Изображение на обложке

ВВЕДЕНИЕ В МНОГОЭЛЕМЕНТНЫЙ АТОМНО-АБСОРБЦИОННЫЙ АНАЛИЗ. (ЛИТЕРАТУРА. Часть 2)

D. Katskov

Аннотация


Интерес аналитиков к электротермической атомно-абсорбционной спектрометрии (ET AAS) с источником непрерывного спектра (СS) обусловлен перспективой использования для количественных измерений обзорного спектра поглощения, отражающего общий состав пробы. В сочетании с принципиальными достоинствами традиционного атомно-абсорбционного (АА) метода анализа (меньшей в сравнении с эмиссионным спектром вероятностью наложения спектральных линий и  высокой чувствительностью),  концепция одновременного ЕТ ААS определения элементов может оказать революционное воздействие на технологию анализа, а именно, радикально сократить время измерений, расширить круг анализируемых веществ, упростить пробоподготовку, а также обепечить прямое определение состава микрообъектов. Реализация этого потенциала, однако, помимо усовершенствования инструментальной базы, требует решения ряда специфических проблем, нехарактерных для традиционной технологии последовательного одноэлементного определения. Одинаковые для всех элементов условия анализа исключают возможность селективной оптимизации степени разбавления, способа химической модификации  или термической обработки анализируемого вещества. Для реальных, например, природных, проб анализ осложнен значительным, до нескольких порядков, разбросом содержаний элементов, разной чувствительностью аналитических линий и вариациями кинетики испарения и степени атомизации, зависящими от многих параметров, включая термодинамические свойства элемента и пробы, свойства поверхности подложки, температуру газовой фазы и скорость массопереноса. Очевидно, что для разработки приборов и методологии многоэлементного определения необходимо более полное понимание специфики процессов формирования абсорбционного сигнала при измерениях с СS источником, основанное на обобщении информации об известных теоретических и экспериментальных подходах в AA исследованиях, сопряженных проблемах и приемах их решения. Соответственно этой задаче, в данной работе автор прослеживает этапы освоения атомно-абсорбционной спектрометрии с CS источником, обращая особое внимание на перспективные c точки зрения одновременного многоэлементного определения направления исследований и технические усовершенствования. Приведенные примеры теоретических моделей или экспериментальных результатов предназначены, в основном, для иллюстрации многоплановости проблемы и ни в коей мере не претендуют на завершенность решений. Предлагаемый материал может быть полезен для исследователей и конструкторов, специализирующихся в области инструментального анализа. 

Ключевые слова: многоэлементный атомно-абсорбционный анализ, источник непрерывного спектра, одновременное определение элементов, электротермическая атомизация.

DOI: http://dx.doi.org/10.15826/analitika.2018.22.4.001


Полный текст:

PDF

Литература


REFERENCES (Part 2)

L'vov B.V., Nikolaev V.G., Norman E.A., Polzik L.K., Mojica M. Theoretical calculation of the characteristic mass in graphite furnace atomic absorption spectrometry. Spectrochim. Acta, Part B, 1986, vol. 41, no. 10, pp.1043–1053. doi: 10.1016/0584-8547(86)80125-2

L’vov B.V. Recent advances in absolute analysis by graphite furnace atomic absorption spectrometry, Spectrochim. Acta, Part B, 1990, vol. 45, no. 7, pp. 633–655. doi: 10.1016/0584-8547(90)80046-L

L’vov B.V. Interpretation of atomization mechanisms in electrothermal atomic absorption spectrometry by analysis of the absolute rates of the processes (Rewiev). Spectrochim. Acta, Part B, 1997, vol. 52, no.1, pp. 1-23. doi: 10.1016/S0584-8547(96)01541-8

L’vov B.V. Alan Walsh and absolute analysis project. Spectrochim. Acta, Part B, 1999, vol. 54, no. 14, pp. 2063-2065. doi: 10.1016/S0584-8547(99)00109-3

Katskov D.A., Grinshtein I.L., Kruglikova L.P. Vaporisation of In, Ga, Ge, Sn, Pb, Sb, Bi, Se and Te from a graphite surface by Atomic Absorption Analysis. J. Applied Spectroscopy, 1980, vol. 33, no. 5, pp. 1175-1181. doi: 10.1007/BF00615538

