Изображение на обложке

ПРИМЕНЕНИЕ РЕНТГЕНОФЛУОРЕСЦЕНТНОГО АНАЛИЗА ДЛЯ ИССЛЕДОВАНИЯ ХИМИЧЕСКОГО СОСТАВА ЧАЯ И КОФЕ

А. G. Revenko, D. S. Sharykina

Аннотация


Результаты анализа пищевых продуктов являются важным источником информации об их качестве. Рентгенофлуоресцентный анализ (РФА) вносит значительный вклад в изучение проблем, связанных с продуктами питания. Чай является одним из основных напитков, потребляемых населением Земли. Сложный химический состав чая зависит от многих факторов, в частности, от  состава почвы, условий выращивания, сорта чая и др. В листьях чая и зёрнах кофе содержится большинство элементов, необходимых для здоровья человека. Из-за специфического аромата и положительного влияния на здоровье человека, кофе и чай являются одними из любимых напитков в мире. Применение традиционных химических методов для определения содержаний отдельных элементов в чае и кофе связано с трудоёмкими химическими процедурами обработки исследуемых материалов: концентрирование, экстракция, разбавление, что приводит к дополнительным погрешностям. Представлен обзор текущего состояния проблемы применения РФА при исследовании химического состава чая и кофе. Отмечены достижения в разработке рентгеноспектральной аппаратуры, в частности портативных и микро-РФА спектрометров. Кратко рассмотрены способы подготовки проб. По мере развития аналитической химии подготовка проб становится этапом анализа, занимающим иногда более половины общего времени анализа. Приведены примеры определения содержаний основных и микроэлементов, выполненные для оценки влияния природных факторов на аккумуляцию растениями отдельных элементов; для оценки качества чая и кофе, проверки содержания токсичных элементов и подлинности продуктов, а также их географического происхождения. При анализе рассматриваемых продуктов с помощью РФА использовались различные способы для преобразования экспериментальных интенсивностей в содержания определяемых элементов: внешнего стандарта; стандарта-фона и фундаментальных параметров. Отмечено, что исследователи сталкиваются со значительными взаимными влияниями элементов. Представлены оценки межэлементных воздействий на интенсивности аналитических линий для чая, кофе и некоторых растений.

Ключевые слова: рентгенофлуоресцентный анализ, исследование чая и кофе, оценка и учёт взаимных влияний элементов

DOI: http://dx.doi.org/10.15826/analitika.2019.23.1.015

Полный текст:

PDF (Russian)

Литература


REFERENCES

Revenko A.G. [X-Ray fluorescence analysis of biological samples]. Vestnik Insituta biologii Komi NC UrO RAN [Annals of IB Komi SC UB RAS], 2000, vol. 28, no. 2, pp. 14-16 (in Russian).

Revenko A.G. X-Ray fluorescence analysis of biological samples. Proc. 5th Int. Conf. on Contemp. Phys. Ulaanbaatar: University Press, 2013, pp. 175-197.

Taylor A., Barlow N., Day M.P., Hill S., Patriarca M., White M. Atomic spectrometry update: review of advances in the analysis of clinical and biological materials, foods and beverages. J. Anal. At. Spectrom., 2017, vol. 32, pp. 432-476. doi: 10.1039/c7ja90005h.

Taylor A., Barlow N., Day M.P., Hill S., Martin N., Patriarca M. Atomic spectrometry update: review of advances in the analysis of clinical and biological materials, foods and beverages. J. Anal. At. Spectrom., 2018, vol. 33, pp. 338-382. doi: 10.1039/c8ja90005a.

Revenko A.G. X-ray fluorescence analysis of food products: its present and future. Abstr. Eur. Conf. on X-Ray Spectrom. Bologna, 2014. P. 82.

Revenko A.G., Khudonogova E.V. [X-ray fluorescence analysis of food]. Tezisy dokladov 8 Vserossiiskoi konferentsii po rentgenospektral'nomu analizu [Proc. 8th All-Russian Conf. on XRF]. Irkutsk, 2014, P. 107 (in Russian).

