Изображение на обложке

ВВЕДЕНИЕ В МНОГОЭЛЕМЕНТНЫЙ АТОМНО-АБСОРБЦИОННЫЙ АНАЛИЗ. (ЛИТЕРАТУРА. Часть 1)

D. Katskov

Аннотация


Интерес аналитиков к электротермической атомно-абсорбционной спектрометрии (ET AAS) с источником непрерывного спектра (СS) обусловлен перспективой использования для количественных измерений обзорного спектра поглощения, отражающего общий состав пробы. В сочетании с принципиальными достоинствами традиционного атомно-абсорбционного (АА) метода анализа (меньшей в сравнении с эмиссионным спектром вероятностью наложения спектральных линий и  высокой чувствительностью),  концепция одновременного ЕТ ААS определения элементов может оказать революционное воздействие на технологию анализа, а именно, радикально сократить время измерений, расширить круг анализируемых веществ, упростить пробоподготовку, а также обепечить прямое определение состава микрообъектов. Реализация этого потенциала, однако, помимо усовершенствования инструментальной базы, требует решения ряда специфических проблем, нехарактерных для традиционной технологии последовательного одноэлементного определения. Одинаковые для всех элементов условия анализа исключают возможность селективной оптимизации степени разбавления, способа химической модификации  или термической обработки анализируемого вещества. Для реальных, например, природных, проб анализ осложнен значительным, до нескольких порядков, разбросом содержаний элементов, разной чувствительностью аналитических линий и вариациями кинетики испарения и степени атомизации, зависящими от многих параметров, включая термодинамические свойства элемента и пробы, свойства поверхности подложки, температуру газовой фазы и скорость массопереноса. Очевидно, что для разработки приборов и методологии многоэлементного определения необходимо более полное понимание специфики процессов формирования абсорбционного сигнала при измерениях с СS источником, основанное на обобщении информации об известных теоретических и экспериментальных подходах в AA исследованиях, сопряженных проблемах и приемах их решения. Соответственно этой задаче, в данной работе автор прослеживает этапы освоения атомно-абсорбционной спектрометрии с CS источником, обращая особое внимание на перспективные c точки зрения одновременного многоэлементного определения направления исследований и технические усовершенствования. Приведенные примеры теоретических моделей или экспериментальных результатов предназначены, в основном, для иллюстрации многоплановости проблемы и ни в коей мере не претендуют на завершенность решений. Предлагаемый материал может быть полезен для исследователей и конструкторов, специализирующихся в области инструментального анализа. 

Ключевые слова: многоэлементный атомно-абсорбционный анализ, источник непрерывного спектра, одновременное определение элементов, электротермическая атомизация. 

DOI: http://dx.doi.org/10.15826/analitika.2018.22.4.001


Полный текст:

PDF

Литература


REFERENCES (Part 1)

Walsh A. The application of atomic absorption spectra to chemical analysis. Spectrochim. Acta, 1955, vol. 7, pp. 108–117. doi: 10.1016/0371-1951(55)80013-6

Welz B., Sperling M. Atomic Absorption Spectrometry, 3rd edn., Weinheim, Wiley-VCH, 1999, 941 p. doi: 10.1002/9783527611690

L’vov B.V. The analytical use of atomic absorption spectra. Spectrochim. Acta, 1961, vol. 17, no. 7, pp.761-770. doi: 10.1016/0371-1951(61)80141-0

Massmann H. Vergleich von atomabsorption und atomfluoreszenz in der graphitküvette. Spectrochim. Acta, Part B, 1967, vol. 23, no 4, pp. 215-226. doi: 10.1016/0584-8547(68)80001-1

Hiftje G. Atomic absorption spectrometry – has it gone or where is it going? J. Anal. At. Spectrom. 1989, vol. 4, pp. 117-122. doi: 10.1039/JA9890400117

Kirchhoff G. Über das Verhältnis zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht. Annalen der Physik und Chemie, 1860, vol. 109, no. 1, pp. 275–301.

Bunsen R.W., Kirchhoff G.R. Chemische Analyse durch Spectralbeobachtungenectrum Observations. Annalen der Physik und Chemie, 1860, vol. 110, no. 5, pp. 161-189.

Welz B., Becker-Ross H., Florek S., Heitmann U. High-Resolution Continuum Source AAS, Weinheim, Wiley-VCH, 2005, 296 p.

Welz B., Vale M.G.R., Pereira E.R., Castilho I.N.B., Dessuy M.B. Continuum Source Atomic Absorption Spectrometry: Past, Present and Future Aspects – A Critical Review. J. Braz. Chem. Soc., 2014, vol. 25, no. 5, pp. 799-821. doi: 10.5935/0103-5053.20140053

Harnly J.M. The future of atomic absorption spectrometry: a continuum source with a charge coupled array detector. J. Anal. At. Spectrom., 1999, vol. 14, pp. 137–146. doi: 10.1039/A807586G

Becker-Ross H., Florek S., Heitmann U., Huang M.D., Okruss M., Radziuk B. Continuum source atomic absorption spectrometry and detector technology: A historical perspective. Spectrochim. Acta, Part B, 2006, vol. 61, no. 9, pp. 1015–1030. doi: 10.1016/j.sab.2006.09.016

Atomic spectra database. Version 5. Available at: http://physics.nist.gov/plm/atomic-spectra-database (accessed 20.09.2018)

Mitchell A., Zemansky M. Resonance Radiation and Excited Atoms, Cambridge, Cambridge University Press, 1931, 335 p.

L’vov B.V. Atomic Absorption Spectrochemical Analysis, London, Adam Hilger, 1970, 324 p.

Grinshtein I.L., Katskov D.A., Khodorkovski M.A. Investigation of intensities and contours of the emission lines of hollow-cathode lamps of the LSP-1 type under various discharge conditions. J. Applied Spectroscopy, 1986, vol. 44, no. 4, pp. 327-332. doi: 10.1007/BF00661041

Grinshtein I.L., Katskov D.A., Khodorkovski M.A. Shifts in the absorption lines of Al, Ca, Cd, Cr, Cu, Ga, In, Mg and Sr in argon, nitrogen and helium in the conditions of atomic absorption measurements. J. Applied Spectroscopy, 1986, vol. 44, no. 5, pp. 439-444. doi: 10.1007/BF00667063

Katskov D., Hlongwane M., Heitmann U., Florek S. High-resolution continuum source electrothermal atomic absorption spectrometry: Linearization of the calibration curves within a broad concentration range. Spectrochim. Acta, Part B, 2012, vol. 71–72, pp.14–23. doi: 10.1016/sab.2012.03.007

Winefordner J.D., Fitzgerald J.J., Omenetto N. Review of multielement atomic spectroscopic methods, Appl. Spectrosc., 1975, vol. 29, no. 5, pp. 369-383. doi: 10.1366/000370275774455770