L’vov B.V., Nikolaev V.G. Calculation of diffusion coefficients for metal vapors for electrothermal atomic-absorption spectrometry. J. Applied. Spectroscopy, 1987, vol. 46, no.1, pp. 1-5. doi: 10.1007/BF00660271

Sadagoff Y. M. Measurement of the diffusion coefficients of metal vapors in graphite furnaces. Spectrochim. Acta, Part B, 2000, vol. 55, no. 7, pp. 907-915. doi: 10.1016/S0584-8547(00)00189-0

Falk H.A. A theoretical analysis of the diffusion process in flameless atomizers. Spectrochim. Acta, Part B, 1978, vol. 33, no. 9, pp. 695-700. doi: 10.1016/0584-8547(78)80081-0

Woodriff R., Marincovic M., Howald R.A., Eliezer I. Sample loss mechanism in a constant temperature graphite furnace. Anal. Chem., 1977, vol. 49, no. 13, pp. 2008-2012. doi: 10.1021/ac50021a031

Fuller C.W. A kinetic theory of atomization for non-flame atomic absorption spectrometry with a graphite furnace. The kinetics and mechanism of atomization for copper. Analyst, 1974, vol. 99, pp. 739-744. doi: 10.1039/AN9749900739

Histen T.E., Gu¨ell O.A., Chavez I.A., Holcombe J.A. Monte Carlo simulation of electrothermal atomization on a desktop personal computer. Spectrochim. Acta, Part B, 1996, vol. 51, no. 9-10, pp. 1279–1289. doi: 10.1016/0584-8547(96)01505-4

Van den Broek W.M.G.T., de Galan L. Supply and removal of sample vapour in graphite thermal atomizers. Anal. Chem., 1977, vol. 49, no. 14, pp. 2176-2186. doi: 10.1021/ac50022a019

Paveri-Fontana S.L., Tessari G., Torsi G. Time-resolved distribution of atoms in flameless spectrometry. A theoretical calculation. Anal. Chem., 1974, vol. 46, no. 8, pp. 1032-1038. doi: 10.1021/ac60344a013

Torsi G., Tessari G. Time-resolved distribution of atoms in flameless spectrometry. Recovery of the source parameters from the response function. Anal. Chem., 1975, vol. 47, no. 6, pp. 839-842. doi: 10.1021/ac60356a025

Torsi G., Tessari G. Time-resolved distribution of atoms in flameless spectrometry. Experimental. Anal. Chem., 1975, vol. 47, no. 6, pp. 842-849. doi: 10.1021/ac60356a026

Torsi G., Tessari G. Time-resolved distribution of atoms in flameless spectrometry. Lead release. Anal. Chem., 1976, vol. 48, no. 9, pp. 1318-1324. doi: 10.1021/ac50003a017

Holcombe J.A., Rayson G.D., Akerlind N. Time and spatial absorbance profiles within a graphite furnace atomizer. Spectrochim. Acta, Part B, 1982, vol. 37, no. 4, pp. 319-330. doi: 10.1016/0584-8547(82)80069-4

Holcombe J.A. Vapour expulsion and loss from a graphite furnace atomizer. Spectrochim. Acta, Part B, 1983, vol. 38, no. 4, pp. 609-615. doi: 10.1016/0584-8547(83)80035-4

Gilmutdinov А.Kh., Fishman I.C. Fоrmation of an absorbing layer of atoms in half-closed atomizers for atomic absorption spectrometry. Large atomizers. J. Applied Spectroscopy, 1983, vol. 38, no. 2, pp.166-172. doi: 10.1007/BF00662735

Gilmutdinov А.Kh., Fishman I.C. Fоrmation of an absorbing Layer of atoms in half-closed atomizers for atomic absorption spectrometry. Small atomizers. J. Applied Spectroscopy, 1982, vol. 37, no. 4, pp. 1103-1109. doi: 10.1007/BF00664500

Sturgeon R.E., Chakrabarti C.L. Mechanism of atom loss in graphite furnace atomic absorption spectrometry. Anal. Chem., 1977, vol. 49, no. 8, pp. 1100-1106. doi: 10.1021/ac50016a012

Baxter D.C., Frech W. Temperature gradients as a limiting factor for absolute analysis by graphite furnace atomic absorption spectrometry. Spectrochim. Acta, Part B, 1987, vol. 42, no. 8, pp. 1005-1010. doi: 10.1016/0584-8547(87)80112-X