Sharangi A.B. Medicinal and therapeutic potentialities of tea (Camellia sinensis L.) – A review. Food Res. Int., 2009, vol. 42, pp. 529-535. doi: 10.1016/j.foodres.2009.01.007.

Iashin Ia.I., Iashin А.Ia. Khimicheskii sostav chaia i ego vliianie na zdorov'e cheloveka [The chemical composition of tea and its effect in human health]. Moscow, TransLit Publ., 2010. 160 p. (in Russian).

Haswell S.J., Walmsley A.D. Multivariate data visualisation methods based on multi-elemental analysis of wines and coffees using total reflection X-ray fluorescence analysis. J. Anal. At. Spectrom., 1998, vol. 13, pp. 131-134. doi: 10.1039/A705317G.

De La Calle I., Costas M., Cabaleiro N., Lavilla I., Bendicho C. Fast method for multielemental analysis of plants and discrimination according to the anatomical part by total reflection X-ray fluorescence spectrometry. Food Chem., 2013, vol. 138, pp. 234–241.

Borgese L., Bilo F., Dalipi R., Bontempi E., Depero L.E. Total reflection X-ray fluorescence as a tool for food screening. Spectrochim. Acta, Part B, 2015, vol. 113, pp. 1-15. doi: 10.1016/j.sab.2015.08.001.

Pashkova G.V., Revenko A.G. A Review of Application of Total Reflection X-ray Fluorescence Spectrometry to Water Analysis. Appl. Spectrosc. Rev., 2015, vol. 50, no. 6, pp. 443-473. doi: 10.1080/05704928.2015.1010205.

Pashkova G.V., Gunicheva T.N. [Determination of major and trace elements in milk powders powder by X-ray fluorescence spectrometry]. Analitika i kontrol' [Analytics and control], 2006, vol. 10, no. 3-4, pp. 313-320 (in Russian).

Pashkova G.V. X-ray fluorescence determination of element contents in milk and dairy products. Food Anal. Methods, 2009. vol. 2. pp. 303–310. doi: 10.1007/s12161-009-9080-5.

Pashkova G.V. [X-ray fluorescence analysis of milk and milk-based products]. Analitika i kontrol' [Analytics and control], 2010, vol. 14, no. 1, pp. 4-15 (in Russian).

Pashkova G.V., Smagunova A.N., Finkelshtein A.L. X-ray fluorescence analysis of milk and dairy products: A review // Tr. in Anal. Chem. 2018, vol. 106, pp. 183-189. doi: 10.1016/j.trac.2018.06.014.

Palmer P.T., Jacobs R., Baker P.E., Ferguson K., Webber S. Use of Field-Portable XRF Analyzers for Rapid Screening of Toxic Elements in FDA-Regulated Products. J. Agric. Food Chem., 2009, vol. 57, pp. 2605-2613. doi: 10.1021/jf803285h.

Krivan V., Barth P., Morales A.F. Multielement analysis of green coffee and its possible use for the determination of origin. Mikrochim. Acta, 1993, vol. 110, pp. 217–236. doi: 10.1007/bf01245106.

Marcos A., Fisher A., Rea G., Hill S.J. Preliminary study using trace element concentrations and chemometrics approach to determine the geographical origin of tea. J. Anal. At. Spectrom., 1998, vol. 13, pp. 521-525. doi: 10.1039/A708658J.

Fernandez-Caceres P., Martin M.J., Pablos M., Gonzalez A.G. Differentation of tea (Camellia sinensis) varietes and their geographical origin according to their metal content. J. Agric. Food Chem., 2001, vol. 49, pp. 4775–4779. doi: 10.1016/j.sab.2018.04.013.

Haytowitz D.B., Pehrsson P.R., Holden J.M. The Identification of Key Foods for Food Composition Research. J. Food Compos. Anal., 2002, vol. 15, pp. 183–194. doi: 10.1006/jfca.2001.1046.

Kelly S., Heaton K., Hoogewerff J. Tracing the geographical origin of food: The application of multi-element and multi-isotope analysis. Tr. in Food Sci. Technol., 2005, vol. 16, is.12, pp. 555-567. doi: 10.1016/j.tifs.2005.08.008.