McGee W.W., Winefordner J.D. Use of a continuum source of excitation, an argon–hydrogen-flame, and an extended flame cell for atomic absorption flame spectrophotometry. Anal. Chim. Acta, 1967, vol. 37, pp. 429–435. doi: 10.1016/S0003-2670(01)80703-0

De Galan L., McGee W.W., Winefordner J.D. Comparison of line and continuous sources in atomic absorption spectrometry. Anal. Chim. Acta, 1967, vol. 37, pp. 436–444. doi: 10.1016/S0003-2670(01)80704-2

Winefordner J.D. The effect of spectrometer slit width on intensity of atomic emission lines in emission flame photometry and the effect of source line width on absorbance of atomic absorption lines in absorption flame photometry. Appl. Spectrosc., 1963 vol. 17, no. 5, pp. 109–111. doi: 10.1366/000370263789621015

Koirtyohann S.R., Pickett E.E. Background corrections in long path atomic absorption spectrometry. Anal. Chem., 1965, vol. 37, no. 4, pp. 601–603. doi: 10.1021/ac60223a048

Koirtyohann S.R., Pickett E.E. Spectral interferences in atomic absorption spectrometry. Anal. Chem., 1966, vol. 38, no. 4, pp. 585–587. doi: 10.1021/ac60236a015

L’vov B.V., Kabanova M.A., Katskov D.A., Lebedev G.G., Sokolov M.A. Allowance for nonselective spectral noise in atomic absorption measurements using a graphite cell. J. Applied Spectroscopy, 1968, vol. 8, no. 8, pp.124-127. doi: 10.1007/BF00604665

Hendrikx-Jongerius С., DeGalan L. Practical approach to background correction and temperature programming in graphite furnace atomic absorption spectrometry. Anal. Chim. Acta, 1976, vol. 87, pp. 259-271. doi: 10.1016/S0003-2670(01)82255-8

Slavin W., Carnrick G.R., Koirtyohann S. R. Background Correction in Atomic Absorption Spectroscopy (AAS), CRC Critical Reviews in Analytical Chemistry, 1988, vol. 19, pp. 95-134. doi: 10.1080/10408348808542809

Furuta N., Haraguchi H., Fuwa K. Multielement analysis by continuum source atomic absorption spectrometry with the aid of analog data treatment. Anal. Chem., 1977, vol. 49, no. 8, pp. 1263–1265. doi: 10.1021/ac50016a051

Haraguchi H., Furuta N., Yoshimura E., Fuwa K. Analog data treatment of spectra in flame absorption and emission spectrometry. Anal. Chem., 1976, vol. 48, no. 14, pp. 2066–2069. doi: 10.1021/ac50008a007

Fassel V.A., Mossotti V.G., Grossmann W.E.L., Knisely R.N. Evaluation of spectral continua as primary sources in atomic absorption spectrometry. Spectrochim. Acta, 1966, vol. 22, no. 2, pp. 347–357. doi: 10.1016/0371-1951(66)80244-8

Svoboda V. Use of light frequency modulation of continuum source in atomic absorption spectrometry. Anal. Chem., 1968, vol.40, no. 8, pp.1384–1385. doi: 10.1021/ac60264a046

Nitis G.J., Svoboda V., Winefordner J.D. An oscillating interferometer for wavelength modulation in atomic absorption spectrometry. Spectrochim. Acta, Part B, 1972, vol. 27, no. 8, pp. 345–363. doi: 10.1016/0584-8547(72)80034-X

Veillon C., Merchant P. Jr. High resolution atomic absorption spectrometry with a scanning Fabry–Perot interferometer. Appl. Spectrosc. 1973, vol. 27, no. 5, pp. 361–365. doi: 10.1366/000370273774333317

O'Haver T.C., Harnly J.M., Zander A.T. Comparison of radiant power of the Eimac xenon arc lamp and hollow cathode lamp sources. Anal. Chem., 1978, vol. 50, no. 8, pp.1218–1221. doi: 10.1021/ac50030a052

Cochran R.L., Hieftje G.M. Spectral and noise characteristics of a 300- Watt Eimac arc lamp. Anal. Chem., 1977, vol. 49, no. 13, pp. 2040–2043. doi: 10.1021/ac50021a037

Snellemann W. An a.c. scanning method with increased sensitivity in atomic absorption analysis using a continuum primary source. Spectrochim. Acta, Part B, 1968, vol. 23, no. 6, pp. 403–411. doi: 10.1016/0584-8547(68)80018-7

Harnly J.M., O'Haver T.C. Background correction for the analysis of high-solids samples by graphite furnace atomic absorption. Anal. Chem., 1977, vol. 49, no. 14, pp. 2187–2193. doi: 10.1021/ac50022a020

Harnly J.M., O'Haver T.C., Golden B., Wolf W.R. Background-corrected simultaneous multielement atomic absorption spectrometry. Anal. Chem., 1979, vol.51, no. 12, pp. 2007–2014. doi: 10.1021/ac50048a027

Harnly J.M. Multielement atomic absorption with a continuum source. Anal. Chem., 1986, vol. 58, no. 8, pp. 933A–943A. doi: 10.1021/ac00121a778

Harnly J.M., O'Haver T.C. Extension of analytical calibration curves in atomic absorption spectrometry. Anal. Chem., 1981, vol. 53, no. 8, pp. 1291–1298. doi: 10.1021/ac00231a036

O'Haver T.C. Continuum-source atomic-absorption spectrometry: past, present and future prospects. Analyst, 1984, vol. 109, pp. 211–217. doi: 10.1039/AN9840900211

O'Haver T.C., Messmann J.D. Continuum source atomic absorption spectrometry. Prog. Anal. Spectrosc., 1986, vol. 9, pp. 483–503.

Miller-Ihli N.J. Simultaneous multielement atomic-absorption analysis of biological materials. Talanta, 1990, vol. 37, no. 1, pp. 119–125. doi: 10.1016/0039-9140(90)80052-H

Slavnyi V.A., Subochev A.I., Mogilevski A.N. Some special methods of recording spectral lines. J. Applied Spectroscopy, 1976, vol. 25, no. 6, pp. 1501-1503. doi: 10.1007/BF00615661

Slavnyi V.A., Astafev P.N., Mogilevski A.N., Subochev A.I., Fabelinski Yu.I. Apparatus for atomic-absorption analysis using a source of light with a continuum spectrum. J. Applied Spectroscopy, 1977, vol. 26, no. 4, pp. 420-423. doi: 10.1007/BF00606934

Abramson I.S., Astafev P.N., Mogilevski A.N., Slavnyi V.A., Subochev A.I. [Multi-channel setup for analysis of substances using atomic spectra]. Optiko-mekhanicheskaia promyshlennost` [ Journal of Optical Technology], 1979, vol. 8, pp.18-21 (in Russian)

Masters R., Hsiech C., Pardue H.L. Echelle-spectrometer/imagedissector system for elemental quantitation by continuous-source atomic absorption spectrometry. Anal. Chim. Acta, 1987, vol. 199, pp. 253–257. doi: 10.1016/S0003-2670(00)82826-3