Smets B. Atom formation and dissipation in electrothermal atomization. Spectrochim. Acta, Part B, 1980, vol. 35, no. 1, pp. 33-42. doi: 10.1016/0584-8547(80)80100-5

Slavin W., Manning D.G., Carnrick G. Effect of graphite furnace substrate materials on analysis by furnace atomic absorption spectrometry. Anal. Chem., 1981, vol. 53, no. 9, pp. 1504-1509. doi: 10.1021/ac00232a047

Sturgeon R.E., Chakrabarti C.L. Evaluation of pyrolytic-graphite-coated tubes for graphite furnace atomic absorption spectrometry. Anal. Chem., 1977, vol. 49, no.1, pp. 90–97. doi: 10.1021/ac50009a033

Ortner H.M., Schlemmer G., Welz B., Wegscheider W. Scanning electron microscopy studies on surfaces from electrothermal atomic absorption spectrometry—I: Polycrystalline electrographite tubes with and without pyrographite coating. Spectrochim. Acta, Part B, 1985, vol. 40, no.7, pp. 959-977. doi: 10.1016/0584-8547(85)80066-5

Hadgu N., Frech W. Performance of side-heated graphite atomizers in atomic absorption spectrometry using tubes with end caps. Spectrochim. Acta, Part B, 1994, vol. 49, no. 5, pp. 445-457. doi: 10.1016/0584-8547(94)80037-5

Hadgu N., Ohlsson K.E.A., Frech W. Diffusion vapour transfer modelling for end-capped atomizers. Part 1. Atomizer with closed injection port. Spectrochim. Acta, Part B, 1995, vol. 50, no. 9, pp. 1077-1093. doi: 10.1016/0584-8547(95)01303-V

Hadgu N., Ohlsson K.E.A., Frech W. Diffusion vapour transfer modelling for end-capped atomizers. Part 2. Atomizer with open injection port. Spectrochim. Acta, Part B, 1996, vol. 51, no. 9-10, pp. 1081-1093. doi: 10.1016/0584-8547(96)01463-2

Sturgeon R.E., Chakrabarti C.L., Bertels P.C. Atomization under pressure in graphite furnace atomic absorption spectrometry. Spectrochim. Acta, Part B, 1977, vol. 32, no. 5-6, pp. 257-277. doi: 10.1016/0584-8547(77)80009-8

L’vov B.V., Katskov D.A., Kruglikova L.P. Atomic absorption determination of average temperature of inhomogeneous absorbing layers. J. Applied Spectroscopy, 1971, vol. 14, no. 5, pp. 569-575. doi: 10.1007/BF00605790

L’vov B.V. Application of atomic-absorption spectroscopy in physical investigations. Quant. Spectrosc. Radiat. Transfer, 1972, vol. 12, pp. 651-681. doi: 10.1016/0022-4073(72)90175-6

Browner R.F., Winefordner J.D. Measurement of flame temperatures by a two-line atomic absorption method. Anal. Chem., 1972, vol. 44, no. 2, pp. 247–252. doi: 10.1021/ac60310a020

Sturgeon R.E., Chakrabarti C.L. The temperature of atomic vapour in graphite furnace atomic absorption spectrometry. Spectrochim. Acta, Part B, 1977, vol. 32, no. 5-6, pp. 231-255. doi: 10.1016/0584-8547(77)80008-6

Chakrabarti C.L., Wu S., Karwowska R., Rogers J.T., Haley L., Bertels P.C., Dick R. Temperature of platform, furnace wall and vapour in a pulse-heated electrothermal graphite furnace in atomic absorption spectrometry. Spectrochim. Acta, Part B, 1984, vol. 39, no. 2-3, pp. 415-448. doi: 10.1016/0584-8547(84)80049-X

Bratzel M.P., Chakrabarti C.L. Determination of the temperature of the atomic vapor produced by a mini-massmann carbon rod atomizer and by a west-type carbon filament atomizer using atomic absorption spectrometry. Anal. Chim. Acta, 1973, vol. 63, no. 1, pp. 1-10. doi: 10.1016/S0003-2670(01)82168-1

