых растворов, характеристики электрохимического определения, а также пределы обнаружения в различных матрицах, содержащих БК и СК.

Ключевые слова: бензойная кислота, салициловая кислота, концентрирование, определение, пищевые продукты, водные среды.

DOI: http://dx.doi.org/10.15826/analitika.2018.22.2.003

Полный текст:

PDF

Литература


REFERENCES

Trebovaniia bezopasnosti pishchevykh dobavok, aromatizatorov i tekhnologicheskikh vspomogatel'nykh sredstv: tekhnicheskii reglament Tamozhennogo soiuza [Safety requirements for food additives, flavors and technological aids: technical regulations of the Customs Union ] TR TS 029/2012 of 20.07. 2012, No. 58 (in Russian).

Pevny I., Rauscher E., Lechner W., Metz J. Excessive allergy due to benzoic acid followed by anaphylactic shock. Derm. Beruf. Umwelt., 1981, vol. 29, no. 5, pp. 123-130.

Buldakov A.S. Pishchevye dobavki: spravochnik [Food additives: Reference Book]. Moscow, DeLi print, 2003. 436 p. (in Russian).

Walker M.J., Burns D.T., Elliott C.T., Gowland M.H., Clare Mills. E.N. Is food allergen analysis flawed? Health and supply chain risks and a proposed framework to address urgent analytical needs. Analyst., 2016, vol. 141, no. 1. pp. 24-35. doi: 10.1039/c5an01457c.

Webb S., Ternes T., Gibert M., Olejniczak K. Indirect human exposure to pharmaceuticals via drinking water. Toxicol. Lett., 2003, vol. 142, no. 3, pp. 157-167. doi: 10.1016/S0378-4274(03)00071-7.

Aguilar F., Crebelli R., Di Domenico A., Dusemund B., Jose Frutos M., Galtier P., Gott D., Gundert-Remy U., Lambré C., Leblanc J.C., Lindtner O., Moldeus P., Mortensen A., Mosesso P., Parent-Massin D., Oskarsson A., Stankovic I., Waalkens-Berendsen I., Antonius Woutersen R., Wright M., Younes M. Reevaluation of benzoic acid (E 210), sodium benzoate (E 211), potassium benzoate (E 212) and calcium benzoate (E 213) as food additives. EFSA Journal, 2016, vol. 14, no. 3, pp. 4433 - 4543.

SCF (Scientific Committee on Food). Opinion of the Scientific Committee on Food on Benzoic acid and its salts. (2002). Available at: https://ec.europa.eu/food/sites/food/files/safety/docs/sci-com_scf_out137_en.pdf. (accessed 15 September 2017).

Nettis E., Colanardi M.C., Ferrannini A., Tursi A. Sodium benzoate-induced repeated episodes of acute urticaria/angio-oedema: randomized controlled trial. Br. J. Dermatol., 2004, vol. 151, no. 4, pp. 898-902.

Griffiths J. WHO model prescribing information-drugs used in skin diseases. Clin. Exp. Dermatol., 1999, vol. 24, no. 1, pp. 1365-2230. doi: 10.1046/j.1365-2230.1999.00001.x

Fent K., Weston A.A., Caminada D. Ecotoxicology of human pharmaceuticals. Aquat. Toxicol., 2006, vol. 76, no. 2, pp. 122-159. doi: 10.1016/j.aquatox.2005.09.009.

Tremblay G.C., Qureshi I.A. The biochemistry and toxicology of benzoic acid metabolism and its relationship to the elimination of waste nitrogen. Pharmacol. Ther., 1993, vol. 60, no. 1, pp. 63-90. doi: 10.1016/0163-7258(93)90022-6.

Wallace L.A., Pellizzari E., Hartwell T., Rosenzweig M., Erickson M., Sparacino C., Zelon H. Personal exposure to volatile organic compounds. Direct measurements in breathing-zone air, drinking water, food, and exhaled breath. Environ. Res., 1984, vol. 35, pp. 293-319. doi:10.1016/0013-9351(84)90137-3.

Caliman F.A., Gavrilescu M. Pharmaceuticals, personal care products and endocrine disrupting agents inthe environment (A review). Clean - Soil, Air, Water., 2009, vol. 37, no. 4-5, pp. 277-303. doi: 10.1002/clen.200900038.

Assmann N., Emmrich M., Kampf G., Kaiser M. Genotoxic activity of important nitrobenzenes and nitroanilines in the Ames test and their structure-activity relationship. Mutat. Res., Genet. Toxicol. Environ. Mutagen., 1997, vol. 395, no. 2-3, pp. 139-144. doi: 10.1016/S1383-5718(97)00158-7.

Amelin V.G., Lavrukhina O.I. Food safety assurance using methods of chemical analysis. J. Anal. Chem., 2017, vol. 72, no. 1, pp. 1-46. doi: 10.1134/S1061934817010038 (in Russian).

Yakuba Y.F., Kaunova A.A., Temerdashev Z.A., Titarenko V.O., Khalaphyan A.A. [Grape wines, problems of their quality and regional origin evaluation]. Analitika i control [Analytics and Control]. 2014., vol. 18., no. 4., pp. 344-372. doi: 10.15826/analitika.2014.18.4.001 (in Russian).

Park Y., Ayoko G.A., Frost R.L. Application of organoclays for the adsorption of recalcitrant organic molecules from aqueous media. J. Colloid Interface Sci., 2011, vol. 354, no. 1, pp. 292-305. doi:10.1016/j.jcis.2010.09.068.

Carmody O., Frost R., Xi Y., Kokot S. Adsorption of hydrocarbons on organo-clays - implicatiofor oil spill remediation. J. Colloid Interface Sci., 2007, vol. 305, no. 1, pp. 17-24. doi: 10.1016/j.jcis.2006.09.032.

Park Y., Ayoko G.A., Horváth E., Kurdi R., Kristof J., Frost R. Structural characterisation and environmental application of organoclaysfor the removal of phenolic compounds. J. Colloid Interface Sci., 2013, vol. 393, no. 1, pp.319-334. doi: 10.1016/j.jcis.2012.10.067.

Yan L., Wang J., Yu H., Wei Q., Du B., Shan X. Adsorption of benzoic acid by CTAB exchanged montmorillonite. Applied Clay Science, 2007, vol. 37, no. 3-4, pp. 226-230. doi: 10.1016/j.clay.2006.12.014.