Masters R., Hsiech C., Pardue H.L. Multielement continuum-source atomic-absorption spectrometry with an echelle-spectrometer/imagedissector system. Talanta, 1989, vol. 36, no. 1-2, pp. 133–139. doi: 10.1016/0039-9140(89)80088-8

Jones B.T., Smith B.W., Winefordner J.D. Continuum source atomic absorption spectrometry in a graphite furnace with photodiode array detection. Anal. Chem., 1989, vol. 61, no. 15, pp. 1670–1674. doi: 10.1021/ac00190a017

Fernando R., Jones B.T. Continuum-source graphite-furnace atomic absorption spectrometry with photodiode array detection. Spectrochim. Acta, Part B, 1994, vol. 49, no. 6, pp. 615–626. doi: 10.1016/0584-8547(94)80054-5

Moulton G.P., O'Haver T.C., Harnly J.M. Continuum source atomic absorption spectrometry with a pulsed source and a photodiode array detector. J. Anal. At. Spectrom., 1989, vol. 4, pp. 673–674. doi: 10.1039/JA9890400673

Smith C.M.M., Harnly J.M., Moulton J.M., O'Haver T.C. High current pulsing of a xenon arc lamp for electrothermal atomic absorption spectrometry using a linear photodiode array. J. Anal. At. Spectrom., 1994, vol. 9, pp. 419–425. doi: 10.1039/JA9940900419

Harnly J.M. The effect of spectral bandpass on signal-to-noise ratios for continuum source atomic absorption spectrometry with a linear photodiode array detector. Spectrochim. Acta, Part B, 1993, vol. 48, no. 6-7, pp. 909–924. doi: 10.1016/0584-8547(93)80093-A

Smith C.M.M., Harnly J.M. Sensitivities and detection limits for graphite furnace atomic absorption spectrometry using a continuum source and linear photodiode array detection. Spectrochim. Acta, Part B, 1994, vol. 49, no. 4, pp. 387–398. doi: 10.1016/0584-8547(94)80032-4.

Moulton G.P., O'Haver T.C., Harnly J.M. Signal to noise ratios for continuum source atomic absorption spectrometry using a linear photodiode array to monitor sub-nanometre wavelength intervals. J. Anal. At. Spectrom., 1990, vol. 5, pp. 145–150. doi: 10.1039/JA9900500145

Harnly J.M., Smith C.M.M., Radziuk B. Extended calibration ranges for continuum source atomic absorption spectrometry with array detection. Spectrochim. Acta, Part B, 1996, vol. 51, no. 9-10, pp. 1055–1079. doi: 10.1016/0584-8547(96)01449-8

Wichems D.N., Fields R.E., Harnly J.M. Characterization of hyperbolic calibration curves for continuum source atomic absorption spectrometry with array detection. J. Anal. At. Spectrom., 1998, vol. 13, pp. 1277–1284. doi: 10.1039/A804616F

Harnly J.M., Fields R.E. Solid-state array detectors for analytical spectrometry, Appl. Spectrosc., 1997, vol. 51, no. 9, pp. 334A–351A. doi: 10.1366/0003702971941971

Florek S., Becker-Ross H., Florek T. Adaptation of an echelle spectrograph to a large CCD detector. Fresenius J. Anal. Chem., 1996, vol. 355, no. 3-4, pp. 269–271. doi: 10.1007/s0021663550269

Becker-Ross H., Florek S. Echelle spectrometers and charge-coupled devices. Spectrochim. Acta, Part B, 1997, vol. 52, no. 9-10, pp. 1367–1375. doi: 10.1016/S0584-8547(97)00024-4

Becker-Ross H., Okruss M., Florek S., Heitmann U. Huang M.D., Echelle-spectrograph as a tool for studies of structured background in flame atomic absorption spectrometry. Spectrochim. Acta, Part B, 2002, vol. 57, no. 10, pp. 1493–1504. doi: 10.1016/S0584-8547(02)00107-6

Huang M.D., Becker-Ross H., Florek S., Heitmann U., Okruss M. Direct determination of total sulphur in wine using a continuum-source atomic absorption spectrometer and an air-acetylene flame. Anal. Bioanal. Chem., 2005, vol. 382, no. 8, pp. 1877–1881. doi: 10.1007/s00216-005-3333-y

Huang M.D., Becker-Ross H., Florek S., Heitmann U., Okruss M. Determination of phosphorus by molecular absorption of phosphorus monoxide using a high-resolution continuum source absorption spectrometer and an air-acetylene flame. J. Anal. At. Spectrom., 2006, vol. 21, pp. 338–345. doi: 10.1039/B512986A

Huang M.D., Becker-Ross H., Florek S., Heitmann U., Okruss M. The influence of calcium and magnesium on the phosphorus monoxide molecular absorption signal in the determination of phosphorus using a continuum source absorption spectrometer and an air-acetylene flame. J. Anal. At. Spectrom., 2006, vol. 21, pp. 346–349. doi: 10.1039/B512993A

Huang M.D., Becker-Ross H., Florek S., Heitmann U., Okruss M. Determination of sulfur by molecular absorption of carbon monosulfide using a high-resolution continuum source absorption spectrometer and an air-acetylene flame. Spectrochim. Acta, Part B, 2006, vol. 61, no. 2, pp. 181–188. doi: 10.1016/j.sab.2006.01.001

Huang M.D., Becker-Ross H., Florek S., Heitmann U., Okruss M. Determination of halogens via molecules in the air-acetylene flame using high-resolution continuum source absorption spectrometry, Part I: fluorine. Spectrochim. Acta, Part B, 2006, vol. 61, no. 5, pp. 572–578. doi: 10.1016/j.sab.2006.04.007

Huang M.D., Becker-Ross H., Florek S., Heitmann U., Okruss M. Determination of Halogens via Molecules in the Air-Acetylene Flame Using High-Resolution Continuum Source Absorption Spectrometry, Part II: Chlorine. Spectrochim. Acta, Part B, 2006, vol. 61, no. 8, pp. 959-964. doi: 10.1016/j.sab.2006.08.004

Harnly J.M. Instrumentation for simultaneous multielement atomic absorption spectrometry with graphite furnace atomization. Fresenius J. Anal. Chem., 1996, vol. 355, no. 5-6, pp. 501–509. doi: 10.1007/s0021663550501

Harnly J.M., Smith C.M.M., Wichems D.N., Ivaldi J.C., Lundberg P.L., Radziuk B. Use of a segmented array charge coupled device detector for continuum source atomic absorption spectrometry with graphite furnace atomization. J. Anal. At. Spectrom., 1997, vol. 12, pp. 617–627. doi: 10.1039/A608440K

Schuetz M., Murphy J., Fields R.E., Harnly J.M. Continuum source – atomic absorption spectrometry using a two-dimensional charge coupled device. Spectrochim. Acta, Part B, 2000, vol. 55, no.12, pp. 1895–1912. doi: 10.1016/S0584-8547(00)00293-7

Becker-Ross H., Florek S., Heitmann U. Observation, identification and correction of structured molecular background by means of continuum source AAS – determination of selenium and arsenic in human urine. J. Anal. At. Spectrom., 2000, vol. 15, pp. 137–141. doi: 10.1039/A903571K

Heitmann U., Becker-Ross H. Atomabsorptions-Spektrometrie mit einem Kontinuumstrahler (CS-AAS), GIT Labor-Fachz, 2001, vol. 7, pp. 728–731.