Adams M.J., Kirkbright G.F. The application of optical pyrometric and two-line atomic absorption techniques to the determination of temperatures in a graphite furnace atomizer. Anal. Chim. Acta, 1976, vol. 84, no. 1, pp. 79-88. doi: 10.1016/S0003-2670(01)82841-5

Katskov D., Darangwa N. Application of Langmuir theory of evaporation to the simulation of sample vapor composition and release rate in graphite tube atomizers. Part 1. The model and calculation algorithm. J. Anal. At. Spectrom., 2010, vol. 25, pp. 1079-1090. doi: 10.1039/C8JA00278A

Katskov D., Darangwa N., Heitmann U. Application of Langmuir theory of evaporation to the simulation of sample vapor composition and release rate in graphite tube atomizers. Part 2. Verification of the methodology and investigation of atomization of Ag and Cu. J. Anal. At. Spectrom., 2010, vol. 25, pp. 1091-1101. doi: 10.1039/C8JA00278A

Darangwa N., Katskov D.A. Heitmann U. Making ET AAS determination less dependent on vaporization kinetics of the analytes. S. Afr. J. Chem., 2013, vol. 66, pp. 207–215.

Frech W., Persson J.A., Cedergren A. Chemical reactions in atom reservoirs used in atomic absorption spectroscopy, Prog. Anal. At. Spectrosc., 1980 vol. 3, pp. 279-297.

Katskov D.A. Modern ideas regarding the mechanism of thermal atomization of material in atomic-absorption analysis (Review). J. Applied Spectroscopy, 1983, vol. 38, no. 2, pp. 145-166. doi: 10.1007/BF00662734

Sturgeon R. Graphite furnace atomic absorption spectrometry: Fact and fiction. Fresenius J Anal. Chem., 1986, vol. 324, no. 8, pp. 807-818. doi: 10.1007/BF00473175

Maessen F.J.M.J., Posma F.D. Fundamental aspects of flameless atomic absorption using the mini-Massman carbon rod atomizer. Anal. Chem., 1974, vol. 46, no. 11, pp. 1439-1444. doi: 10.1021/ac60347a035

Talmi Y., Morrison G.H. Induction furnace method in atomic spectrometry. Anal. Chem., 1972, vol. 44, no. 8, pp. 1455-1466. doi: 10.1021/ac60316a012

Campbell W.C., Ottaway J.M. Atom-formation processes in carbon furnace atomizers used in atomic-absorption spectrometry. Talanta, 1974, vol. 21, no. 8, pp. 837-844. doi: 10.1016/0039-9140(74)80221-3

Byrne J.P. A mechanism for non-flame atomization in atomic absorption spectroscopy. Austr. J. Chem., 1979, vol. 32, no. 2, pp. 249-255. doi: 10.1071/CH9790249

Johnson D.J., Charp B.L., West T.S., Dagnall R.M. Some observations on the vaporisation on samples with carbon filament atomizer. Anal. Chem., 1975, vol. 47, no. 8, pp. 1234-1240. doi: 10.1021/ac60358a038

Agget J., Sprott A.J. Non-flame atomization in atomic absorption spectrometry. Anal. Chim. Acta, 1974, vol. 72, no.1, pp. 49-56. doi: 10.1016/S0003-2670(01)82947-0

Wendl W., Müller-Vogt G. Chemical reactions in the graphite tube for some carbide and oxide forming elements. Spectrochim. Acta, Part B, 1984, vol. 39, no. 2-3, pp. 237-242. doi: 10.1016/0584-8547(84)80031-2

Sturgeon R.E., Chakrabarti C.L., Langford C.H. Studies on the mechanism of atom formation in graphite furnace atomic absorption spectrometry. Anal.Chem., 1976, vol. 48, no. 12, pp. 1792-1807. doi: 10.1021/ac50006a041

Panichev N.A., Ma Q., Sturgeon R.E., Chakrabarti C.L., Pavski V. Condensation of analyte vapor species in graphite furnace atomic absorption spectrometry. Spectrochim. Acta, Part B, 1999, vol. 54, no. 5, pp. 719-731. doi: 10.1016/S0584-8547(98)00253-5

Hughes D.M., Chakrabarti C.L., Lamoureux M.M., Hutton J.C., Goltz D.M., Sturgeon R.E., Grégoire D.C., Gilmutdinov A.Kh. Digital imaging of formation and dissipation processes for atoms and molecules and condensed-phase species in graphite furnace atomic absorption spectrometry: a review. Spectrochim. Acta, Part B, 1996, vol. 51, no. 9-10, pp. 973-997. doi: 10.1016/0584-8547(96)01501-7