Tretyakova V.D., Bakhov F.N., Demidеnok K.V. [Increase of characteristics of composite materials on the basis of polyamide by modification of montmorillonite with nanoparticles]. Naukovedenie, 2011, vol. 4. Available at; http://naukovedenie.ru/sbornik9/9-2.pdf (Accessed 15 June 2017) (in Russian).

Yıldız N., Gönülşen R., Koyuncu H., Calımlı A. Adsorption of benzoic acid and hydroquinone by organically modified bentonites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, vol. 260, no. 1-3, pp. 87-94. doi: 10.1016/j.colsurfa.2005.03.006.

Xin X., Yang J., Feng R., Zhao J., Chen G., Wei Q., Du B. Preparation, сharacterization and adsorption prformance of cetyl pyridine bromide modified bentonites. J. Inorg. Organomet. Polym. 2012, vol. 22, no. 1, pp. 42-47. doi: 10.1007/s10904-011-9615-2.

Chefetz B., Eldad S., Polubesova T. Interactions of aromatic acids with montmorillonite: Ca2+- and Fe3+-saturated clays versus Fe3+-Ca2+-clay system. Geoderma, 2011, vol. 160, no. 3-4, pp. 608-613. doi: 10.1016/j.geoderma.2010.11.010.

Rakić V., Rajić N., Daković A., Auroux A. The adsorption of salicylic acid, acetylsalicylic acid and atenolol from aqueous solutions onto natural zeolites and clays: Clinoptilolite, bentonite and kaolin. Microporous and Mesoporous Materials, 2013, vol. 166, pp. 185-194. doi: 10.1016/j.micromeso.2012.04.049.

Tang J., Yang Z.F., Yi Y.J. Enhanced adsorption of methylorange by vermiculite modified by cetyltrimetylammonium bromide (CTMAB). Procedia Environ. Sci., 2012, vol. 13, pp. 2179-2187. doi: 10.1016/j.proenv.2012.01.207.

Simpson J.A., Bowman R.S. Nonequilibrium sorption and transport of volatile petroleum hydrocarbons insurfactant-modified zeolite. J. Contam. Hydrol., 2009, vol. 180, no. 1-2, pp. 1-11. doi: 10.1016/j.jconhyd.2009.05.001.

Medeiros M.A., Sansiviero M.T.C., Araújo M.H., Lago R.M. Modification of vermiculite by polymerization and carbonization of glycerol to produce highly efficient materials for oil removal. Appl. Clay Sci., 2009, vol. 45, no. 4, pp. 213-219. doi: 10.1016/j.clay.2009.06.008.

Pouya E.S., Abolghasemi H., Fatoorehchi H., Rasem B., Hashemi S.J. Effect of dispersed hydrophilic silicon dioxide nanoparticles on batch adsorption of benzoic acid from aqueous solution using modified natural vermiculite: An equilibrium study. Journal of Applied Research and Technology, 2016, vol. 14, no. 5, pp. 325-337. doi: 10.1016/j.jart.2016.08.005

Pouya E.S., Abolghasemi H., Assar M., Hashemi S.J., Salehpour A., Foroughi-dahr M. Theoretical and experimental studies of benzoic acid batch adsorption dynamics using vermiculite-based adsorbent. Chem. Eng. Res. Des., 2015, vol. 93, pp. 800-811. doi: 10.1016/j.cherd.2014.07.016.

Xin X., Si W., Yao Z., Feng R., Du B., Yan L., Wei Q. Adsorption of benzoic acid from aqueous solution by three kinds of modified bentonites. J. Colloid Interface. Sci., 2011, vol. 359, no. 2, pp. 499-504. doi: 10.1016/j.jcis.2011.04.044.

Pouya E.S., Abolghasemi H., Esmaieli M., Fatoorehchi H., Hashemi J.S., Salehpour A. Batch adsorptive removal of benzoic acid from aqueous solution onto modified natural vermiculite: Kinetic, isotherm and thermodynamic studies. J. Industrial and Engineering Chemistry, 2015, vol. 31, pp. 199-215. doi: 10.1016/j.jiec.2015.06.024.

Ayranci E., Duman O. Adsorption of aromatic organic acids onto high area activated carbon cloth in relation to wastewater purification. J. Hazard. Mater., 2006. vol. 136, no. 3, pp. 542-552. doi: 10.1016/j.jhazmat.2005.12.029.

Chern J.M., Chien Y.W. Adsorption isotherms of benzoic acid onto activated carbon and breakthrough curves in fixed-bed columns. Ind. Eng. Chem. Res., 2001, vol. 40, no. 17, pp. 3775-3780. doi: 10.1021/ie010175x.

Yenkie M.K.N., Natarajan G.S. Adsorption equilibrium studies of some aqueous aromatic pollutants on granular activated carbon samples. Sep. Sci. Technol., 1991, vol. 26, no. 5, pp. 661-674. doi: 10.1080/01496399108049907.

Haghseresht F., Nouri S., Lu G.Q. Effects of the solute ionization on the adsorption of aromatic compounds from dilute aqueous solutions by activated carbon. Langmuir, 2002, vol.18, no. 5, pp.1574-1579. doi: 10.1021/la010903l.

Otero M., Grande C.A., Rodrigues A.E. Adsorption of salicylic acidonto polymeric adsorbents and activated charcoal. React. Funct. Polym., 2004, vol. 60, pp. 203-213. doi: 10.1016/j.reactfunctpolym.2004.02.024.

Pittman C.U., Mohan D., Eseyin A., Li Q., Ingram L., Hassan E.M., Mitchell B., Guo H., Steele P.H. Characterization of bio-oils produced from fast pyrolysis of corn stalks in an auger reactor. Energy Fuels., 2012, vol. 26, no. 6, pp. 3816-3825. doi: 10.1021/ef3003922.

Mohan D., Sarswat A., Ok Y.S., Pittman C.U. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent (a critical revew). Bioresour. Technol., 2014, vol. 160, pp. 191-202. doi: 10.1016/j.biortech.2014.01.120.

Mohan D., Rajput S., Singh V.K., Steele P.H., Pittman C.U. Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent. J. Hazard. Mater., 2011, vol. 188, no. 1-3, pp. 319-333. doi: 10.1016/j.jhazmat.2011.01.127.

Essandoh M., Kunwar B., Pittman C.U., Mohan D., Mlsna T. Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar. Chem. Eng. J., 2015, vol. 265, pp. 219-227. doi: 10.1016/j.cej.2014.12.006.

Combarros R.G., Rosas I., Lavin A.G., Rendueles M., Diaz M. Influence of biofilm on activated carbon on the adsorption and biodegradation of salicylic acid in wastewater. Water Air Soil Pollut., 2014, vol. 225, pp. 1858-1870. doi: 10.1007/s11270-013-1858-9.

