Изображение на обложке

ЭКСТРАКЦИОННО-ФЛУОРИМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ХЛОРОФИЛЛА «А» В ПРИРОДНЫХ ВОДАХ

Z. A. Temerdashev, L. F. Pavlenko, Ya. S. Ermakova, I. G. Korpakova, B. D. Eletskii

Аннотация


В статье проводится анализ методов определения хлорофилла «а» в природных водах – основного пигмента фитопланктона, являющегося индикатором первичной биопродуктивности и трофности водоема. Приводится сравнительная характеристика спектрометрических методов определения, их достоинства и недостатки. Обсуждаются особенности применения различных видов спектрометрического определения аналита: от классических спектрофотометрических до методов дистанционного зондирования водоемов. Показана предпочтительность определения хлорофилла флуоресцентными методами, которые используются в различных вариантах реализации. Обоснована и реализована методика экстракционно-флуоресцентного определения хлорофилла «а» после экстракции его из воды хлороформом и измерении интенсивности флуоресценции при λвозб = 418 нм и λлюм = 675 нм. Проведено сравнение результатов определения хлорофилла «а» стандартизированной спектрофотометрической и разработанной методиками на модельных и реальных пробах воды.  Показано, что в области низких концентраций хлорофилла «а» (0,05 мкг аналита в 1000 см3 воды) аналитический сигнал регистрируется только флуориметрическим методом, а в области более высоких концентраций (0.2 мкг аналита в 1000 см3 воды) спектрофотометрическая стандартизированная методика дает завышенные результаты. Разработанная методика экстракционно-флуориметрического определения хлорофилла «а» в природных водах (пресных и морских) метрологически аттестована и внесена в реестр Федерального информационного фонда по обеспечению единства измерений.

Ключевые слова. Хлорофилл «а» , экстракционно-флуориметрическое определение, трофность водоемов.

DOI: http://dx.doi.org/10.15826/analitika.2019.23.3.001

Полный текст:

PDF (Russian)

Литература


REFERENCES

Rukovodstvo po metodam gidrobiologicheskogo analiza poverhnostnykh vod i donnykh otlozhenii [Guidelines on methods of hydrobiological analysis of surface water and bottom sediments] / Ed. by A. V. Abakumov. L.: Gidrometeoizdat, 1983, 239 р.] (in Russian).

Vedernikov V. I. [Features of the distribution of primary production and chlorophyll in the Black Sea in the spring and summer periods]. Izmenchivost' ekosistemy Chernogo moria: estestvennye i antropogennye faktory [Variability of the Black Sea ecosystem. Natural and anthropogenic factors]. M.: Nauka, 1991, рр. 128 -147 (in Russian).

Weber С.I., Fay L.A., Collins G.B., Rathke D.E., Tobin J. A review of methods for the analysis of chlorophyll in periphyton and plankton of marine and freshwater systems. Ohio State University Sea Grant Program Tech Bull, 1986, 54 p.

ISO 10260:1992. Water quality, measurement of biochem, parameters; spectrometric determination of the chlorophyll a concentration. Beuth Verlag GmbH. Berlin – Vien – Zurich – 9 р.

RD 52.24.784-2013. Massovaia koncentratsiia khlorofilla "a". Metodika izmerenii spektrofotometricheskim metodom s ekstraktsiei etanolom. [State standard RD 52.24.784-2013 Mass concentration of chlorophyll "a". Measurement technique by spectrophotometric method with ethanol extraction]. FGBU «GHI». Rostov-na-Donu, 2013, 21 р. (in Russian).

GOST 17.1.04.02.90. Voda. Metodika spektrofotometricheskogo opredeleniia khlorofilla «a». [State standard 17.1.04.02.90. Method of measurement spectrophotometric determination of chlorophyll «a»]. Moscow, Izd-vo standartov, 2001. 688 р. (in Russian).

Iwamura T., Nagai H., Ichimura S. Improved methods for determining contents of chlorophyll, protein, ribonucleic acid, and deoxyribonucleic acid in plankton populations. Int. Revue ges. Hydrobiol, 1970, no. 55, рр. 131–147. doi: 10.1002/iroh.19700550106.

Holm-Hansen O., Riemann B. [Chlorophyll a Determination: Improvements in Methodology]. Oikos, 1978, vol. 30, no. 3, рр. 438-447. doi: 10.2307/3543338.

Papisto E., Acs E., Boddill B. Chlorophyll a determination with ethanol – a critical test. Hydrobiologia, 2002, vol. 485, рр. 191-198. doi: 10.1023/A:1021329602685.

Huang T-L, Cong H-B. A new method for determination of chlorophylls in freshwater algae. Environmental monitoring and assessment, 2007, vol. 129, рр. 1-7. doi: 10.1007/s10661-006-9419-y.

Qiu N., Wang X., Zhou F. A new method for fast extraction and determination of chlorophylls in natural water. Zeitschrift fur Naturforschung, 2017, vol. 73, рр. 1-10. doi: 10.1515/znc-2017-0157.