Lamoureux M. M., Chakrabarti C.L., Hutton J.C., Gilmutdinov A.Kh., Zakharov Yu.A., Grégoire D.C. Mechanism of aluminium spike formation and dissipation in electrothermal atomic absorption spectrometry. Spectrochim. Acta, Part B, 1995, vol. 50, no. 14, pp.1847-1867. doi: 10.1016/0584-8547(95)01367-9

Hughes D.M., Chakrabarti C.L., Goltz D.M., Sturgeon R.E., Grégoire D.C. Investigation of Vapor Condensation in Graphite Furnace Atomic Absorption Spectrometry by the Shadow Spectral Digital Imaging Technique. Appl. Spectrosc., 1996, vol. 50, no. 6, pp. 715-731. doi: 10.1366/0003702963905628

Chakrabarti C.L., Gilmutdinov A.Kh., Hutton J.C. Digital imaging of atomization processes in electrothermal atomizers for atomic absorption spectrometry. Anal. Chem., 1993, vol. 65, no. 6, pp. 716–723. doi: 10.1021/ac00054a011

Baird R.B., Gabrielian S.M. A tantalum foil lined graphite tube for the analysis of arsenic and selenium by atomic absorption spectrometry, Appl. Spectrosc., 1974, vol. 28, no. 3, pp. 273-274. doi: 10.1366/000370274774332470

Wall S.D. Sensitivity enhancement in flameless atomization systems by use of rigid tungsten collar. Talanta, 1977, vol. 24, no. 12, pp. 755-757. doi: 10.1016/0039-9140(77)80208-7

Runnels J.H., Merrifield R., Fisher H.B. Analysis of petroleum for trace metals. A method for improving detection limits for some elements with graphite furnace atomizer. Anal. Chem., 1975, vol. 47, no. 8, pp. 1258-1263. doi: 10.1021/ac60358a020

Fonseca R.W., Güell O.A., Holcombe J.A. Electrothermal atomization of copper from graphite and tantalum surfaces. Spectrochim. Acta, Part B, 1990, vol. 45, no. 11, pp. 1257–1264. doi: 10.1016/0584-8547(90)80068-T

Xiu-Ping Y., Zhe-Ming N., Xiao-Tao Y., Guo-Qiang H. Kinetics of indium atomization from different atomizer surfaces in electrothermal atomic absorption spectrometry (ETAAS). Talanta, 1993, vol. 40, no. 12, pp. 1839–1846. doi: 10.1016/0039-9140(93)80105-Z

Frech W., Cedergren A. Investigations of reactions involved in flameless atomic absorption procedures. Part 1. Application of high-temperature equilibrium calculations to a multicomponent system with special reference to the interferences from chlorine in the flameless atomic absorption method for lead in steel. Anal. Chim. Acta, 1976, vol. 82, no. 1, pp. 83-92. doi: 10.1016/S0003-2670(01)82206-6

Frech W., Cedergren A. Investigations of reactions involved in flameless atomic absorption procedures. Part 2. An experimental study of the role of hydrogen in eliminating the interference from chlorine in the determination of lead in steel. Anal. Chim. Acta, 1976, vol. 82, no. 1, pp. 93-102. doi: 10.1016/S0003-2670(01)82207-8

Frech W., Cedergren A. Investigations of reactions involved in flameless atomic absorption procedures. Part 3. A study of factors influencing the determination of lead in strong sodium chloride solutions. Anal. Chim. Acta, 1977, vol. 88, no. 1, pp. 57-67. doi: 10.1016/S0003-2670(01)96049-0

Persson J.E., Frech W., Cedergren A. Investigations of reactions involved in flameless atomic absorption procedures, Part 4. A theoretical study of factors influencing the determination of aluminium. Anal. Chim. Acta, 1977, vol. 92, no. 1, pp. 85-93. doi: 10.1016/S0003-2670(01)84573-6

Persson J.E., Frech W., Cedergren A. Investigations of reactions involved in flameless atomic absorption procedures, Part 5. An experimental study of factors influencing the determination of aluminium. Anal. Chim. Acta, 1977, vol. 92, no. 1, pp. 95-104. doi: 10.1016/S0003-2670(01)84574-8