Huang J., Wang G., Huang K. Enhanced adsorption of salicylic acid onto a β-naphthol-modified hypercross-linked poly (styrene-co-divinylbenzene) resin from aqueous solution. Chem. Eng. J., 2011, vol. 168, no. 2, pp. 715-721. doi: 10.1016/j.cej.2011.01.065.

Liu F., Xia M., Fei Z., Chen J., Li A. Adsorption selectivity of salicylic acid and 5-sulfosalicylic acid onto hypercrosslinked polymeric adsorbents. Front. Environ. Sci. Eng., 2007, vol. 1, no. 1, pp. 73-78. doi: 10.1007/s11783-007-0014-4.

Karunanayake A.G., Bombuwala Dewage N., Todd O.A., Essandoh M., Anderson R., Mlsna T., Mlsna D. Salicylic acid and 4-nitroaniline removal from water using magnetic biochar: an environmental and analytical experiment for the undergraduate laboratory. J. Chem. Educ., 2016, vol. 93, no. 11, pp. 1935-1938. doi: 10.1021/acs.jchemed.6b00154.

Karunanayake A.G., Todd O.A., Crowley M.L., Ricchetti L.B., Pittman C.U., Anderson R., Mlsna T.E. Rapid removal of salicylic acid, 4-nitroaniline, benzoic acid and phthalic acid from wastewater using magnetized fast pyrolysis biochar from waste Douglas fir. Chem. Eng. J., 2017, vol. 319, pp. 75-88. doi: 10.1016/j.cej.2017.02.116.

Chai K., Ji H. Dual functional adsorption of benzoic acid from wastewater by biological-based chitosan grafted β-cyclodextrin. Chem. Eng. J., 2012, vol. 203, pp. 309-318. doi: 10.1016/j.cej.2012.07.050.

Dai J., Xiao X., Duan S., Liu J., He J., Lei J., Wang L. Synthesis of novel microporous nanocomposites of ZIF-8 on multiwalled carbon nanotubes for adsorptive removing benzoic acid from water. Chem. Eng. J., 2018, vol. 331, pp. 64-74. doi: 10.1016/j.cej.2017.08.090.

Kalinkina S.P., Sukhanov P.T., Korenman Y.I. [Extraction-sorption extraction of naphthols from aqueous media using polyurethane foams]. Khimiia i tekhnologiia vody [Journal of Water Chemistry and Technology], 2002, vol. 24, no. 3, pp. 257-260 (in Rissian).

Medvedeva O.M., Myshak E.N., Dmitrienko S.G., Ivanov A.A., Shpigun O.A. [Sorption of aromatic carboxylic acids on polyurethane foams]. Vestnik Moskovskogo universiteta. Seriia 2: Khimiia [Bulletin of Moscow University. Series 2: Chemistry], 2002, vol. 43, no. 1, pp. 25-28 (in Russian).

Popov A.Y., Blinnikova Z.K., Tsyurupa M.P., Davankov V.A. [Synthesis and adsorption properties of restricted access sorbents based on hypercrosslinked polystyrene]. Sorbtsionnye i khromatograficheskie protsessy [Sorption

and chromatographic processes], 2017, vol. 17, no. 2, pp. 183-190 (in Russian).

Masque N., Marce R.M., Borrull F. Comparison of different sorbents for on-line solid-phase extraction of pesticides and phenolic compounds from natural water followed by liquid chromatography. J. Chromatogr. A., 1998, vol. 793, no. 2, pp. 257-263. doi: 10.1016/S0021-9673(97)00936-9.

Lee J.H., Batterman S.A., Jia C., Chernyak S. Ozone artifacts and carbonyl measurements using Tenax GR, Tenax TA, Carbopack B, and Carbopack X adsorbents. J. Air Waste Management Association, 2006, vol. 56, no. 11, pp. 1503-1517. doi: 10.1080/10473289.2006.10464560.

Savvina A.G., Sukhanov P.T., Poluzhenkova E.V., Churilina E.V. [Extraction and sorption of benzoic acid from aqueous solutions by polymers based on N-vinylamides]. Vestnik Voronezhskogo gosudarstvennogo universiteta inzhenernykh tekhnologii [Proceedings of the Voronezh State University of Engineering Technologies], 2015, vol. 1, pp. 154-158. doi: 10.20914/2310-1202-2015-1-154-158 (in Russian).

Kushnir A.A., Sukhanov P.T., Savvina A.G., Bondareva L.P., Churilina E.V., Poluzhenkova E.V., Shatalov G.V. Sorption of aromatic acids from aqueous solutions by polymer based on N-vinylpyrrolidone. Russ. J. Appl. Chem., 2016, vol. 89, no. 6, pp. 891-896. doi: 10.1134/S1070427216060070 (in Rissian).

Churilina E.V., Kushnir A.A., Sukhanov P.T., Shatalov G.V. Adsorption preconcentration of 4-nitrophenol from aqueous solutions using polymers based on cyclic N-vinylamides. J. Anal. Chem., 2015, vol. 70, no. 2, pp. 130-135 (in Russian). doi: 10.1134/S1061934815020021 (in Rissian).

Kim S.C., Klempner D., Frisch K.S., Radigan W., Frisch H.L. Polyurethane interpenetrating polymer networks. I. Synthesis and morphology of polyurethane-poly (methylmethacrylate) interpenetrating polymer networks. Macromolecules, 1976, vol. 9, pp. 258-263. doi: 10.1021/ma60050a016.

Tabka M.T., Widmaier J.M., Meyer G.C. In situ sequential polyurethane poly(methyl methacrylate) interpenetrating polymer networks: structure and elasticity of polyurethane networks. Macromolecules, 1989, vol. 22, no. 4, pp. 1826-1833. doi: 10.1021/ma00194a055.

Huang J., Li Y. Hydrophobic-hydrophilic interpenetrating polymer networks (IPNs) composed of hydrophobic polystyrene (PST) and hydrophilic polyacryldiethylenetriamine (PADETA) networks and their high efficient adsorption to salicylic acid. Fluid Phase Equilibria, 2016, vol. 427, pp. 384-389. doi: 10.1016/j.fluid.2016.08.005.

Huang J., Yang L., Wang X., Li H., Chen L., Li Y.N. A novel post-cross-linked polystyrene/polyacryl diethylenetriamine (PST_pc/PADETA) interpenetrating polymer networks (IPNs) and its adsorption towards salicylic acid from aqueous solutions. Chem. Eng. J., 2014., vol. 248, pp. 216-222. doi: 10.1016/j.cej.2014.03.061.

