Изображение на обложке

ХРОМАТОМАСС-СПЕКТРОМЕТРИЧЕСКАЯ ХАРАКТЕРИСТИКА ДИЭТИЛКЕТАЛЕЙ АЛИФАТИЧЕСКИХ КАРБОНИЛЬНЫХ СОЕДИНЕНИЙ

Igor G. Zenkevich, Valentina M. Lukina

Аннотация


Несколько (10) гомологов диэтилкеталей алифатических карбонильных со­еди­нений синтезированы из соответствующих карбонильных соединений и орто­этил­формиата в присутствии каталитических количеств серной кислоты или гидро­суль­фата магния на силикагеле. Все продукты охарактеризованы масс-спектрами с иони­зацией электронами и газохроматографическими индексами удерживания на стандартных неполярных полидиметилсилоксановых неподвижных фазах. Из ха­рак­теристик гомологических рядов опре­де­лены разности индексов продуктов и ис­ходных субстратов, составляющие для ди­этилкеталей и этил-(1-алкениловых) эфи­ров 266 ± 26 и 99 ± 20 ед. индекса, соот­ветственно. Такие параметры позволяют предсказывать положение пиков ра­нее не охарактеризованных соединений этих ря­дов по индексам удерживания исходных кар­бо­ниль­ных соединений. Другой характеристикой гомологов, объединяющей их масс-спектрометри­чес­кие и хроматографические параметры, являются гомологические инкременты ин­дексов удерживания: iRI   =   RI – 100x, где  х = int(M/14),  int – функция, обозна­ча­ющая целую часть частного от деления молекулярного массового числа на 14, эк­вивалентная за­пи­си M = 14x + yу – номер гомологической группы соединения, yM º M(mod14). Такие инкременты позволяют по хроматографическим данным оцени­вать молекулярные массы аналитов, не дающих в масс-спектрах надежно регистри­руемых сигналов молекулярных ионов, а также контролировать результаты иденти­фикации с целью предотвращения ошибок.

 Ключевые слова: Диэтилкетали алифатических кетонов, этил-(1-алкениловые) эфи­ры, газовая хроматография, масс-спектрометрия, разности индексов удерживания диэтилкеталей и соответству­ю­щих кетонов, гомологические инкременты индексов удерживания.

DOI: http://dx.doi.org/10.15826/analitika.2019.23.3.009

Полный текст:

PDF (Russian)

Литература


REFERENCES

The NIST 17 Mass Spectral Library (NIST17/2017/EPA/NIH). Software/Data Version (NIST17); NIST Standard Reference Database, Number 69, June 2017. National Institute of Standards and Techno¬logy, Gaithersburg, MD 20899: http://webbook.nist.gov (Accessed: July 2019).

Zenkevich I.G., Nosova V.E. Gas chromatographic retention indices in chromato - mass spectrometric identification of alkyl dichlorophosphates, dialkyl chlorophos-phates, and their thioanalogues. // Mass Spectrometry, 2019, vol. 16, no. 1, pp. 58-72 (In Russian). doi: 10.25703/MS.2019.16.18.

Zenkevich I.G., Fakhretdinova L.N. Chromatographic and chromatospectral cha¬rac-terization of dicarboxylic acid monoesters. // J. Analyt. Chem. (Russ.), 2016, vol. 71, no. 12, pp. 1204-1214. doi: 10.1134/S106193481612011X.

Zenkevich I.G., Nosova V.E. Characterization of dialkyl phosphites by gas chromatography – mass spectrometry. // J. Analyt. Chem. (Russ.), 2018, vol. 73, no. 12, pp. 906-921. doi: 10.1134/S1061934818090150.

Zenkevich I.G., Nosova V.E. Features of revealing trialkyl phosphites in reaction mixtures and their GC-MS characterization. // Mass Spectrometry, 2018, vol. 15, no. 2, pp. 119-131 (In Russian). doi: 10.25703/MS.2018.15.27.