Johansson K., Frech W., Cedergren A. Investigations of reactions involved in flameless atomic absorption procedures. Part 6. A study of some factors influencing the determination of lead in sulphate matrices. Anal. Chim. Acta, 1977, vol. 94, no. 2, pp. 245-265. doi: 10.1016/S0003-2670(01)84524-4

Frech W., Cedergren A. Investigations of reactions involved in flameless atomic absorption procedures. Part 7. A theoretical and experimental study of factors influencing the determination of silicon. Anal. Chim. Acta, 1980, vol. 113, no. 2, pp. 227-235. doi: 10.1016/S0003-2670(01)93736-5

Persson J.E., Frech W. Investigation of reactions involved in flameless atomic absorption procedures. Part 8. A theoretical and experimental study of factors influencing the determination of phosphorus. Anal. Chim.Acta, 1980, vol. 119, no. 1, pp. 75-85. doi: 10.1016/S0003-2670(00)00032-5

Cedergren A., Frech W., Lundberg E., Persson J.A. Investigation of reactions involved in flameless atomic absorption procedures. Part 9. An atomization system with controlled atmosphere and temperature for the determination of volatile elements in complex matrices. Anal. Chim. Acta, 1981, vol. 128, pp. 1-8. doi: 10.1016/S0003-2670(01)84078-2

Pupyshev A.A. [Atomic absorption spectral analysis]. Moscow, Technosphera, 2009, 781 p.

Histen T.E., Holcombe J.A. Simple approach for the determination of the order of release in electrothermal atomic absorption spectrometry. Spectrochim. Acta, Part B, 1998, vol. 53, no. 6-8, pp. 911–921. doi: 10.1016/S0584-8547(98)00124-4

Rayson G.D., Holcombe J.A. Tin atom formation in a graphite furnace atomizer. Anal. Chim. Acta, 1982, vol. 136, pp. 249-260. doi: 10.1016/S0003-2670(01)95384-X

Rojas D., Olivares W. A method for the determination of kinetic order and energy of the atom formation process in electrothermal atomization atomic absorption spectrometry, (ETA-AAS). Spectrochim. Acta, Part B, 1992, vol. 47, no. 3, pp. 387–397. doi: 10.1016/0584-8547(92)80033-D

Xiu-Ping Y., Zhe-Ming N., Xiao-Tao Y., Guo-Qiang H. An approach to the determination of the kinetic parameters for atom formation in electrothermal atomic absorption spectrometry. Spectrochim. Acta, Part B, 1993, vol. 48, no. 4, pp. 605–624. doi: 10.1016/0584-8547(93)80064-2

Fonseca R.W., McNally J., Holcombe J.A. Mechanisms of vaporization for silver and gold using electrothermal atomization. Spectrochim. Acta, Part B, 1993, vol. 48, no. 1, pp. 79-89. doi: 10.1016/0584-8547(93)80009-J

Sturgeon R.E., Siu K.W.M., Gardner G.J., Berman S.S. Carbon-oxygen reactions in graphite furnace atomic absorption spectrometry. Anal. Chem., 1986, vol. 58, no.1, pp. 42-50. doi: 10.1021/ac00292a013

Majidi V., Xu N., Smith R.G. Electrothermal vaporization, part 1: gas phase chemistry. Spectrochim Acta, Part B, 2000, vol. 55, no. 1, pp. 3-35. doi: 10.1016/S0584-8547(99)00163-9

Majidi V., Smith R.G., Xu N., McMahon M.W., Bossio R. Electrothermal vaporization, part 2: surface chemistry (Review). Spectrochim. Acta, Part B, 2000, vol. 55, no. 12, pp. 1787-1822. doi: 10.1016/S0584-8547(00)00276-7

Katskov D.A., L'vov B.V., Polzik L.K., Semenov Yu.V. Investigation of the process of the formation of an absorption layer of atoms in graphite furnaces in atomic-absorption analysis. J. Applied Spectroscopy, 1977, vol. 26, no. 4, pp. 430-436. doi: 10.1007/BF00606937

Katskov D.A. Analysis of chemical processes on the surface of thermal atomizers in atomic absorption measurements. J. Applied Spectroscopy. 1979, vol. 30, no. 4, pp. 427-433. doi: 10.1007/BF00616171