Fu Z., He C., Li H., Chong Y., Limiao C., Jianhan H., You-Nian L. A novel hydrophilic–hydrophobic magnetic interpenetrating polymer networks (IPNs) and its adsorption towards salicylic acid from aqueous solution. Chem. Eng. J., 2015, vol. 279, pp. 250-257. doi: 10.1016/j.cej.2015.04.146.

Wang X., Yuan X., Han S., Zha H., Sun X., Huang J., You-Nian L. Aniline modified hypercrosslinked polystyrene resins and their adsorption equilibriums, kinetics and dynamics towards salicylic acid from aqueous solutions. Chem. Eng. J., 2013, vol. 233, pp. 124-131. doi: 10.1016/j.cej.2013.08.039.

Fu. Z, Huang J. Polar hyper-cross-linked resin with abundant micropores/mesopores and its enhanced adsorption toward salicylic acid: Equilibrium, kinetics, and dynamic operation. Fluid Phase Equilibria, 2017, vol. 438, pp. 1-9. doi: 10.1016/j.fluid.2017.01.025.

He C., Huang J., Liu J., Deng L., Huang K. Methylamino-group-modified hypercrosslinked polystyrene resin for the removal of phenol from aqueous solution. J. Appl. Polym. Sci., 2011, vol. 119, no. 3, pp. 1435-1442. doi: 10.1002/app.32627.

Otero M., Zabkova M., Rodrigues A.E. Comparative study of the adsorption of phenol and salicylic acid from aqueous solution onto nonionic polymeric resins. Sep. Purif. Technol., 2005, vol. 45, no. 2, pp. 86-95. doi: 10.1016/j.seppur.2005.02.011.

Urbienė S., Leskauskaitė D. Formation of some organic acids during fermentation of milk. Pol. J. Food Nutr. Sci., 2006, vol. 15, no. 56, pp. 277-281.

Lo L.Y., Wu C.C., Jang S.J., Chiou S.T., Hwang D.F. Simultaneous gas chromatography analysis of preservatives in Chinese traditional meat products collected from Ilan County. J. Food Drug Anal., 2001, vol. 4, no. 9, pp. 215-219.

Kathriarahchi U.L., Senevirathne D., Mahanama K. R. R. Analysis of benzoic acid and sorbic acid in some selected food items available in Sri Lanka. Conference on Animal Research Symposium. Colombo, 2012, pp. 294-296.

GOST 53193-2008. Napitki alkogol'nye i bezalkogol'nye. Opredelenie kofeina, askorbinovoi kisloty i ee solei, konservantov i podslastitelei metodom kapilliarnogo elektroforeza [State Standard 53193-2008. Alcoholic and non-alcoholic beverages. Determination of caffeine, ascorbic acid and its salts, preservatives and sweeteners by the method of capillary electrophoresis]. Moscow, 2010. 11 p (in Russian).

Huang H.Y., Chuang C.L., Chiu C.W., Yeh J.M. Application of microemulsion electrokinetic chromatography for the detection of preservatives in foods. Food Chem., 2005, vol. 89, no. 4, pp. 315-322. doi: 10.1016/j.foodchem.2004.03.022.

Costa A.C.O., da Silva Perfeito L., Tavares M.F.M., Micke G.A. Determination of sorbate and benzoate in beverage samples by capillary electrophoresis-optimization of the method with inspection of ionic mobilities.

J. Chromatogr. A, 2008, vol. 1204, no. 1, pp. 123-127. doi: 10.1016/j.chroma.2008.07.075.

Hsu S.H., Hu C.C., Chiu, T.C. Online dynamic pH junction-sweeping for the determination of benzoic and sorbic acids in food products by capillary electrophoresis. Anal. Bioanal. Chem., vol. 406, no. 2, pp. 635-641. doi: 10.1007/s00216-013-7481-1.

Cressey P., Jones S. Levels of preservatives (sulfite, sorbate and benzoate) in New Zealand foods and estimated dietary exposure. Food Addit. Contam. Part A, 2009, vol. 26, no. 5, pp. 604-613. doi: 10.1080/02652030802669188.

Ene C.P., Diacu E. High-performance liquid chromatography method for the determination of benzoic acid in beverages. UPB Sci. Bull., ser. B., 2009, vol. 71, pp. 81-88.

Huerta-Gonzalez L., Wilbey R.A. Determination of free fatty acids produced in filled-milk emulsions as a result of the lipolytic activity of lactic acid bacteria. Food Chem., 2001, vol. 72, no. 3, pp. 301-307. doi: 10.1016/S0308-8146(00)00230-2.

Calzada J., del Olmo A., Picón A., Nuñez M. Effect of high pressure processing on the lipolysis, volatile compounds, odour and colour of cheese made from unpasteurized milk. Food Bioprocess Tech., 2015, vol. 8, no. 5, pp. 1076-1088. doi: 10.1007/s11947-015-1473-4.

Han F., Yz H., Li L., Fu G.N., Xie H.Y., Gan W.E. Determination of benzoic acid and sorbic acid in food products using electrokinetic flow analysis-ion pair solid phase extraction-capillary zone electrophoresis. Analytica Chimica Acta., 2008, vol. 618, no. 1, pp. 79-85. doi: 10.1016/j.aca.2008.04.041.

Santos V.P., Silva L.M.C., Salgado A.M., Pereira K.S. Application of Agaricus bisporus extract for benzoate sodium detection based on tyrosinase inhibition for a biosensor development. Chem. Eng. Trans., 2013, vol. 32, pp. 1831-1836.

Ohtsuki T., Sato K., Sugimoto N., Akiyama H., Kawamura Y. Absolute quantification for benzoic acid in processed foods using quantitative proton nuclear magnetic resonance spectroscopy. Talanta, 2012, vol. 99, pp. 342-348. doi: 10.1016/j.talanta.2012.05.062.

Iammarino M., Di Taranto A., Palermo C., Muscarella M. Survey of benzoic acid in cheeses: Contribution to the estimation of an admissible maximum limit. Food Addit. Contam. Part B, 2011, vol. 4, no. 4, pp. 4231-4237. doi: 10.1080/19393210.2011.620355.

Iammarino M., Di Taranto A. Development and validation of an ion chromatography method for the simultaneous determination of seven food additives in cheeses. J. of Analytical Sciences, Methods and Instrumentation, 2013, vol. 3, no. 3a, pp. 30-37. doi: 10.4236/jasmi.2013.33A005.