Gonzalvez A., Armenta S., de la Guardia M. Trace-element composition and stable-isotope ratio for discrimination of foods with Protected Designation of Origin. Tr. in Anal. Chem., 2009, vol. 28, no. 11, pp. 1295-1311. doi: 10.1016/j.trac.2009.08.001.

Drivelos S.A., Georgiou C.A. Multi-element and multi-isotope ratio analysis to determine the geographical origin of foods in the European Union. Tr. in Anal. Chem., 2012, vol. 40, pp. 38-51. doi: 10.1016/j.trac.2012.03.013.

Mbaye M., Traoré A., Ndao A.S., Wagué A. Classification of tea consumed in Senegal using XRF techniques and chemometric based on their country of origin. Afr. J. Agric. Res., 2013, vol. 8, no. 44, pp. 5522-5529. doi: 10.5897/ajar2013.7512.

Cruz R., Morais S., Casal S. Mineral Composition Variability of Coffees: A Result of Processing and Production. Processing and Impact on Active Components in Food. Academic Press, 2014. pp. 549-558.

Armenta S., de la Guardia M. Analytical Approaches for the Evaluation of Food Protected Designation of Origin. Advances in Food Traceability Techniques and Technologies. Improving Quality Throughout the Food Chain. Woodhead Publ., 2016, pp. 275-301.

Rajapaksha D., Waduge V., Padilla-Alvarez R., Kalpage M., Rathnayake R.M.N.P., Migliori A., Frew R., Abeysinghe S., Abrahime A., Amarakoon T. XRF to support food traceability studies: Classification of Sri Lankan tea based on their region of origin. X-Ray Spectrom., 2017, vol. 46, no. 4, pp. 220-224. doi: 10.1366/0003702794925165.

Pereira F.M.V., Pereira-Filho E.R., Rodriques E., Bueno M.I.M.S. Development of a methodology for Ca, Fe, K, Mg, Mn, and Zn quantification in teas using X-ray spectroscopy and multivariate calibration. J. Agric. Food Chem., 2006, vol. 54, pp. 5723-5730. doi: 10.1021/jf0603782.

Revenko A.G. Specific features of X-ray fluorescence analysis techniques using capillary lenses and synchrotron radiation. Spectrochim. Acta, Part B, 2007, vol. 62, no. 7, pp. 567-576. doi: 10.1016/j.sab.2007.04.019.

Tsuji K., Injuk J., Van Grieken R. X-Ray Spectrometry: Recent Technological Advances. Chichester, John Wiley & Sons Inc., 2004. 603 p.

Beckhoff B., Kanngiesser B., Langhoff N., Wedell R., Wolff H. Handbook of Practical X-Ray Fluorescence Analysis. Berlin/Heidelberg, Springer, 2006. 863 p.

West M., Ellis A.T., Streli Ch., Vanhoof Ch., Wobrauschek P. 2017 atomic spectrometry update–a review of advances in X-ray fluorescence spectrometry and its special applications. J. Anal. At. Spectrom., 2017, vol. 32, pp. 1629-1649. doi: 10.1039/c7ja90035j.

Vanhoof Ch., Bacon J.R., Ellis A.T., Vincze L., Wobrauschek P. 2018 atomic spectrometry update – a review of advances in X-ray fluorescence spectrometry and its special applications. J. Anal. At. Spectrom., 2018, vol. 33, pp 1413-1431. doi: 10.1039/c8ja90030b.

Szoboszlai N., Polgari Z., Mihucz V.G., Zaray G. Recent trends in total reflection X-ray fluorescence spectrometry for biological applications. Anal. Chim. Acta, 2009, vol. 633, pp. 1-18. doi: 10.1016/j.aca.2008.11.009

Revenko A.G. [The special features of analytical techniques for geological samples using TXRF spectrometers]. Analitika i kontrol' [Analytics and control], 2010, vol. 14, no. 2, pp. 42-64 (in Russian).

Alov N.V. [X-ray fluorescence analysis with total external reflection: physical foundations and analytical application (review)]. Zavodskaia laboratoriia. Diagnostika materialov. [Industrial laboratory. Diagnostics of materials], 2010, vol. 76, no. 1. pp. 4-14.