Katskov D.A., Grinshtein I.L. Investigation of the vaporization of beryllium, calcium, strontium, barium and aluminium from a graphite surface by atomic absorption spectrometry. J. Applied Spectroscopy, 1980, vol. 33, no. 6, pp. 1286-1291. doi: 10.1007/BF00614027

Katskov D.A., Grinshtein I.L. An atomic absorption study of the evaporation of alkali metals from graphite. J. Applied Spectroscopy, 1981, vol. 34, no. 5, pp. 477-482. doi: 10.1007/BF00613047

Katskov D.A., Grinshtein I.L. Study of evaporation of iron, cobalt, nickel, chromium and manganese in graphite electrothermal atomizers for atomic-absorption analysis. J. Applied Spectroscopy, 1982, vol. 36, no. 3, pp. 261-264. doi: 10.1007/BF00659753

Bolgar A.S., Turchanin A.G, Fesenko V.V. [Thermodynamic properties of carbides]. Kiev, Naukova dumka, 1973, 271 p. (in Russian).

Aronson S., Salzano P.Y., Bellafiore D. Thermodynamic properties of the potassium-graphite lamellar compounds from solid state emf measurement. J. Chem. Phys., 1968, vol. 49, no. 1, pp. 434-439. doi: 10.1063/1.1669840

Fedorov V.B, Shorshorov M.Kh, Khakimova, D.K. [Carbon and its interaction with metals]. M, Metallurgiia, 1978, 208 p. (in Russian).

Hirth J.P., Pound G.M. Condensation and Evaporation, Oxford, Pergamon Press, 1963, 190 p.

Katskov D.A., Kopeikin V.A. Development of the theory of the atomization of oxides in electrothermal atomic-absorption analysis. J. Applied. Spectroscopy, 1988, vol. 48, no. 1, pp. 17-23. doi: 10.1007/BF00657257

Katskov D.A., Kopeikin V.A. Oxygen in metal-oxide atomization in electrothermal atomization electrothermal atomic absorption analysis. J. Applied Spectroscopy, 1988, vol. 48, no. 2, pp. 116-122. doi: 10.1007/BF00661982

Katskov D.A., Marais P.J.J.G., McCrindle R.I. An alternative to the popular atomization concept for electrothermal atomic absorption spectrometry. Spectrochim. Acta, Part B, 1996, vol. 51, no. 9-10, pp. 1291-1295. doi: 10.1016/0584-8547(96)01481-4

Katskov D., Darangwa N., Grotti M. Chemically assisted release of transition metals in graphite atomizers for atomic absorption spectrometry. Spectrochim. Acta, Part B, 2006, vol. 61, no. 5, pp. 554–564. doi: 10.1016/j.sab.2006.03.013

Bulska E., Piaścik M., Katskov D., Darangwa N., Grotti M. Investigation of aging processes of graphite tubes modified with iridium and rhodium used for atomic spectrometry. Spectrochim. Acta, Part B, 2007, vol. 62, no. 11, pp. 1195–1202. doi: 10.1016/j.sab.2007.08.005

Kikoin I.K. (Editor), [Tables of Physical Constants. Reference book]. Moscow, Atomisdat, 1976, 1008 p. (in Russian).

Samsonov G.V., Borisova A.L. et. al. [Physical and chemical properties of oxides], Moscow, Metallurgiia, 1978, 472 p. (in Russian)

Gilmutdinov A.Kh., Zakharov Yu. A., Ivanov V. P., Voloshin A.V. Shadow spectral filming: a method of investigating electrothermal atomization. Part 1. Dynamics of formation and structure of the absorption layer of thallium, indium, gallium and aluminium atoms. J. Anal. At. Spectrom., 1991, vol. 6, pp. 505-519. doi: 10.1039/JA9910600505

Gilmutdinov A.Kh., Zakharov Yu.A., Ivanov V. P., Voloshin A.V., Dittrich K. Shadow spectral filming: a method of investigating electrothermal atomization. Part 2. Dynamics of formation and structure of the absorption layer of aluminium, indium and gallium molecules, J. Anal. At. Spectrom., 1992, vol. 7, pp. 675-683. doi: 10.1039/JA9920700675