Tfouni S., Toledo M.C.F. Determination of benzoic and sorbic acids in Brazilian food. Food Control., 2002, vol. 13, no. 2, pp. 117-123. doi: 10.1016/S0956-7135(01)00084-6.

Koyuncu N., Uylaser V. Benzoic acid and sorbic acid levels in some dairy products consumed in Turkey. Asian J. Chem., 2009, vol. 21, pp. 4901–4908.

Qi P., Hong H., Liang X., Liu D. Assessment of benzoic acid levels in milk in China. Food Control., 2009, vol. 20, no. 4, pp. 414-418. doi: 10.1016/j.foodcont.2008.07.013.

Dzieciol M., Wodnicka A., Huzar, E. Analysis of preservatives content in food. Proc. ECOpole, 2010, vol. 4, no. 1, pp. 25-28. Available at: http://tchie.uni.opole.pl/PECO10_1/PECO_2010_1_p1.pdf (Accessed 30 April 2017).

Rai K.P., Shrestha S., Lama J.P., Shrestha B.P. Benzoic acid residue in Nepalese fruits and vegetable products. J. Food Sci. Technol., 2010, vol. 6, pp. 110-113. doi: 10.3126/jfstn.v6i0.8271.

Listiyani M., Campbell R.E., Miracle R.E., Dean L.O., Drake M.A. Influence of bleaching on flavor of 34 % whey protein concentrate and residual benzoic acid concentration in dried whey proteins. J. Dairy Sci., 2011, vol. 94, no. 9, pp. 4347-4359. doi: 10.3168/jds.2011-4341.

Gul O., Dervisoglu M. Investigation of sodium benzoate and potassium sorbate content and evaluation of microbiological parameters of fresh Kashar cheeses. Korean J. Food Sci. Anim. Resour., 2013, vol. 33, no. 4, pp. 549-554. doi: 10.5851/kosfa.2013.33.4.549.

Lozano V.A., Camiña J.M., Boeris M.S., Marchevsky E.J. Simultaneous determination of sorbic and benzoic acids in commercial juices using the PLS-2 multivariate calibration method and validation by high performance liquid chromatography. Talanta, 2007, vol. 73, no. 2, pp. 282-286. doi: 10.1016/j.talanta.2007.03.041.

Chernova R.K., Selifonova Y.I. [Simultaneous electrophoretic determination of caffeine, preservatives and sweeteners in beverages]. Izv. Sarat. un-ta. Ser. Khimiia. Biologiia. Ekologiia [Bulletin of Saratov University. New Series. Series: Chemistry. Biology. Ecology], 2014, vol. 14, no. 4, pp. 47-55 (in Russian).

Lino C.M., Pena A. Occurrence of caffeine, saccharin, benzoic acid and sorbic acid in soft drinks and nectars in Portugal and subsequent exposure assessment. Food Chem., 2010, vol. 121, no. 2, pp. 503-508. doi: 10.1016/j.foodchem.2009.12.073.

Diogo J.S., Silva L.S., Pena A.O., Lino C.M. Risk assessment of additives through soft drinks and nectars consumption on Portuguese population: A 2010 survey. Food Chem. Toxicol., 2013, vol. 62, pp. 548-556. doi: 10.1016/j.fct.2013.09.006.

Farahani H., Ganjali M.R., Dinarvand R., Norouzi P. Study on the performance of the headspace liquid-phase microextraction, gas chromatography-mass spectrometry in the determination of sorbic and benzoic acids in soft drinks and environmental water samples. J. Agric. Food Chem., 2009, vol. 57, no. 7, pp. 2633-2639. doi: 10.1021/jf802981z.

Fuselli F., Guarino C., La Mantia A., Longo L., Faberi A., Marianella R.M. Multi-detection of preservatives in cheeses by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B., 2012, vol. 906, pp. 9-18. doi: 10.1016/j.jchromb.2012.07.035.

Vandevijvere S., Andjelkovic M., De Wil M., Vinkx C., Van Loco J., Van Oyen H., Goeyens L. Estimate of intake of benzoic acid in the Belgian adult population. Food Addit. Contam. Part A., 2009, vol. 26, no. 7, pp. 958-968. doi: 10.1080/02652030902858939.

Garmiene G., Salomskiene J., Jasutiene I., Macioniene I., Miliauskiene I. Production of benzoic acid by lactic acid bacteria from Lactobacillus, Lactococcus and Streptococcus genera in milk. Milchwissenschaft, 2010, vol. 65, no. 3, pp. 295-298.

Garmiene G., Salomskiene J., Jasutiene I., Macioniene I., Miliauskiene I. Changing benzoic acid content in cheese during its manufacture. Milchwissenschaft, 2011, vol. 66, no. 4, pp. 378-381.

Guarino C., Fuselli F., La Mantia A., Longo L. Development of an RP-HPLC method for the simultaneous determination of benzoic acid, sorbic acid, natamycin and lysozyme in hard and pasta filata cheeses. Food Chem., 2011, vol. 127, no. 3, pp. 1294-1299. doi: 10.1016/j.foodchem.2011.01.086.

Trandafir I., Nour V., Ionică E. Development and validation of an HPLC method for simultaneous quantification of acesulfame-K, saccharin, aspartame, caffeine and benzoic acid in cola soft drinks. Sci. Stud., 2009, vol. 10, pp. 185-194.

Violeta N., Trandafir I., Ionica M.E. Development and evaluation of an HPLC-DAD method for determination of benzoic acid in tomato sauce and ketchup. Bulletin of the University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca Agriculture, 2007, vol. 63, pp. 510-515. doi: 10.15835/buasvmcn-agr:1457.

Mischek D., Krapfenbauer-Cermak C. Exposure assessment of food preservatives (sulphites, benzoic and sorbic acid) in Austria. Food Addit. Contam. Part A, 2012, vol. 29, no. 3, pp. 371-382. doi: 10.1080/19440049.2011.643415.

Kongo M., Partidário A., Duthoit I., Moniz C., Ponte D. Assessment of benzoic acid, and benzene in “Pimenta-Da-Terra” red hot pepper (Capsicum sp.) processed traditionally. J. Nutr. Food Sci., 2013, vol. 3, pp. 1-3.

El-Ziney M. GC-MS analysis of benzoate and sorbate in Saudi dairy and food products with estimation of daily exposure. J. Food Technol., 2009, vol. 7, no. 4, pp.127-134.

Sen I., Shandil A., Shrivastava V.S. Determination of benzoic acid residue from fruit juice by gas chromatography with mass spectrometry detection technique]. Arch. Appl. Sci., 2011, vol. 3, pp. 2245-2252.