Klockenkaemper R., von Bohlen A. Total-reflection X-ray fluorescence analysis and related methods. New Jersey, John Wiley & Sons, 2015. 519 p.

Kawai J. Total Reflection X-Ray Fluorescence. Compendium of Surface and Interface Analysis: The Surface Science Society of Japan eds., Springer, 2018, pp. 763-768. doi: 10.1007/978-981-10-6156-1_122.

Heckel J., Brumme M., Weinert A., Irmer K. Multi-Element Trace Analysis of Rocks and Soils by EDXRF Using Polarized Radiation. X-Ray Spectrom., 1991, vol. 20, no. 6, pp. 287-292. doi: 10.1002/xrs.1300200608

Revenko A.G. Rentgenospektralnyi fluorestsentnyi analiz prirodnykh materialov [X-ray Spectral Fluorescence Analysis of Natural Materials]. Novosibirsk, Nauka Publ., 1994. 264 p. (in Russian).

Revenko A.G., Revenko V.A., Khudonogova E.V., Zhalsaraev B.Zh. X-ray fluorescence determination Rb, Sr, Y, Zr, Nb, Sn, Ba, La, Ce in rocks using an energy dispersive spectrometer with the a polarizer. Analitika i kontrol' [Analytics and control], 2002, vol. 6, no. 4, pp. 400-407 (in Russian).

Tolokonnikov I.A. [Energy dispersive X-ray fluorescent analyzer of the composition of matter RESPECT]. Atomnaia energiia [J. Atomic Energy], 2003, vol. 95, is. 1, pp. 69-70.

Tolokonnikov I.A. Metody povysheniia chuvstvitel'nosti energodispersionnogo rentgenofliuorescentnogo analiza i ikh apparaturnaia realizatsiia. Avtoref. diss. dokt. fiz.-mat. nauk [Methods for increasing the sensitivity of energy dispersive X-ray fluorescence analysis and their instrumentation implementation. Extended abstr. of Dr. phys. and math. sci. diss.]. Moscow, 2005. 44 p. (in Russian).

Zhan X. Application of polarized EDXRF in geochemical sample analysis and comparison with WDXRF. X-Ray Spectrom., 2005, vol. 34, no. 3, pp. 207-212. doi: 10.1002/xrs.794.

Margui E., Padilla R., Hidalgo M., Queralt I., Van Grieken R. High-energy polarized-beam EDXRF for trace metal analysis of vegetation samples in environmental studies. X-Ray Spectrom., 2006, vol. 35, no. 3, pp. 169-177. doi: 10.1002/xrs.890.

Gunes A., Inal A., Kadioglu Y.K. Determination of mineral element concentrations in wheat, sunflower, chickpea and lentil cultivars in response to P fertilization by polarized energy dispersive X-ray fluorescence. X-Ray Spectrom., 2009, vol. 38, no. 5, pp. 451-462. doi: 10.1002/xrs.1186.

Desideri D., Meli M.A., Roselli C., Feduzi L. Polarized X-ray fluorescence spectrometer (EDPXRF) for the determination of essential and non-essential elements in tea. Microchem. J., 2011, vol. 98, pp. 186-189. doi:10.1016/j.microc.2011.01.008.

Desideri D., Meli M.A., Roselli C., Feduzi L. Determination of essential and non-essential elements in herbal tea and camomile by polarised X-rays fluorescence spectrometer (EDPXRF). J. Radioanal. Nucl. Chem., 2011, vol. 290, pp. 391-396. doi:10.1007/s10967-011-1221-9.

Luo L., Chu B., Li Y., Xu T., Wang X., Yuan J., Sun J., Liu Y., Bo Y., Zhan X., Wang S., Tang L. Determination of Pb, As, Cd and trace elements in polluted soils near a lead–zinc mine using polarized X-ray fluorescence spectrometry and the characteristics of the elemental distribution in the area. X-Ray Spectrom., 2012, vol. 41, no. 3, pp. 133-143. doi: 10.1002/xrs.2364.

Zhalsaraev B.Zh. Development of polarized-beam and direct-excitation X-ray spectrometers. Proc. Conf. on X-Ray Analysis. Ulaanbaatar, 2012. pp. 111-123.