Misharina T.A., Aerov A.F., Golovnya R.V., Kalugina V.I., Rogovskaya L.V., Vysotskaya L.E., Shevtsov V.K. Identification of volatile components of an aromatizer with a chiken odor by chromatography - ,mass spectrometry and chromatography – Fourier transform infrared spectroscopy. // J. Analyt. Chem. (Russ.), 1991, vol. 46, no. 8, pp. 1187-1193.

Misharina T.A., Golovnya R.V., Charnomskii V.V. Volatile components of boiled shrimp Funchalia woodwardi and crab Geryon maritae. // J. Analyt. Chem. (Russ.), 1991, vol. 46, no. 7, pp. 1421-1429.

Moio L., Dekimpe J., Etievant P., Addeo F. Neutral volatile compounds in the raw milks from different species. // J. Dairy Res., 1993, vol. 60, no. 2, pp. 199-213. doi: 10.1017/S0022029900027515.

Yu T.-H., Wu C.-M., Rosen R.T., Hartman T.G., Ho, C.-T. Volatile compounds in generated from thermal degradation of alliin and deoxyalliin in an aqueous solution. // J. Agric. Food. Chem., 1994, vol. 42, no. 1, pp. 146-153. doi: 10.1021/jf00037a026.

Umano K., Hagi Y., Nakahara K., Shyoji A., Shibamoto T. Volatile chemicals for-med in the headspace of a heated D-glucose/L-cysteine Maillard model systems. // J. Agric. Food Chem., 1995, vol. 43, no. 8, pp. 2212-2218. doi: 10.1021/jf00056a046.

Moio L., Rillo L., Ledda A., Addeo F. Odorous constituents of ovine milk in rela-tionship to diet. // J. Dairy Sci., 1996, vol. 79, no. 8, pp. 1322-1331. doi: 10.3168/jds.S0022-0302(96)76488-3.

Guth H. Identification of character impact odorants of different white wine varie-ties. // J. Agric. Food Chem., 1997, vol. 45, no. 8, pp. 3022-3026. doi: 10.1021/jf9608433.

Baraldi R., Rapparini F., Rossi F., Latella A., Ciccioli P. Volatile organic compo¬und emission from flowers of the most occurring and economically important species of fruit trees. // Phys. Chem. Earth, 1999, vol. 24, no. 6, pp. 729-732. doi: 10.1016/S1464-1909(99)0073-8.

Madruga M.S., Arruda S.G.B., Narain N., Souza J.G. Castration and slaughter age effects on panel assessment and aroma compounds of the mestico goat meat. // Me¬at. Sci., 2000, vol. 56, no. 2, pp. 117-125. doi: 10.1016/S0309-1740(00)00025-5.

Jordan M.J., Goodner K.L., Shaw P.E. Characterization of the aromatic profile in aqueous essence and fruit juice of yellow paddion fruit (Passiflora edulis Sims F. Flavicarpa degner) by GC-MS and GC/O. // J. Agric. Food Chem., 2002, vol. 50, no. 6, pp. 1523-1528. doi: 10.1021/jf011077p.

Lee S.-J., Noble A.C. Characterization of odor-active compounds in Californian Chardonney wines using GC-olfactometry and GC-mass spectrometry. // J. Agric. Food Chem., 2003, vol. 51, no. 27, pp. 8036-8044. doi: 10.1021/jf034747v.

Jordan M.J., Margaria C.A., Shaw P.E., Goodner K.L. Volatile components and aroma active compounds in aqueous essence and fresh pink guava puree (Psidium guajava L.) by GC-MS and multidimensional GC/GC-O. // J. Agric. Food Chem., 2003, vol. 51, no. 5, pp. 1421-1426. doi: 10.1021/jf020785l.

Ledauphin J., Guichard H., Saint-Clair J.-F., Picoche B., Barillier D. Chemical and sensorial aroma characterization of freshly distilled calvados. 2. Identification of volatile compounds and key odorants. // J. Agric. Food Chem., 2003, vol. 51, no. 2, pp. 433-442. doi: 10.1021/jf020373e.