Welz B., Vale M.G.R., Silva M.M., Becker-Ross H., Huang M.D., Florek S., Heitmann U. Investigation of interferences in the determination of thallium in marine sediment reference materials using high-resolution continuum-source atomic absorption spectrometry and electrothermal atomization. Spectrochim. Acta, Part B, 2002, vol. 57, no. 6, pp. 1043–1055. doi: 10.1016/S0584-8547(02)00031-9

Welz B., Lepria F.G., Araujoa R.G.O., Ferreira S.L.C., Huang M.D., Okruss M., Becker-Ross H. Determination of phosphorus, sulfur and the halogens using high-temperature molecular absorption spectrometry in flames and furnaces—A review. Anal. Chim. Acta, 2009, vol. 647, no. 2, pp. 137-148. doi: 10.1016/j.aca.2009.06.029

Gilmutinov A.Kh., Harnly J.M. Multidimensional integration of absorbances: an approach to absolute analyte detection. Spectrochim. Acta, Part B, 1998, vol. 53, no. 6-8, pp. 1003–1014. doi: 10.1016/S0584-8547(98)00146-3

Harnly J.M., Gilmutinov A.Kh., Schuetz M., Murphy J. Evaluation of photometric errors in absorption measurements using spatially resolved continuum source graphite furnace atomic absorption spectrometry. J. Anal. At. Spectrom., 2001, vol. 16, pp. 1241–1252. doi: 10.1039/B104784C

Ozcan M., Akman S., Schuetz M., Murphy J., Harnly J.M. The spatial distribution and photometric and analytical accuracy of Sn determined by graphite furnace atomic absorption spectrometry in the presence of sulphates and palladium. J. Anal. At. Spectrom., 2002, vol. 17, pp. 515–523. doi: 10.1039/B200613H

Boldova S.S., Put’makov A.N., Labusov V.A., Borovikov V.M., Selyunin D.O., Beizel' N.F., Gus’rova E.A. [On the Development of a Device for Simultaneous Multi-Element Atomic Absorption Spectral Analysis Based on a High-Dispersion Spectrometer and a continuous spectrum source]. Zavodskaia Laboratoriia. Diagnostika materialov [Industrial laboratory. Diagnostics of materials]. 2015, vol. 81, no.1, pp.148-153 (In Russian)

Vashchenko P.V., Boldova S.S., Labusov V.A. Algorithm for Processing Sequences of Atomic Absorption Spectra with a Continuous Radiation Source. Zavodskaia Laboratoriia. Diagnostika materialov [Industrial laboratory. Diagnostics of materials]. 2015, vol. 81, no. 1, pp. 153-157 (in Russian).

Labusov V.A. Devices and Systems for Atomic Emission Spectroscopy Produced by «VMK-Optoelektronika»: State-of-the-Art. Zavodskaia Laboratoriia. Diagnostika materialov [Industrial laboratory. Diagnostics of materials]. 2015, vol. 81, no. 1 pp.12-21 (in Russian).

Florek S., Becker-Ross H. High-resolution spectrometer for atomic spectrometry. J. Anal. At. Spectrom., 1995, vol. 10, pp. 145–147.doi: 10.1039/JA9951000145

Becker-Ross H., Florek S., Heitmann U., Weisse R. Influence of the spectral bandwidth of the spectrometer on the sensitivity using continuum source AAS. Fresenius J. Anal. Chem., 1996, vol. 355, no. 3-4, pp. 300–303. doi: 10.1007/s0021663550300

Salomon S., Giamarchi P., Le Bihan A., Becker-Ross H., Heitmann U. Improvements in the determination of nanomolar concentrations of aluminium in seawater by electrothermal atomic absorption spectrometry. Spectrochim. Acta, Part B, 2000, vol. 55, no. 8, pp.1337–1350. doi: 10.1016/S0584-8547(00)00240-8

Heitmann U., Schütz M., Becker-Ross H., Florek S. Measurements on the Zeeman-splitting of analytical lines by means of a continuum source graphite furnace atomic absorption spectrometer with a linear charge coupled device array. Spectrochim. Acta, Part B, 1996, vol. 51, no. 9-10, pp.1095–1105. doi: 10.1016/0584-8547(96)01504-2

Heitmann U., Welz B., Borges D.L.G., Lepri F.G. Feasibility of peak volume, side pixel and multiple peak registration in high-resolution continuum source atomic absorption spectrometry. Spectrochim. Acta, Part B, 2007, vol. 62, no. 11, pp. 1222–1230. doi: 10.1016/j.sab.2007.10.011

Resano M., Flórez M.R., García-Ruiz E. High-resolution continuum source atomic absorption spectrometry for the simultaneous or sequential monitoring of multiple lines. A critical review of current possibilities. Spectrochim. Acta, Part B, 2013, vol. 88, no. 1, pp. 85-97. doi: 10.1016/j.sab.2013.06.004

Geisler S., Okruss M., Becker-Ross H., Huang M. D., Esser N., Florek S. Spectrometer system using a modular echelle spectrograph and a laser-driven continuum source for simultaneous multi-element determination by graphite furnace absorption spectrometry. Spectrochim. Acta, Part B, 2015, vol. 107, no. 1, pp.11–16. doi: 10.1016/j.sab.2015.02.006

Website of the company “Energetiq”. Available at: http://www.energetiq.com (accessed 20 September 2018).