Zhalsaraev B.Zh. Comparison of polarized-beam X-ray spectrometers. Proc. Conf. on X-Ray Analysis. Ulaanbaatar, 2012. pp. 124-129.

Cevik U., Akbulut S., Makarovska Ya., Van Grieken R. Polarized-Beam High-Energy EDXRF in Geological Samples. Spectrosc. Lett., 2013, vol. 46, pp. 36–46. doi: 10.1080/00387010.2012.661015.

Hepp N.M., James I.C. Application of high-energy polarized energy-dispersive x-ray fluorescence spectrometry to the determination of trace levels of As, Hg, and Pb in certifiable color additives. X-Ray Spectrom., 2016, vol. 45, no. 6, pp. 330–338. doi: 10.1002/xrs.2709.

Jayasekera R., Freitas M.C., Araujo M.F. Bulk and trace elements analysis of spices: the applicability of k0-standardization and energy dispersive X-ray fluorescence. J. Trace Elem. Med. Biol., 2004, vol. 17(4), pp. 221-228. doi: 10.1016/s0946-672x(04)80022-1.

Tongesayi T., Fedick P., Lechner L., Brock Ch., Le Beau A., Bray Ch. Daily bioaccessible levels of selected essential but toxic heavy metals from the consumption of non-dietary food sources. Food Chem. Toxicology, 2013, vol. 62, pp. 142–147. doi: 10.1016/j.fct.2013.08.052.

Fleming D.E.B., Foran K.A., Kim J.S., Guernsey J.R. Portable x-ray fluorescence for assessing trace elements in rice and rice products: Comparison with inductively coupled plasma-mass spectrometry. Appl. Rad. and Isot., 2015, vol. 104, pp. 217–223. doi: 10.1016/j.apradiso.2015.07.014.

Towett E.K., Shepherd K.D., Drake B.L. Plant elemental composition and portable X-ray fluorescence (pXRF) spectroscopy: quantification under different analytical parameters. X-Ray Spectrom., 2016, vol. 45, no. 2, pp. 117-124. doi: 10.1002/xrs.2678

de Almeida E., Duran N.M., Gomes M.H.F., Savassa S.M., da Cruz T.N.M., Migliavacca R.A., de Carvalho H.W.P. EDXRF for elemental determination of nanoparticle-related agricultural samples. X-Ray Spectrom., 2019, vol. 48, no. 2, pp 151-161. doi: 10.1002/xrs.3001.

Revenko A.G. [Preparation of samples of natural materials for energy dispersive X-ray fluorescence analysis]. Zavodskaia laboratoriia. Diagnostika materialov. [Industrial laboratory. Diagnostics of materials], 1994, vol. 60, no. 11. pp. 16-29. (in Russian).

Garivait S., Quisefit J.P., de Chateaubourg P., Malingre G. Multi-Element Analysis of Plants by WDXRF Using the Scattered Radiation Correction Method. X-Ray Spectrom., 1997, vol. 26, no. 5, pp. 257-264. doi: 10.1002/(sici)1097-4539(199709)26:5%3c257::aid-xrs199%3e3.0.co;2-6.

Revenko A.G. [Application of X-ray fluorescence analysis for plant materials and coal]. Analitika i kontrol' [Analytics and control], 2000, vol. 4, no. 4, pp. 316-328 (in Russian).

Chuparina E.V., Gunicheva T.N. State and Problems of X-Ray Fluorescence Analysis of Plant Materials. Analitika i kontrol' [Analytics and control], 2004, vol. 8, no. 3, pp. 211-226 (in Russian).

Margui E., Hidalgo M., Queralt I. Multielemental fast analysis of vegetation samples by wavelength dispersive X-ray fluorescence spectrometry: Possibilities and drawbacks. Spectrochim. Acta, Part B, 2005, vol. 60, pp. 1363-1372. doi: 10.1016/j.sab.2005.08.004.