Mohammadzadeh R., Bazi R. [Application of mean centering spectra spectrophotometric method for simultaneous determination of salisylic acid and benzoic acid in fruit joice samples]. Rossiiskaia Sel’skokhoziaistvennaia Nauka [Russian agricultural sciences], 2015, vol. 41, no.1, pp. 66-70. doi: 10.3103/S1068367415010164 (in Russian) .

Dixit S., Mishra K.K., Khanna S.K., Das M. [Benzoate and synthetic color risk assessment of fast food sauces served at street food joints of Lucknow, India]. Am. J. Food Technol., 2008, vol. 3, no. 3, pp. 183-191. doi:10.3923/ajft.2008.183.191.

Cakir R., Cagri-Mehmetoglu A. Sorbic and benzoic acid in non-preservative-added food products in Turkey. Food Addit. Contam. Part B, 2013, vol. 6, no. 1, pp. 47-54. doi:10.1080/19393210.2012.722131.

Ulca P., Atamer B., Keskin M., Senyuva, H.Z. Sorbate and benzoate in Turkish retail foodstuffs. Food Addit. Contam. Part B, 2013, vol. 6, pp. 209-213. doi:10.1080/19393210.2013.795609.

Mota F.J.M., Ferreira I.M., Cunha S.C., Beatriz M., Oliveira P.P. Optimisation of extraction procedures for analysis of benzoic and sorbic acids in foodstuffs. Food Chemistry, 2003, vol. 82, no. 3, pp. 469-473. doi:10.1016/S0308-8146(03)00116-X.

Yildiz A., Erdogan S., Saydut A., Hamamci C. High-Performance liquid chromatography analysis and assessment of benzoic acid in yogurt, ayran, and cheese in Turkey. Food Analyt. Methods, 2012, vol. 5, no. 3, pp. 591-595. doi:10.1007/s12161-011-9288-z.

Morales M.D., Morante S., Escarpa A., González M.C., Reviejo A.J., Pingarrón J.M. Design of a composite amperometric enzyme electrode for the control of the benzoic acid content in food. Talanta, 2002, vol. 57, no. 6, pp. 1189-1198. doi:10.1016/S0039-9140(02)00236-9.

Lazarević K., Stojanović D., Rančić N. Estimated daily intake of benzoic acid through food additives in adult population of south east Serbia. Cent. Eur. J. Public Health, 2011, vol. 19, pp. 228-231.

Kokya T.A., Farhadi T.A., Kalhori A.A. Optimized dispersive liquid–liquid microextraction and determination of sorbic acid and benzoic acid in beverage samples by gas chromatography. Food. Analytical. Methods, 2012, vol. 5, no. 3, pp. 351-358. doi: 10.1007/s12161-011-9245-x.

Leth T., Christensen T., Larsen I.K. Estimated intake of benzoic and sorbic acids in Denmark. Food Addit. Contam. Part A, 2010, vol. 27, no. 6, pp. 783-792. doi: 10.1080/19440041003598606.

Wang W., Wang Y., Zhang J., Chu Q., Ye J. Simultaneous determination of electroactive food preservatives by novel capillary electrophoresis with amperometric detection. Anal. Chim. Acta, 2010, vol. 678, pp. 1139-1143. doi: 10.1016/j.aca.2010.08.018.

Techakriengkrai I., Surakarnkul R. Analysis of benzoic acid and sorbic acid in Thai rice wines and distillates by solid-phase sorbent extraction and high-performance liquid chromatography. J. Food Comp. Anal., 2007, vol. 20, no. 3-4, pp. 220-225. doi: 10.1016/j.jfca.2006.10.003.

Available at: http://galachem.ru/katalog/macherey-nagel/kolonki-i-sorbenty-dlya-vezhkh/ (accessed 20 April 2018) (in Russian).

Dong C., Wang W. Headspace solid-phase microextraction applied to the simultaneous determination of sorbic and benzoic acids in beverages. Analytica Chimica Acta, 2006, vol. 562, no. 1, pp. 23-29. doi: 10.1016/j.aca.2006.01.045.

Rezaee M., Assadi Y., Milani Hosseini M.-R., Aghaee E., Ahmadi F., Berijani S. Determination of organic compounds in water using dispersive liquid–liquid microextraction. J. Chromatogr A, 2006, vol. 1116, no. 1-2, pp. 1-9. doi: 10.1016/j.chroma.2006.03.007.

Abedi A.S., Mohammadi A., Azadniya E., Mortazavian A.M., Khaksar R. Simultaneous determination of sorbic and benzoic acids in milk products using an optimised microextraction technique followed by gas chromatography. Food Addit. Contam. Part A, 2014, vol. 31, no. 1, pp. 21-28. doi: 10.1080/19440049.2013.859742.

Kamankesh M., Mohammadi A., Modarres Tehrani Z., Ferdowsi R., Hosseini H. Dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for determination of benzoate and sorbate in yogurt drinks and method optimization by central composite design. Talanta, 2013, vol. 109, pp. 46-51. doi: 10.1016/j.talanta.2013.01.052.

Opredelenie kofeina, askorbinovoi, sorbinovoi i benzoynoi kislot v bezalkogol'nykh i alkogol'nykh napitkakh [Capillary electrophoresis system. Determination of caffeine, ascorbic, sorbic and benzoic acid in bezalkogolnykh and alcoholic beverages]. Available at: http://techob.ru/assets/files/opred-kofeina-askorbin-sorbinovoi-benzoinoi-kislot-v-napitkah.pdf (accessed 10 September 2017) (in Russian).

Can N.O., Arli G., Lafci Y. A novel RP-HPLC method for simultaneous determination of potassium sorbate and sodium benzoate in soft drinks using C18-bonded monolithic silica column. Journal of Separation Science, 2011, vol. 34, no. 16-17, pp. 2214-2222. doi: 10.1002/jssc.201100172.

Urcovan M.M., Diacu E., Petronela E.C. Quantification of the analytical parameters and uncertainty budget for traceable measurements of benzoic acid in soft drinks by HPLC method. UPB, Scientific Bulletin Series B., 2012, vol. 74, no. 1, pp. 97-108.

Sal'nikova D.V, Selifonova Y.K., Chernova R.K. [Electrophoretic determination of preservatives in energy drinks]. Simvol nauki [The symbol of science], 2016, vol. 3, pp. 46-49 (in Russian).