Dittrich K., Vorberg B., Funk J., Beyer V. Determination of some nonmetals by using diatomic molecular absorbance in a hot graphite furnace. Spectrochim. Acta, Part B, 1984, vol. 39, no. 2-3, pp. 349-363. doi: 10.1016/0584-8547(84)80042-7

Tittarelli P., Lancia R., Zerlia T. Simultaneous molecular and atomic spectrometry with electrothermal atomization and diode array detection. Anal. Chem., 1985, vol. 57, no. 9, pp. 2002–2005. doi: 10.1021/ac00286a050

Tittarelli P., Lavorato G. Determination of sulphur in fuel oils by absorption spectrometry of electrothermally generated carbon sulphide molecules. Anal. Chim. Acta, 1987, vol. 201, pp. 59-65. doi: 10.1016/S0003-2670(00)85324-6

Tittarelli P., Biffi C., Kmetov V. Vaporization of silicon and germanium as molecular-species in electrothermal atomizers, J. Anal. At. Spectrom., 1994, vol. 9, pp. 443-449. doi: 10.1039/JA9940900443

Majidi V., Ratliff J., Owens M. Investigation of transient molecular absorption in a graphite-furnace by laser-induced plasmas. Appl. Spectrosc., 1991, vol. 45, no. 3, pp. 473-476. doi: 10.1366/0003702914337209

Ratliff J., Majidi V. Simultaneous measurement of the atomic and molecular absorption of aluminium, copper, and lead nitrate in an electrothermal atomizer. Anal. Chem., 1992, vol.64, no. 22, pp. 2743–2750. doi: 10.1021/ac00046a016

Xu N., Majidi V. Wavelength-resolved and time-resolved investigation of laser-induced plasmas as a continuum source. Appl. Spectrosc., 1993, vol. 47, no. 8, pp. 1134-1139. doi: 10.1366/0003702934067937

Daminelli G., Katskov D.A., Marais P.J.J.G., Tittarelli P. Characterization of the vapour-phase molecular and atomic absorption from sea water matrices in electrothermal atomic absorption spectrometry. Spectrochim. Acta, Part B, 1998, vol. 53, no. 6-8, pp. 945–964. doi: 10.1016/S0584-8547(98)00098-6

Daminelli G., Katskov D.A., Mofolo R.M., Tittarelli P. Atomic and molecular spectra of vapours evolved in a graphite furnace. Part 1. Alkali halides. Spectrochim. Acta, Part B, 1999, vol. 54, no. 5, pp. 669–682. doi: 10.1016/S0584-8547(98)00248-1

Daminelli G., Katskov D.A., Mofolo R.M., Kantor T. Atomic and molecular spectra of vapours evolved in a graphite furnace. Part 2: magnesium chloride. Spectrochim. Acta, Part B, 1999, vol. 54, no. 5, pp. 683–697. doi: 10.1016/S0584-8547(98)00249-3

Katskov D.A., Daminelli G., Tittarelli P. Effect of magnesium nitrate vaporization on gas temperature in the graphite furnace. Spectrochim. Acta, Part B, 1999, vol. 54, no. 7, pp.1045–1062. doi: 10.1016/S0584-8547(99)00028-2

Katskov D.A., Mofolo R.M., Tittarelli P. Effect of beryllium nitrate vaporization on surface temperature in the pyrocoated graphite furnace. Spectrochim. Acta, Part B, 1999, vol. 54, no. 13, pp. 1801–1811. doi: 10.1016/S0584-8547(99)00123-8

Katskov D.A., Mofolo R.M., Tittarelli P. Atomic and molecular spectra of vapours evolved in a graphite furnace. Part 3: alkaline earth fluorides. Spectrochim. Acta, Part B, 2000, vol. 55, no.10, pp. 1577–1590. doi: 10.1016/S0584-8547(00)00260-3

Katskov D.A., Mofolo R.M., Tittarelli P. Atomic and molecular spectra of vapours evolved in a graphite furnace. Part 4: alkaline earth chlorides. Spectrochim. Acta, Part B, 2001, vol. 56, no. 1, pp. 57–67. doi: 10.1016/S0584-8547(00)00288-3

Mofolo R.M., Katskov D.A., Tittarelli P., Grotti M. Vaporization of indium nitrate in the graphite tube atomizer in the presence of chemical modifiers. Spectrochim. Acta, Part B, 2001, vol. 56, no. 4 pp. 375–391. doi: 10.1016/S0584-8547(01)00167-7

Mofolo R.M., Canario C.M., Katskov D.A., Tittarelli P. Atomic and molecular spectra of vapors evolved in a graphite furnace. Part 5: gallium, indium and thallium nitrates and chlorides. Spectrochim. Acta, Part B, 2002, vol. 57, no. 3, pp. 423–438. doi: 10.1016/S0584-8547(01)00380-9

Katskov D.A., Lemme M., Tittarelli P. Atomic and molecular spectra of vapors evolved in a graphite furnace. Part6: Sulfur. Spectrochim. Acta, Part B, 2004, vol. 59, no. 1, pp. 101-114. doi: 10.1016/j.sab.2003.11.003

Lemme M., Katskov D.A., Tittarelli P. Atomic and molecular spectra of vapors evolved in a graphite furnace. Part7: Alkaline metal sulfates and sulfides. Spectrochim. Acta, Part B, 2004, vol. 59, no. 1, pp. 115-124. doi: 10.1016/j.sab.2003.11.002

Katskov D., Khanye G.E. Simultaneous multi-element electrothermal atomic absorption spectrometry: Verification of the concept. S. Afr. J. Chem., 2010 vol. 63, pp. 45–57.

Katskov D., Low-resolution continuum source simultaneous multi-element electrothermal atomic absorption spectrometry: steps into practice, Spectrochim. Acta, Part B, 2015, vol. 105, pp. 25–37. doi: 10.1016/j.sab.2014.10.011

Katskov D., Sadagov Yu. Design considerations regarding the atomizer for multi-element electrothermal atomic absorption spectrometry. Spectrochim. Acta, Part B, 2011, vol. 66, no. 6, pp. 451–460. doi: 10.1016/j.sab.2011.05.006

Katskov D. The considerations regarding application of low resolution continuum source atomic absorption spectrometry for simultaneous multi-element determination. Trends in Applied Spectroscopy, 2012, vol. 9, pp. 17-40.

Katskov D. Simultaneous multi-element determination in electrothermal atomic-absorption spectrometry. Zavodskaia Laboratoriia. Diagnostika materialov [Industrial laboratory. Diagnostics of materials] (in press).

Bernhardt J., Buchkamp T., Hermann G., Lasnitschka G. Transport efficiencies and analytical determinations with electrothermal vaporization employing electrostatic precipitation and electrothermal atomic spectrometry. Spectrochim. Acta, Part B, 1999, vol. 54, no. 13, pp. 1821–1829.doi: 10.1016/S0584-8547(99)00127-5

Bernhardt J., Buchkamp T., Hermann G., Lasnitschka G. Sample transport efficiency with electrothermal vaporization and electrostatic deposition technique in multi-element solid sample analysis of plant and cereal materials. Spectrochim. Acta, Part B, 2000, vol. 55, no. 5, pp. 449–460. doi: 10.1016/S0584-8547(00)00186-5

Hermann G. Coherent forward scattering atomic spectrometry. Anal. Chem., 1992, vol. 64, no. 10, pp. 571A-579A. doi: 10.1021/ac00034a001

Frech W. Recent developments in atomizers for electrothermal atomic absorption spectrometry, Fresenius J. Anal. Chem., 1996, vol. 355, no. 5-6, pp. 475-486. doi: 10.1007/s0021663550475

Jackson K.W. (Editor) Electrothermal Atomization for Analytical Atomic Spectrometry, Wiley-VCH, 1999, 484 p.