Marguí E., Van Grieken R. Sample Preparation for X-Ray Fluorescence Analysis. Encyclopedia of Analytical Chemistry. John Wiley & Sons, Ltd. 2009, pp. 1-20. doi: 10.1002/9780470027318.a6806m.pub2

Marguí E., Queralt I., Van Grieken R. Sample Preparation for X-Ray Fluorescence Analysis. Encyclopedia of Analytical Chemistry. John Wiley & Sons, Ltd. 2016, pp. 1-25. doi: 10.1002/9780470027318.a6806m.pub3.

Chen Y., Guo Z., Wang X., Qiu C. Sample preparation. Review. J. of Chromatography A. 2008, vol. 1184, pp. 191–219. doi: 10.1016/j.chroma.2007.10. 026.

Gunicheva T.N., Chuparina E.V. [Effect of aging reference standard material radiators under direct X-ray fluorescence analysis of plant materials]. Analitika i kontrol' [Analytics and control], 2002, vol. 6, no. 5, pp. 557-565 (in Russian).

Anjos M.J., Lopes R.T., Jesus E.F.O., Simabuco S.M., Cesareo R. Quantitative determination of metals in radish using x-ray fluorescence spectrometry. X-Ray Spectrom., 2002, vol. 31, no. 2, pp. 120-123. doi: 10.1002/xrs.567.

Queralt I., Ovejero M., Carvalho M.L., Marques A.F., Llabrés J.M. Quantitative determination of essential and trace element content of medicinal plants and their infusions by XRF and ICP techniques. X-Ray Spectrom., 2005, vol. 34, no. 3, pp. 213-217. doi: 10.1002/xrs.795.

Chuparina E.V., Gunicheva T.N., Belogolova G.А., Matushenko G.V. [Application of X-Ray Fluorescence Analysis for Studying Chemical Element Distributions in Different Plant Parts, Examplified Artichoke]. Analitika i kontrol' [Analytics and control], 2005, vol. 9, no. 4, pp. 405-409 (in Russian).

Chuparina E.V., Martynov A.M. Application of Nondestructive X-Ray Fluorescence Analysis to Determine the Element Composition of Medicinal Plants. J. of Anal. Chem., 2011, vol. 66, no. 4, pp. 389–395.

Anawar H.M., Canha N., Freitas M.C., Santa Regina I., Garcia-Sanchez A. Effects of different drying processes on the concentrations of metals and metalloids in plant materials. J. Radioanal. Nucl. Chem., 2011, vol. 289, pp. 29–34. doi: 10.1007/s10967-011-1051-9.

Kuehner E.C., Pella P.A. Energy-Dispersive X-ray Spectrometric Analysis of NBS Standard Reference Material 1571 Orchard Leaves After Oxidation and Borate Fusion. Appl. Spectr., 1979, vol. 33, is. 6, pp. 632-634. doi: 10.1366/0003702794925165.

Revenko A.G., Suvorova D.S., Khudonogova E.V. [Investigation of filter applicability for XRF analysis in the longwave range]. Analitika i kontrol' [Analytics and control], 2018, vol. 22, no. 2, pp. 117-127 (in Russian).

Sahin Y., Nas S., Gokalp H.Y. Effect of shooting period, region of growth and processing method on the Fe and Mn content of tea determined by X-ray fluorescence. Int. J. Food Sci. Technol., 1991, vol. 26, pp. 485-492. doi: 10.1111/j.1365-2621.1991.tb01993.x.

Nas S., Gokalp H.Y., Sahin Y. K and Ca content of fresh green tea, black tea, and tea residue determined by X-ray fluorescence analysis. Z. Lebensm. Unters. Forsch., 1993, bd. 196, pp. 32-37.

Xie M., von Bohlen A., Klockenkämper R., Jian X., Günther K. Multielement analysis of Chinese tea (Camellia sinensis) by total-reflection X-ray fluorescence. Z. Lebensm. Unters. Forsch. A., 1998, bd. 207, pp. 31-38.

Salvador M.J., Lopes G.N., Filho V.F.N., Zucchi O.L.A.D. Quality control of commercial tea by X-ray fluorescence. X-Ray Spectrom., 2002, vol. 31, no. 2, pp. 141-144. doi: 10.1002/xrs.546.