CFS-HK (Centre for Food Safety of the Food and Environmental Hygiene Department of the Government of the Hong Kong Special Administrative Region). Dietary exposure to benzoic acid from prepackaged non-alcoholic beverages of secondary school students. Risk assessment studies. Hong Kong, 2007, pp. 1-13.

Zhang X., Xu S., Sun Y., Wang Y., Wang C. Simultaneous determination of benzoic acid and sorbic acid in food products by CE after on-line preconcentration by dynamic pH junction. Chromatographia, 2011, vol. 73, no. 11-12, pp. 1217-1221. doi: 10.1007/s10337-011-2009-3.

Nour V., Trandafir I., Ionica M.E. Simultaneous determination of sorbic and benzoic acids in tomato sauce and ketchup using high-performance liquid chromatography. Annals Food Science and Technology, 2009, vol. 10, no. 1, pp. 157-162.

Zhao Y.G., Chen X.H., Yao S.S., Pan S.D, Li X.P., Jin M.C. Analysis of nine food additives in red wine by ion-suppression reversed-phase high-performance liquid chromatography using trifluoroacetic acid and ammonium acetate as ion-suppressors. Analytical Sciences. 2012, vol. 28, pp. 967-971.

Yang J., Li D., Sun C. Simultaneous determination of eleven preservatives in foods using ultrasound-assisted emulsification micro-extraction coupled with gas chromatography-mass spectrometry. Analytical Methods, 2012, vol. 4, no. 10, pp. 3436-3442. doi: 10.1039/C2AY25406A.

Saad B., Barr M.F., Saleh M.I., Ahmad K., Talib M.K.M. Simultaneous determination of preservatives (benzoic acid, sorbic acid, methyl paraben and propyl paraben) in foodstuffs using high-performance liquid chromatography. J. Chromatogr. A, 2005, vol. 1073, no. 1-2, pp. 393-397. doi:10.1016/j.chroma.2004.10.105.

Wang Z.J., Song Z.H. Chemiluminescence determination of benzoic acid using a solid-phase verdigris reactor. Chin. Chem. Lett., 2003, vol .14, no. 3, pp. 283-286.

Belyaeva L.Y., Prokhorova A.F., Beklemishev M.K. Determination of benzoate by paper chromatography with visualization due to its inhibitory activity in the reaction of the photosensitized autooxidation of pyrogallol A. J. Anal. Chem., 2010, vol. 65, no. 1, pp. 64-70. doi: 10.1134/S1061934810010120 (in Russian).

Bel'tyukova S.V. [Preservatives in food technology]. Pishchevaia nauka i tekhnologiia [Food science and technology], 2013, vol. 24, no. 3, pp. 58-64 (in Russian).

Pylypiw H.M., Grether M.T. Rapid high-performance liquid chromatography method for the analysis of sodium benzoate and potassium sorbate in foods. J. Chromatography A, 2000, vol. 883, no. 10, pp. 299-304. doi: 10.1016/S0021-9673(00)00404-0.

Golge O., Hepsag F., Kabak B., Verbr J. Dietary intake of sorbic and benzoic acids from tomato ketchup for adults and children in Turkey. Lebensm., 2015, vol. 10, no. 4, pp. 341-347. doi:10.1007/s00003-015-0947-7.

Zhang H., Cheng M., Jiang X. Determination of Benzoic Acid in Water Samples by Ionic Liquid Cold-Induced Aggregation Dispersive LLME Coupling with LC. Chroma., 2010, vol. 72, no.11-12, pp.1195-1199. doi:10.1365/s10337-010-1791-7.

Abdelrahman M.M. Micellar liquid chromatographic determination of salbutamol sulfate in presence of methyl paraben, propyl paraben and benzoic acid: application to content uniformity testing. J. Iran. Chem. Soc., 2015, vol. 12, no. 8, pp. 1439-1446. doi: 10.1007/s13738-015-0612-1.

Luo L., Shen Y.D., Wang H., Zhi-Li X., Yuan-Ming S., Hong-Tao L., Jin-Yi Y., Zhen-Lin X. Production of polyclonal antibody and development of a competitive enzyme-linked immunosorbent assay for benzoic acid in foods. Food Analytical Method, 2015, vol. 8, no. 5, pp. 1101-1111. doi:10.1007/s12161-014-9975-7.

Park S.Y., Young Yoo M., Paik H.D. Production of benzoic acid as a natural compound in fermented skim milk using commercial cheese starter. J. Dairy Sci., 2017, vol. 100, no. 6, pp. 1-7. doi: 10.3168/jds.2016-12399.

Noori H., Sun-Young P., Sun-Young K., Yoo M.Y., Paik H.D., Lim S.D. Short communication: Change of naturally occurring benzoic acid during skim milk fermentation by commercial cheese starters. J. Dairy Sci., 2016, vol. 99, no. 11, pp. 8633-8637. doi: 10.3168/jds.2016-10890.

Shu Y., Yu B., He J., Yu J., Zheng P., Yuan Z., Chen D., Mao X. Excess of dietary benzoic acid supplementation leads to growth retardation, hematological abnormality and organ injury of piglets. Livestock Science, 2016, vol. 190, pp. 94-103. doi: 10.1016/j.livsci.2016.06.010.

Pamel V., Daeseleire E. A multiresidue liquid chromatographic/tandem mass spectrometric method for the detection and quantitation of 15 nonsteroidal anti-inflammatory drugs (NSAIDs) in bovine meat and milk. Analytical and Bioanalytical Chemistry., 2015, vol. 407, no. 15, pp. 4485-4494. doi:10.1007/s00216-015-8634-1.

Peng Y., Hou Y., Zhang F., Shen G., Yang B. A hyperbranched polyethylenimine functionalized stationary phase for hydrophilic interaction liquid chromatography. Analytical and Bioanalytical Chemistry, 2016, vol. 408, no. 13, pp. 3633-3638. doi:10.1007/s00216-016-9446-7.

Jangbai W., Wongwilai W., Grudpan K., Lapanantnoppakhu S. Sequential Injection Chromatography as Alternative Procedure for the Determination of Some Food Preservatives. Food Anal. Methods, 2012, vol. 5, no. 4, pp. 631-636. doi: 10.1007/s12161-011-9276-3

Magana A., Wrobel K., Elguera J.C.T., Escobosa A. R.C., Wrobe K. Determination of small phenolic compounds in tequila by liquid chromatography with ion trap mass spectrometry detection. Food Anal. Methods, 2015, vol. 8, no. 4, pp. 864-872. doi: 10.1007/s12161-014-9967-7.