Chakrabarti C.L., Chang S.B., Lawson S.R., Bertels P.C. Studies on the capacitive discharge technique in graphite furnace atomic absorption spectrometry. Spectrochim. Acta, Part B, 1984, vol. 39, no. 9-11, pp. 1195-1208. doi: 10.1016/0584-8547(84)80206-2

Lundgren G., Lundmark L., Johansson G. Temperature controlled heating of the graphite tube atomizer in flameless atomic absorption spectrometry. Anal. Chem., 1974, vol. 46, no. 8, pp. 1028-1032. doi: 10.1021/ac60344a025

Siemer D.D., Frech W. Improving the performance of the CRA atomizer by reducing the rate of diffusional atom loss and delaying analyte volatilization. Spectrochim. Acta, Part B, 1984, vol. 39, no. 2-3, pp. 261-269. doi: 10.1016/0584-8547(84)80034-8

Güell O.A., Holcombe J.A. Analytical application of Monte Carlo techniques. Anal. Chem., 1990, vol. 62, no. 9, pp. 529A-542A. doi: 10.1021/ac00208a001

Güell O.A., Holcombe J.A., Rademeyer C. Effect on electrothermal atomization signals of contoured tube shapes and isothermality. Anal. Chem. 1993, vol. 65, no. 6, pp. 748-751. doi: 10.1021/ac00054a016

Rademeyer C.J., Human H.G.C., Faure P.K. The dynamic wall and gas temperature distribution in graphite furnace atomizer. Spectrochim. Acta, Part B, 1986, vol. 41, no. 5, pp. 439-452. doi: 10.1016/0584-8547(86)80183-5

Website of the company “Photron”. Available at https://www.photronlamp.com (Accessed 20 September 2018).

Website of the company “AnalyticalWest Inc.” Available at https://www.analyticalwest.com (Accessed 20 September 2018).

L’vov B.V., Pelieva L.A., Sharnopol’skii A.I. Reduction of the effect of the main component in the atomic-absorption analysis of solutions in the tube furnaces by evaporation of the samples from a graphite support. J. Applied Spectroscopy, 1977, vol. 27, no. 3, pp. 1104-1107. doi: 10.1007/BF00625888

Slavin W., Manning D.C, Carnrick G.R. The L'vov platform for furnace atomic absorption analysis. Spectrochim. Acta, Part B, 1980, vol. 35, no. 11-12, pp. 701-714. doi: 10.1016/0584-8547(80)80010-3

Koirtyohann S.R., Gidding R.C., Taylor H.E. Heating rates in furnace atomic absorption using the L’vov platform. Spectrochim. Acta, Part B, 1984, vol. 39, no. 2-3, pp. 407-413. doi: 10.1016/0584-8547(84)80048-8

Welz B., Sperling M., Shlemmer G. Spatially and temporally resolved gas phase temperature measurements in a Massmann-type graphite tube furnace using coherent anti-Stokes Raman scattering. Spectrochim. Acta, Part B, 1988, vol. 43, no. 9-11, pp. 1187-1207. doi: 10.1016/0584-8547(88)80163-0

Sperling M., Welz B., Hertzberg J., Rieck C., Marowsky G. Temporal and spatial temperature distributions in transversely heated graphite tube atomizers and their analytical characteristics for atomic absorption spectrometry. Spectrochim. Acta, Part B, 1996, vol. 51, no. 9-10, pp. 897-930. doi: 10.1016/0584-8547(96)01520-0

Slavin W., Carnrick G.R., Manning D.C. Magnesium nitrate as a matrix modifier in the stabilized temperature platform furnace. Anal. Chem., 1982, vol. 54, no. 4, pp. 621-624. doi: 10.1021/ac00241a005

Schlemmer G., Radzuik B. Analytical Graphite Furnace Atomic Absorption Spectrometry, A Laboratory Guide, Berlin, Birkhäuser Verlag, 1999, 286 p. doi: 10.1007/978-3-0348-7576-9

Ortner H.M., Bulska E., Rohr U., Schlemmer G., Weibruch S., Welz B. Modifiers and coatings in the graphite furnace atomic absorption spectroscopy - mechanisms of action. (A tutorial review), Spectrochim. Acta, Part B, 2002, vol. 57, no. 12, pp. 1835–1853. doi: 10.1016/S0584-8547(02)00140-4

Tsalev D.L., Slaveykova V.I., Mandjukov P.B. Chemical modification in graphite-furnace atomic absorption spectrometry. Spectrochim. Acta Rev. 1990, vol. 13, pp. 225–274.

Volynsky A B. Mechanisms of action of platinum group modifiers in electrothermal atomic absorption spectrometry, Spectrochim.Acta, Part B, 2000, vol. 55, no. 2, pp. 103-150. doi: 10.1016/S0584-8547(99)00175-5

Schlemmer G., Welz B. Palladium and magnesium nitrates, a more universal modifiers for graphite furnace. Spectrochim. Acta, Part B, 1986, vol. 41, no. 11, pp. 1157–1165. doi: 10.1016/0584-8547(86)80175-6

Katskov D.A., Grinshtein I.L. Atomization in a graphite furnace with ballast - A technique for increasing the accuracy of atomic-absorption analysis. J. Applied Spectroscopy, 1978, vol. 28, no. 6, pp. 657–661. doi: 10.1007/BF00609765

Katskov D.A., Vasil'eva L.A., Grinshtein I.L., Savel'eva G.O. Atomic-absorption analysis in a graphite furnace fitted with a metal ballast collector. J. Applied Spectroscopy, 1987, vol. 46, no. 4, pp. 335–339. doi: 10.1007/BF00660038

Katskov D.A. Fast heated ballast furnace atomizer for atomic absorption spectrometry. Part 1. Theoretical evaluation of atomization efficiency. J. Anal. At. Spectrom., 2005, vol. 20, pp. 220-226. doi: 10.1039/B413342K

Katskov D.A., Sadagov Yu.M., Banda M. Fast heated ballast furnace atomizer for atomic absorption spectrometry. Part 2. Experimental assessment of performances. J. Anal. At. Spectrom., 2005, vol. 20, pp. 227-232. doi: 10.1039/B413345E

Website of the company “Cortec”. Available at www.cortec/ru (accessed 20 September 2018).

Siemer D. Four-Rod Carbon Rod Atomizer for Atomic Absorption Spectrometry. Anal. Chem., 1982, vol. 54, no. 9, pp. 1659-1663. doi: 10.1021/ac00246a048

Equipment “Analytik Jena” for direct solid AAS. Available at: www.analytik-jena.de/en/analytical instrumentation/products/atomic-absorption spectrometry/direct-solid-aas.html (Accessed 20 September 2018).

Database on “Perkin Elmer” SIMAA-6000 instrument. Available at: www.speciation.net/database/instruments/Bodenseewerk-PerkinElmer-GmbH/SIMAA- 6000 (accessed 20 September 2018).