Gilmutdinov A.Kh., Zakharov Yu.A., Voloshin A.V. Shadow spectral filming: a method of investigating electrothermal atomization. Part 3. Dynamics of longitudinal propagation of an analyte within graphite furnaces. J. Anal. At. Spectrom., 1993, vol. 8, pp. 387-395. doi: 10.1039/JA9930800387

Volynsky A.B. Catalytic processes in graphite furnaces for electrothermal atomic absorption spectrometry (Review). Spectrochim. Acta, Part B, 1996, vol. 51, no. 13, pp. 1573-1589. doi: 10.1016/S0584-8547(96)01545-5

Volynsky A.B. Application of graphite tubes modified with high-melting carbides in electrothermal atomic absorption spectrometry (Review). I. General approach. Spectrochim. Acta, Part B, 1998, vol. 53, no. 4, pp. 509-535. doi: 10.1016/S0584-8547(98)00093-7

Volynsky A.B. Graphite atomizers modified with high-melting carbides for electrothermal atomic absorption spectrometry (Review). II. Practical aspects. Spectrochim. Acta, Part B, 1998, vol. 53, no. 12, pp. 1607–1645. doi: 10.1016/S0584-8547(98)00221-3

Katskov D., Mofolo R., Tittarelli P. Energy transfer caused by reactions in graphite tube atomizer. Spectrochim. Acta, Part B, 2001, vol. 56, no. 9, pp. 1625-1644. doi: 10.1016/S0584-8547(01)00249-X

Katskov D., Darangwa N., Grotti M., Chemically assisted release of transition metals in graphite vaporisers for atomic spectrometry. Spectrochim. Acta, Part B, 2006, vol. 61, no. 5, pp. 554-564. doi: 10.1016/j.sab.2006.03.013

Eliashevich M.A. [Atomic and molecular spectroscopy], Moscow, Fismatgis, 1962, 892 p. (in Russian).

Jackson J.G., Fonseca R.W., Holcombe J. A. Migration of Ag, Cd and Cu into highly oriented pyrolytic graphite and pyrolytic coated graphite. Spectrochim. Acta, Part B, 1995, vol. 50, no. 14, pp. 1837-1846. doi: 10.1016/0584-8547(95)01377-6

Каtskov D.A., Shwarzer R., Marais P.J.J., McCrindle R.I. Diffusion of molecular vapors through heated graphite. Spectrochim. Acta, Part B, 1995, vol. 50, no. 8, pp. 763-780. doi: 10.1016/0584-8547(94)00165-R

Heitmann U., Becker-Ross H., Florek S., Huang M.D., Okruss M. Determination of non-metals via molecular absorption using high-resolution continuum source absorption spectrometry and graphite furnace atomization. J. Anal. At. Spectrom., 2006, vol. 21, pp. 1314–1320. doi: 10.1039/B607384K

Colares L., Pereira E.R., Merib J., Silva J.C., Silva J.M., Welz B., Carasek E., Borges D.L.G. Application of disposable starch-based platforms for sample introduction and determination of refractory elements using graphite furnace atomic absorption spectrometry and direct solid sample analysis, J. Anal. At. Spectrom., 2015, vol. 30, pp. 381-388. doi: 10.1039/C4JA00391H

Pearse R.W.B, Gaydon A.G. Identification of molecular spectra, Chapman & Hall, 3d Ed. 1965, 369 p.

ASTM Standard D 6732-02, “Standard Test Method for Determination of Copper in Jet Fuels by Graphite Furnace Atomic Absorption Spectrometry,” ASTM International, W. Conshohocken, PA, USA, 2005.

ASTM Standard D 4239-05 Standard Test Methods for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion Methods, ASTM International, W. Conshohocken, PA, USA, 2005.

Slavin W., Carnrick G.R. The possibility of standardless furnace atomic absorption spectroscopy. Spectrochim. Acta, Part B, 1984, vol. 39, no. 2-3, pp. 271-282. doi: 10.1016/0584-8547(84)80035-X

L’vov B.V. A continuum source vs. linear source on the way toward absolute graphite furnace atomic absorption spectrometry, Spectrochim. Acta, Part B, 1999, vol. 54, no. 11, pp. 1637-1646. doi: 10.1016/S0584-8547(99)00087-7


Ссылки

  • На текущий момент ссылки отсутствуют.