Qin J. G., Yao W., Zhou Y., Su S. Optimization of the method for Chlorophyll extraction in Aquatic plants. Journal of Freshwater Ecology, 2010, vol. 25, no. 1, рр. 531-538. doi: 10.1007/s10750-012-1412-6.

Aminot A., Rey F. Standard procedure for the determination of chlorophyll a by spectroscopic methods. ICES Techniques in Marine Environmental Sciences, 2000, 17 p.

Richards F.A., Thompson T.G. The estimation and characterization of plankton populations by pigment analyses. II. A spectrophotometric method for the estimation of plankton pigments. J. Mar. Res., 1952, vol. 11, рр. 156-172.

Jeffrey S.W., Humphrey G. F. New Spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae, and natural phytoplankton. Biochem. Physiol. Pflanz., 1975, vol. 167, рр. 191-194.

Lorenzen C.J. Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnology and Oceanography, 1967, vol. 12, no. 2, рр. 343-346.

Ritchie R.J. Universal chlorophyll equations for estimating chlorophylls a, b, c and d and total chlorophylls in nature assemblages of photosynthrtic organisms using acetone, methanol, or ethanol solvents. Photosynthetica, 2008, vol. 46, рр. 115 – 126. doi: 10.1007/s11099-008-0019-7.

Ritchie R.J. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynthetica Research, 2006, vol. 89, рр. 27-41. doi: 10.1007/s11120-006-9065-9.

Marker A. F. H. The use of acetone and methanol in the estimation of chlorophyll in the presence of phaeophytin. Freshwater Biology, 1972, vol. 2, рр. 361–385.

Parkin T., Brock T. Photosynthetic bacterial production and carbon mineralization in a meromictic lake. Archiv fur Hydrobiologie, 1981, vol. 91, рр. 366–382.

Strickland J. D. H., Parsons T.R. A Practical Handbook of Seawater Analysis [Bulletin Fisheries Research Board of Canada]. Ottawa, 1968, no. 167, 311 p.

Wright S.W., Jeffrey S.W., Mantoura R.F.C., Llewellyn C.A., Bjornland T., Repeta D., Welschmeyer N. Improved HPLC metod for the analysis of chlorophylls and carotenoids from marine phytoplankton. Marine ecology progress series, 1991, vol. 77, рр. 183-196. doi: 10.3354/meps077183.

Sarmento H., Descy J-P. Use of marker pigments and functional groups for assessing the status of phytoplankton assemblages in lakes. Journal of Applied Phycology, 2008, vol. 20, no. 6, рр. 1001–1011. doi 10.1007/s10811-007-9294-0.

Ediger D., Soydemir N., Kideys A.E. Estimation of phytoplankton biomass using HPLC pigment analysis in the southwestern Black Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 2006, vol. 53, рр. 1911 – 1922. doi: 10.1016/j.dsr2.2006.04.018.

Maxwell K., Johnson N. Chlorophyll fluorescence – a practical guide. Jornal of Experimental Botany, 2000, vol. 51, no. 345, рр. 659 – 668. doi: 10.1093/jxb/51.345.659.

Maclntyre H.L., Lawrenz E., Richardson T.L. Taxonomic discrimination of phytoplankton by spectral fluorescence. Chlorophyll fluorescence in aquatic sciences: Methods and applications in Developments in Applications, 2010, vol. 4, рр. 129-169. doi: 10.1007/978-90-481-9268-7.

Ayeni A.O., Adesalu T.A. Validating chlorophyll-a concentrations in the Lagos Lagoon using remote sensing extraction and laboratory fluorometric methods. MethodsX, 2018, vol. 5, рр. 1204-1212. doi: 10.1016/j.mex.2018.09.014.

Pinto A.M., Von Sperling E., Moreira R.M. Chlorophyll «a» determination via continuous measurement of plankton fluorescence: Methodology development. Water Research, 2001, vol. 35, рр. 3977–3981. doi: 10.1016/S0043-1354(01)00102-6.

Boulion V.V. Two versions of a balance model to predict the bioproductivity of aquatic ecosystems. Water Resources, 2017, vol. 44, no. 6, рр. 820-830. doi: 10.7868/S0321059617050029.

Povazhnyi V.V. Determination of the chlorophyll "a" concentration using a combined method based on measurements with a modified photometer. Oceanology, 2012, vol. 52, no. 4, рр. 561-565. doi: 10.1134/S0001437012040078.

Povazhnyi V.V. A fluorometer on the basis of powerful light emitting diodes for determination of the chlorophyll "a" concentration. Oceanology, 2014, vol. 54, no. 3, рр. 387-391. doi: 10.1134/S0001437014030102.

Shavyikin A.A., Berdnikov S.V., Sapryigin V.V., Verbitskiy R.E. [Continuous measurements of ocean parameters in the near-surface layer of the Taganrog Bay. Determination of chlorophyll "a" by the fluorimetric method]. Vestnik Juzhnogo Nauchnogo centra RAN. [Bulletin of the South Science Center]. 2010, vol. 6, no. 3, рр. 39-48 (in Russian).