Szkop M., Szkop U., Kęszycka P., Danuta G. A simple and robust protocol for fast RP-HPLC determination of salicylates in foods. Food Anal. Methods, 2017, vol. 10, no. 3, pp. 618-625. doi: 10.1007/s12161-016-0621-4.

Sima V.H., Patris S., Aydogmus Z., Sarakbi A., Sandulescu R., Kauffmann J.M. Tyrosinase immobilized magnetic nanobeads for the amperometric assay of enzyme inhibitors: application to the skin whitening agents. Talanta, 2011, vol. 83, no. 3, pp. 980-987. doi: 10.1016/j.talanta.2010.11.005.

Li S.L., Yongyan T., Peng W., Kan J. Inhibition of benzoic acid on the polyaniline-polyphenol oxidase biosensor. Sens Actuators B, 2010, vol. 144, no. 1, pp. 18-22. doi: 10.1016/j.snb.2009.08.038.

Martín C., Domínguez E.A. A new enzyme electrode for quantification of salicylic acid in a FIA system. J. Pharm. Biomed. Anal., 1999, vol. 19, no. 1-2, pp. 107-113. doi: 10.1016/S0731-7085(98)00196-4.

Guerrier A., Cataldi T.R.I., Ciriello R. The kinetic and analytical behaviours of an l-lysine amperometric biosensor based on lysine oxidase immobilised onto a platinum electrode by co-crosslinking. Sens Actuators B, 2007, vol. 126, no. 2, pp. 424-430 doi: 10.1016/j.snb.2007.03.025.

Bathaie S.Z., Kazemi S.H., Elahi H.Y., Mousavi M.F. DNA immobilization on a polypyrrole nanofiber modified electrode and its interaction with salicylic acid/aspirin. Anal. Biochem., 2011, vol. 411, no. 4, pp. 176-184. doi: 10.1016/j.ab.2011.01.006.

Zhu Y., Guan X., Ji H.J. Electrochemical solid phase micro-extraction and determination of salicylic acid from blood samples by cyclic voltammetry and differential pulse voltammetry. J. Solid State Electrochem., 2009, vol. 13, no. 9, pp. 1417-1423. doi: 10.1007/s10008-008-0707-z.

Doulache M., Benchettara A., Trari M. Detection of salicylic acid by electrocatalytic oxidation at a nickel-modified glassy carbon electrode. J. Anal. Chem., 2014, vol. 69, no. 1, pp. 51-56. doi: 10.1134/S1061934814010067 (in Russian).

Zhang W.D., Xu B., Hong Y.X., Yu Y.X., Ye J.S., Zhang J.Q. Electrochemical oxidation of salicylic acid at well-aligned multiwalled carbon nanotube electrode and its detection. J. Solid State Electrochem., 2010, vol. 14, no. 9., pp. 713-1718. doi: 10.1007/s10008-010-1014-z.

Wang Z., Ai F., Xu Q., Yang Q., Yu J.H., Huang W.H., Zhao Y.D. Electrocatalytic activity of salicylic acid on the platinum nanoparticles modified electrode by electrochemical deposition. Colloids. Surf. B, 2010, vol.76, no. 1, pp. 370-374. doi: 10.1016/j.colsurfb.2009.10.038.

Wang Z., Wei F., Liu S.Y., Xu Q, Huang J.Y., Dong X.Y., Yu J.H., Yang Q., Zhao Y.D., Chen H. Electrocatalytic oxidation of phytohormone salicylic acid at copper nanoparticles-modified gold electrode and its detection in oilseed rape infected with fungal pathogen Sclerotinia sclerotiorum. Talanta, 2010, vol. 80, no. 3, pp. 1277 -1281. doi: 10.1016/j.talanta.2009.09.023.

Gualandi I., Scavetta E., Zappoli S., Tonelli D. Electrocatalytic oxidation of salicylic acid by a cobalt hydrotalcite-like compound modified Pt electrode. Biosens. Bioelectron, 2011, vol. 26, no. 7, pp. 3200-3206. doi: 10.1016/j.bios.2010.12.026.

Ma L.Y., Miao S.S., Lu F.F., Wu M.S., Lu Y.C., Yang H. Selective electrochemical determination of salicylic acid in wheat using molecular imprinted polymers. Analytical Letters, 2017, vol. 50, no. 15, pp. 2369-2385. doi: 10.1080/00032719.2017.1291654.

Devadas B., Madhu R., Chen S., Yeh H. Controlled electrochemical synthesis of new rare earth metal lutetium hexacyanoferrate on reduced graphene oxide and its application as a salicylic acid sensor. J. Mater. Chem. B, 2014, vol. 2, no 43, pp. 7515-7523. doi: 10.1039/C4TB01325E.

Cofan C., Radovan C. Anodic determination of acetylsalicylic acid at a mildly oxidized boron-doped diamond electrode in sodium sulphate medium. International Journal of Electrochemistry, 2011, vol. 2011, pp. 9. doi: 10.4061/2011/451830.

Sartori E.R., Medeiros R.A., Rocha-Filho R.C., Fatibello-Filho O. Square-wave voltammetric determination of acetylsalicylic acid in pharmaceutical formulations using a boron-doped diamond electrode without the need of previous alkaline Hydrolysis Step. J. Braz. Chem. Soc., 2009, vol. 20, no. 2, pp. 360-366 doi: 10.1590/S0103-50532009000200022.

Zavar M.H.A., Heydari S., Hossein G. Rounaghi electrochemical determination of salicylic acid at a new biosensor based on polypyrrole-banana tissu composite. Arabian J. Science and Engineering, 2013, vol. 38, no. 1, pp. 29-36. doi: 10.1007/s13369-012-0411-2.

Torriero A.A.J., Luco J.M., Sereno L., Raba J. Voltammetric determination of salicylic acid in pharmaceuticals formulations of acetylsalicylic acid. Talanta. 2004, vol. 62, no. 2, pp. 247-254. doi: 10.1016/j.talanta.2003.07.005.

Breadmore M.C., Wuethrich A., Li F., Phung S.C., Kalsoom U., Cabot J.M., Tehranirokh M., Shallan A.I., Keyon A.S.A., Heng H., Dawod M., Quirino J.P. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2014-2016). J. Electrophoresis, 2017, vol. 38, no. 1, pp. 33-39. doi: 10.1002/elps.201600331.

Acunha T., Ibáñez C., V. Garcia-Canas, Simo C., Cifuentes A. Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. J. Electrophoresis, 2016, vol. 37, no. 1, pp. 111-141. doi: 10.1002/elps.201500291.


Ссылки

  • На текущий момент ссылки отсутствуют.