Heitmann U., Becker-Ross H., Katskov D. Feasibility of filter atomization in high-resolution continuum source atomic absorption spectrometry. Spectrochim. Acta, Part B, 2006, vol. 61, no. 3, pp. 351–360. doi: 10.1016/j.sab.2006.03.003

Huang M.D., Becker-Ross H., Okruss M., Geisler S., Florek S. Graphite tubes with small internal diameters tailored for high-resolution continuum source graphite furnace atomic absorption spectrometry. J. Anal. At. Spectrom., 2012, vol. 27, pp 982-988. doi: 10.1039/C2JA30057E

Ngobeni P., Katskov D. Transverse heated filter atomizer. Optimization of design and heating mode. J. Anal. At. Spectrom., 2002, vol.17, pp. 1316-1322. doi: 10.1039/B205397G

Ngobeni P., Katskov D. Transverse heated filter atomizer. The first approximation to the model of vapour transport. J. Anal. At. Spectrom., 2002, vol. 17, pp. 1602-1609. doi: 10.1039/B209216F

Harnly J.M. Graphite furnace atomic absorption spectrometry using a linear photodiode array and a continuum source. J. Anal. At. Spectrom., 1993, vol. 8, pp. 317–324. doi: 10.1039/JA9930800317

Smith C.M.M., Harnly J.M. Effect of elevated gas pressure on atomization in graphite furnace continuum source atomic absorption spectrometry with linear photodiode array detection. J. Anal. At. Spectrom., 1995, vol. 10, pp. 187–195. doi: 10.1039/JA9951000187.

Smith C.M.M., Harnly J.M. Characterization of a modified two-step furnace for atomic absorption spectrometry for selective volatilization of iron species in hemin. J. Anal. At. Spectrom., 1996, vol. 11, pp. 1055–1061. doi: 10.1039/JA9961101055

Kurfürst U. Solid sample analysis: Direct and Slurry sampling using GF-AAS and ETV-ICP, Berlin, Springer, 2013, 427 p.

Bendicho C., de Loos-Vollebregt M.T.C. Solid Sampling in Electrothermal Atomic Absorption Spectrometry Using Commercial Atomizers. A Review. J. Anal. At. Spectrom., 1991, vol. 6, pp. 353-374. doi: 10.1039/JA9910600353

Resano M., Vanhaecke F., De Loos-Vollebregt M.T.C. Electrothermal vaporization for sample introduction in atomic absorption, atomic emission and plasma mass spectrometry—a critical review with focus on solid sampling and slurry analysis. J. Anal. At. Spectrom., 2008, vol. 23, pp. 1450–1475. doi: 10.1039/B807756H

Dobrowolski R., Kurylo M., Otto M., Mroz A. Determination of gold in geological materials by carbon slurry sampling graphite furnace atomic absorption spectrometry, Talanta, 2012 vol. 99, pp. 750–757. doi: /10.1016/j.talanta.2012.07.016

Dobrowolski R., Mróz A., Dąbrowska M., Olszański P. Solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for gold determination in geological samples after preconcentration onto carbon nanotubes. Spectrochim. Acta, Part B, 2017, vol. 132, no. 1, pp. 13-18. doi: 10.1016/j.sab.2017.03.011

Resano M., Flórez M. Direct determination of sulfur in solid samples by means of high-resolution continuum source graphite furnace molecular absorption spectrometry using palladium nanoparticles as chemical modifier. J. Anal. At. Spectrom., 2012, vol. 27, pp. 401–412. doi: 10.1039/C2JA10322B

Katskov D.A., L'vov B.V. Determination of impurities in high-purity materials by atomic absorption with an internal standard. J. Applied Spectroscopy, 1969, vol.10, no.3, pp. 258–260. doi: 10.1007/BF00614432

Radziuk B., Romanova N.P., Thomassen Y. Evaluation of internal standardisation in electrothermal atomic absorption spectrometry. Anal. Commun. 1999, vol. 36, pp. 13-16. doi: 10.1039/A809096C

Miller-Ihli N.J. Slurry sample preparation for simultaneous multi-element graphite furnace atomic absorption spectrometry. J. Anal. At. Spectrom., 1988, vol. 3, pp. 73-81. doi: 10.1039/JA9880300073

Resano M., Briceño J., Belarra M.A. Direct determination of phosphorus in biological samples using a solid sampling-high resolution-continuum source electrothermal spectrometer: comparison of atomic and molecular absorption spectrometry. J. Anal. At. Spectrom., 2009, vol. 24, pp. 1343–1354. doi: 10.1039/B907937H

Katskov D.A., Kruglikova L.P., L'vov B.V., Polzik L.K. Application of a ring-cavity graphite furnace for atomic absorption analysis of high purity substances. J. Applied Spectroscopy, 1974, vol. 20, no. 4, pp. 565-566. doi: 10.1007/BF00941461

Jim G., Katskov D., Tittarelli P. Sulfur determination in coal using molecular absorption in graphite filter vaporizer. Talanta, 2011, vol. 83, no. 5, pp. 1687-1694. doi: 10.1016/j.talanta.2010.11.074

Schmidt K.P., Falk H. Direct determination of Ag, Cu and Ni in solid materials by graphite furnace atomic absorption spectrometry using a specially designed graphite tube. Spectrochim. Acta, Part B, 1987, vol. 42, no. 3, pp. 431-443. doi: 10.1016/0584-8547(87)80021-6

Katskov D.A. Graphite filter atomizer in atomic absorption spectrometry. Spectrochim. Acta, Part B, 2007, vol. 62, no. 9, pp. 897–917. doi: 10.1016/j.sab.2007.03.023

Jim G., Katskov D. Simultaneous determination of metals in coal with low resolution continuum source atomic absorption spectrometer and filter furnace atomizer. S. Afr. J. Chem. 2011, vol. 64, pp. 79–87.

Dessuy M.B., Vale M.G.R., Souza A.S., Ferreira S.L.C., Welz B., Katskov D.A. Method development for the determination of lead in wine using electrothermal atomic absorption spectrometry. Comparing platform and filter furnace atomizers and different chemical modifiers. Talanta, 2008, vol. 74, no. 5, pp. 1321–1329. doi: 10.1016/j.talanta.2007.08.048

Becker E., Rampazzo R.T., Dessuy M.B., Vale M.G.R., da Silva M.M., Welz B., Katskov D.A. Direct determination of arsenic in petroleum derivatives by graphite furnace atomic absorption spectrometry: A comparison between filter and platform atomizers. Spectrochim. Acta, Part B, 2011, vol. 66, no. 5, pp. 345–351. doi: 10.1016/j.sab.2011.04.003

Damin I.C.F., Dessuy M.B., Castilhos T.S., Da Silva M.M., Vale M.R., Welz B., Katskov D.A. Comparison of direct sampling and emulsion analysis using a filter furnace for the determination of lead in crude oil by graphite furnace atomic absorption spectrometry, Spectrochim. Acta, Part B, 2009, vol. 64, no. 6, pp. 530–536. doi: 10.1016/j.sab.2009.03.002