Friedrichs A., Busch J. A., Woerd H.J., Zielinski O. SmartFluo: A Method and Affordable Adapter to Measure Chlorophyll a Fluorescence with Smartphones. Sensors, 2017, vol. 17, no. 4, рр. 1 – 14. doi: 10.3390/s17040678.

Suslin V.V., Churilova T.J., Sosik H.M. [Regional algorithm for calculating the concentration of chlorophyll "a" in the Black Sea using satellite data SeaWIFS]. Morskoi ekologicheskii zhurnal [Marine Ecological Journal], 2008, vol. 7, no. 2. рр. 24 - 42 (in Russian).

Sayers M.J. A new method to generate a high-resolution global distribution map of lake chlorophyll. International Journal of Remote Sensing, 2015, vol. 36, no.7, рр. 1942 – 1964. doi: 10.1080/01431161.2015.1029099.

Saprygin V. V., Berdnikov S. V., Kulygin V. V., Dashkevich L. V., Mestetskiy L. M. Spatial Distribution and Seasonal Dynamics of the Chlorophyll a Concentration in the Sea of Azov Based on MERIS Images. Oceanology, 2018, vol. 58, no. 5, рр. 689-699. doi: 10.1134/S0001437018050132.

Kulchin Yu N., Voznesenskiy S. S., Gamayunov E. L., Korotenko A. A., Popik A. Yu., Mayor A. Yu. Comprehensive control of the state of marine areas by optical methods. Part 4. Optical fiber system for measuring the concentration of phytoplankton. Optika atmosfery i okeana [Atmospheric and Oceanic Optics], 2013, vol. 26, no. 1, рр. 40-45 (in Russian).

Watanabe F., Alcantara E., Rodrigues T., Imai N., Barbosa C., Rotta L. Estimation of Chlorophyll-a Concentration and the Trophic State of the Barra Bonita Hydroelectric Reservoir Using OLI /Landsat-8 Images. International journal of environmental research and public health, 2015, vol.12, no. 9, рр. 10391-10417. doi: 10.3390/ijerph120910391.

Churilova T. Ja., Finenko Z. Z., Turgul S. [Absorption of light and the maximum quantum yield of photosynthesis during the phytoplankton autumn bloom in the Black Sea]. Morskoi ekologicheskii zhurnal [Marine ecological journal], 2008, vol. 7, no. 3, рр. 75- 86 (in Russian).

Demidov A. B. Seasonal dynamics and estimation of the annual primary production of phytoplankton in the Black sea. Oceanology, 2008, vol. 48, no. 5, рр. 664- 678. doi: 10.1134/S0001437008050068.

Neveux J., Delmas D., Romano J.C., Algagra P., Ignatiades L., Herbland A., Morand P., Neorl A., Bonin D., Barbe J., Sukenik 'O A. and Berman T. Comparison of chlorophyll and phaeopigment determinations by spectrophotometric, fluorometric, spectrofluorometric and HPLC methods. Marine Microbial Food Webs, 1990, vol. 4, рр. 217–238.

Matthews M.W., Bernard S., Robertson L. An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters. Remote Sens. Environ, 2012, vol. 124, рр. 637 – 652. doi: 10.1016/j.rse.2012.05.032.

Matsushita B. Yu G., Yang W., Oyama Y. Fukushima T. A hybrid algorithm for estimating the chlorophyll-a concentration across different trophic states in Asian inland waters. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, vol. 102, рр. 28 – 37. doi: 10.1016/j.isprsjprs.2014.12.022

Picazo A., Rochera C., Vicente E., Miracle M.R., Camacho A. Spectrophotometric methods for the determination of photosynthetic pigments in stratified lakes: a critical analysis based on comparisons with HPLC determinations in a model lake. Limnetica, 2013, vol. 32, no. 1, рр. 139-158.

Matthews M.W. Bio-optical modeling of fhytoplankton Chlorophyll – a. Bio-optical Modeling and Remote Sensing of Inland Waters. Elsevier, 2017, рр. 157-188. doi: 10.1016/B978-0-12-804644-9.00006-9.

Kashiyama Y., Miyashita H., Ohkubo S., Ogawa N.O., Chikaraishi Y., Takano Y., Suga H., Toyofuku T., Nomaki H., Kitazato H., Nagata T., Ohkouchi N. Evidence of global chlorophyll d. Science, 2008, vol. 321, no. 5889, pp. 658-658. doi: 10.1126/science.1158761

Akiyama M., Miyashita H., Kise H., Watanabe T., Miyachi S., Kobayashi M. Detection of chlorophyll d' and pheophytin a in a chlorophyll d-dominating oxygenic photosynthetic prokaryote Acaryochloris marina. Analytical Sciences, 2001, vol. 17, no. 1, pp. 205-208. doi: 10.2116/analsci.17.205)

Kume A., Akitsu T., Nasahara K. N. Why is chlorophyll b only used in light-harvesting systems? Journal of Plant research, 2018, vol. 131, no. 6, pp. 961 - 972. doi: 10.1007/s10265-018-1052-7


Ссылки

  • На текущий момент ссылки отсутствуют.