Brytov I.A., Plotnikov R.I., Rechinsky A.A. [Material identification by X-ray spectra]. Zavodskaia laboratoriia. Diagnostika materialov. [Industrial laboratory. Diagnostics of materials], 2005, vol. 71, no. 7. pp.11-17.

Tanizawa Y., Abe T., Yamada K. Black tea stain formed on the surface of teacups and pots. Part 1 – Study on the chemical composition and structure. Food Chem., 2007, vol. 103, is.1, pp. 1-7. doi: 10.1016/j.foodchem.2006.05.068.

Ercilsi S., Demir F., Budak G., Karabulut A. Determination of elemental variations in tea leaves (Camellia sinensis L.) in different harvest time by WDXRF spectrometry. Asian J. of Chem., 2009, vol. 21, is. 2, pp. 1313-1317.

Li X., Yu Z. Determination of selenium in biological samples with an energy-dispersive X-ray fluorescence spectrometer. Appl. Radiat. and Isot. 2016, vol. 111, pp 45–49. doi: 10.1016/j.apradiso.2016.02.010.

Dalipi R., Borgese L., Tsuji K., Bontempi E., Depero L.E. Elemental analysis of teas, herbs and their infusions by means of total reflection X-ray fluorescence. J. Food Compos. Anal., 2018, vol. 67, pp. 128–134. doi: 10.1016/j.jfca.2018.01.010.

Orlic I., Makanic J., Valkovic V. Optimization of XRFS for the analysis of toxic elements and heavy metals in coffee products. J. Radioanal. Nucl. Chem., 1986, vol. 102, no. 1, pp. 203-211.

Ninomiya T. X-Ray Spectrometry in Forensic Research. X-Ray Spectrometry: Recent Technological Advances: eds. K. Tsuji et al., John & Wiley. 2004. pp. 553-567.

Frankova A., Drabek O., Havlik J., Szakova J., Vanek A. The effect of beverage preparation method on aluminium content in coffee infusions. J. Inorg. Biochem., 2009, vol. 103, pp. 1480-1485. doi: 10.1016/j.jinorgbio.2009.06.012.

Akamine T., Otaka A., Hokura A., Ito Y., Nakai I. Determination of Trace Elements in Coffee Beans by XRF Spectrometer Equipped with Polarization Optics and Its Application to Identification of Their Production Area. Bunseki Kagaku, 2010, vol. 59, no. 10, pp. 863-871. doi: 10.2116/bunsekikagaku.59.863.

Debastiani R., dos Santos C.E.I., Yoneama M.L., Amaral L., DiasIon J.F. Ion beam analysis of ground coffee and roasted coffee beans. Nucl. Instrum. and Meth. in Phys. Res. B. 2014, vol. 318, pp. 202–206. doi: 10.1016/j.nimb.2013.05.105.

Hernandez M.C., Romero D., Torres H., Miranda J., Hernández-López A.E. X-ray fluorescence analysis of ground coffee. J. Nucl. Phys. Mater. Sci. Rad. Appl., 2017, vol. 5, no. 1, pp. 25–34. doi: 10.15415/jnp.2017.51003.

Chuparina E.V., Gunicheva T.N. [The efficiency evaluation of matrix effect account by methods used under direct XRF analysis of plants]. Analitika i kontrol' [Analytics and control], 2004, vol. 8, no. 2, pp. 152-159 (in Russian).

Finkel'shtein A.L., Afonin V.P. [Calculation of the intensity of X-ray fluorescence]. Metody rentgenospektral'nogo analiza [Methods of X-ray analysis], Novosibirsk: Nauka Publ., 1986. pp. 5-11. (in Russian).

Vandana, Mittal R. Matrix effects during potassium and calcium determinations in rice saplings using X-ray spectrometry. Appl. Radiat. Isot., 2001, vol. 54, pp. 377-382. doi: 10.1016/s0969-8043(00)00284-0.

Mori I., Ukachi M., Nagano K., Ito H., Yoshinaga J., Nishikawa M. Characterization of NIES CRM No. 23 Tea Leaves II for the determination of multielements. Anal. Bioanal. Chem., 2010, vol. 397, pp. 463-470. doi: 10.1007/s00216-009-3290-y.


Ссылки

  • На текущий момент ссылки отсутствуют.