Saint’Pierre T., Maranhäo T de A., Frescura V.I., Curtus A.J. Determination of Cd and Pb in Fuel ethanol by filter furnace electrothermal atomic absorption spectrometry. Quim. Nova, 2008, vol. 31, no.7, pp. 1626-1630. doi: 10.1590/S0100-40422008000700005

Canário C.M., Katskov D.A. Direct determination of Cd and Pb in edible oils by atomic absorption spectrometry with transverse heated filter atomizer. J. Anal. At. Spectrom., 2005, vol. 20, pp. 1386–1388.doi: 10.1039/B506627C

Tittarelli P., Priola M., Ricchiuto S., Katskov D.A., Ngobeni P. Fuel analysis by filter furnace electrothermal atomic absorption spectrometry. Journal of ASTM International, 2005, vol. 2, no. 7, pp.1-12. doi: 10.1520/JAI12976

Canário C., Ngobeni P., Katskov D.A., Thomassen Y. Transverse heated filter atomizer: atomic absorption spectrometric determination of Pb and Cd in whole blood. J. Anal. At. Spectrom., 2004, vol. 19, pp. 1468-1473. doi: 10.1039/B409022E

Ngobeni P., Canário C., Katskov D.A., Thomassen Y. Transverse heated filter atomizer: atomic absorption determination of Pb and Cd in urine. J. Anal. At. Spectrom., 2003, vol. 18, pp. 762-768. doi: 10.1039/B301170D

Mbileni C.N., Ngobeni P., Katskov D.A., Panichev N.A. Determination of lead and cadmium in organic solutions by electrothermal atomic absorption spectrometry with a transverse heated filter atomizer. J. Anal. At. Spectrom., 2002, vol. 17, pp. 236–241. doi: 10.1039/B110388A

Katskov D.A., Marais P.J.J.G., Katkovnik V.A., Tittarelli P. Adaptation of the filter furnace atomizer for atomic absorption determination of less volatile metals. Spectrochim. Acta, 1997, vol. 52, no. 9-10, pp. 1377-1394. doi: 10.1016/S0584-8547(96)01622-9

Katskov D.A., Shtepan A.M., McCrindle R.I., Marais P.J.J.G. Application of two-step atomizer and related technique for investigating the processes of sample evaporation and atomization in electrothermal atomic absorption spectrometry. J. Anal. At. Spectrom., 1994, vol. 9, pp. 321-331. doi: 10.1039/JA9940900321

Siemer D.D., Lewis L.C. Characterisation of two modified carbon rod atomizers for atomic absorption spectrometry. Anal. Chem., 1983, vol. 55, no. 1, pp. 99-104. doi: 10.1021/ac00252a027

Katskov D.A., Kopeikin V.A., Grinshtein I.L., Burtseva I.G. An instrument for thermochemical atomic absorption measurements. J. Applied Spectroscopy, 1983, vol. 38, no. 4, pp. 494-499. doi: 10.1007/BF00662368

Grinshtein I.L., Vilpan Y.A., Vasilieva L.A. Reduction of matrix interference during the atomic absorption determination of lead and cadmium in strongly interfering matrix samples using two-step atomizer with an argon purged vaporizer. Spectrochim. Acta, Part B, 1999, vol. 54, no. 5, pp. 745-752. doi: 10.1016/S0584-8547(99)00024-5

Frech W., Hadgu N., Henriksson D., Radzuik B., Rödel G., Tamm R. Characterization of a pressuirable two-step atomizer for atomic absorption spectrometry. Spectrochim. Acta, Part B, 2000, vol. 55, no. 5, pp. 461-472. doi: 10.1016/S0584-8547(00)00177-4

Frech W., Jonsson S. A new furnace design for constant temperature electrothermal atomic absorption spectroscopy. Spectrochim. Acta, Part B, 1982, vol. 37, no. 12, pp. 1021-1028. doi: 10.1016/0584-8547(82)80031-1

Katskov D.A., Shtepan A.M., Grinshtein I.L., Pupyshev A.A. Atomization of aluminium oxide in electrothermal atomic absorption spectrometry. Spectrochim. Acta, Part B, 1992, vol. 47, no. 8, pp. 1023-1041. doi: 10.1016/0584-8547(92)80096-Y

Grinshtein I.L., Vilpan Yu.A., Saraev A.V., Vasilieva L.A. Direct atomic absorption determination of cadmium and lead in strongly interfering matrices by double vaporization with a two-step electrothermal atomizer. Spectrochim. Acta, Part B, 2001, vol. 56, no. 3, pp. 261 -274. doi: 10.1016/S0584-8547(00)00306-2

Rettberg T.M., Holcombe J.A. Direct analysis of solids by graphite furnace atomic absorption spectrometry using a second surface atomizer. Anal. Chem., 1986, vol. 58, no.7, pp. 1462–1467. doi: 10.1021/ac00298a043

Zakharov Yu.A., Gil’mutdinov A.Kh. Separation of silver from chloride and sulphate matrices by fractional condensation in a two-step graphite atomizer. J. Applied Spectroscopy, 2004, vol. 71 pp. 275-281. doi: 10.1023/B:JAPS.0000032888.19273.b1

Zakharov Yu. A., Gil’mutdinov A. Kh., Kokorina O.B. Electrothermal atomization of a substance with fractional condensation of the element being determined on a probe, J. Applied Spectroscopy, 2005, vol. 72, no. 1, pp. 132-137. doi: 10.1007/s10812-005-0043-3.

Zakharov Yu.A., Kokorina O.B., Gilmutdinov A.Kh. Concentration of Analytes on the Probe in an Electrothermal Atomizer. J. Applied Spectroscopy, 2005, vol. 72, no. 2, pp. 271-275. doi: 10.1007/s10812-005-0067-8

Zakharov Yu.A., Irisov D.S., Haibullin R.R., Chistyakov I.V. Sample transformation at two-stage probe atomization in graphite furnace for atomic absorption spectrometry. Analitika i kontrol’ [Analytics and Control], 2015, vol. 19, no. 1, pp. 32-39. doi: 10.15826/analitika.2015.19.1.008 (in Russian).

Torsi G., Palmisano F. Particle collection mechanism and efficiency in electrostatic accumulation furnace for electrothermal atomic spectrometry. Spectrochim. Acta, Part B, 1986, vol. 41, no. 3, pp 257–264. doi: 10.1016/0584-8547(86)80166-5

Buchkamp T., Hermann G. Solid sampling by electrothermal vaporization in combination with electrostatic particle deposition for electrothermal atomization multi-element analysis. Spectrochim. Acta, Part B, 1999 vol. 54, no. 5, pp. 657–668. doi: 10.1016/S0584-8547(99)00031-2


Ссылки

  • На текущий момент ссылки отсутствуют.