Fritsch H.T., Schieberle P. Identification based on quantitative measurements and aroma recombination of the character impact odorants in a Bavarian Pilzner-type beer. // J. Agric. Food Chem., 2005, vol. 53, no. 19, pp. 7544-7551. doi: 10.1021/jf051167k.

Fan W., Qian M.C. Headspace solid phase microextraction and gas chromatography – olfactometry dilution analysis of young and aged Chinese “Yanghe Daqu” liquors // J. Agric. Food Chem., 2005, vol. 53, no. 20, pp. 7931-7938. doi: 10.1021/jf051011k.

Fan W., Qian M.C. Characterization of aroma compounds of Chinese wuliangye and jiannanchun liquors by aroma extract dilution analysis // J. Agric. Food Chem., 2006, vol. 54, no. 7, pp. 2695-2704. doi: 10.1021/jf052635t.

Chen H.-C., Sheu M.-J., Wu C.-M. Characterization of volatiles in guava (Psidium guajava L. cv. Chung-Shan-Yueh-Pa) fruit from Taiwan. // J. Food Drug. Anal., 2006, vol. 14, no. 4, pp. 398-402.

de Souza M.D.C.A., Vasquez P., del Mastro N.L., Acree T.E., Lavin E.H. Charac-terization of cachaca and rum aroma. // J. Agric. Food Chem., 2006, vol. 54, no. 2, pp. 485-488. doi: 10.1021/jf0511190.

Fan W., Qian M.C. Identification of aroma compounds in Chinese “Yanghe Daqu” liquor by normal phase chromatography fractionation followed by gas chromatography/olfactometry. // Flavour Fragr. J., 2006, vol. 21, no. 2, pp. 333-342. doi: 10.1002/ffj.1621.

Xu Y., Fan W., Qian M.C. Characterization of aroma compounds in apple cider using solvent assisted flavor evaporation and headspace solid-phase microextraction. // J. Agric. Food Chem., 2007, vol. 55, no. 8, pp. 3051-3057. doi: 10.1021/jf0631732.

Callejon R.M., Morales M.L., Ferreira A.C.S., Troncoso A.M.

Defining the typical aroma of sherry vinegar: sensory and chemical approach. // J. Agric. Food Chem., 2008, vol. 56, no. 17, pp. 8086-8095. doi: 10.1021/jf800903n.

Kumazawa K., Itobe T., Nishimura O., Hamaguchi T. A new approach to estimate the in-mouth release characteristics of odorants in chewing gum. // Food Sci. Technol. Res., 2008, vol. 14, no. 3, pp. 269-276. doi: 10.3136/fstr.14.269.

Forero M.D., Quijano C.E., Pino J.A. Volatile compounds of Chile pepper (Capsicum annuum L. var. glabriusculum) at two ripenine stages. // Flavour Fragr. J., 2008, vol. 24, no. 1, pp. 25-30. doi: 10.1002/ffj.1913.

Zhao Y., Li J., Xu Y., Duan H., Fan W., Zhao G. Extraction, preparation and iden-tification of volatile compounds in Changyu XO brandy. // Chinese J. Chromatogr., 2008, vol. 26, no. 2, pp. 212-222. doi: 10.1016/S1872-2059(08)60014-0.

Prompona K.-D., Kandylis P., Tsakiris A., Kanellaki M., Kourkoutas Y. Application of alternative technologies for elimination of artificial colorings in alcoholic beverages produced by Citrus medica and potential impact on human health. // Food Nutrition Sci., 2012, vol. 3, no. 7, pp. 959-969. doi: 10.4236/fns.2012.37127.

Robinson A.L., Adams D.O., Boss P.K., Heymann H., Solomon P.S., Trengove R.D. Influence of geographic origin on the sensory characteristics and wine composition of Vitus viniferas cv. Cabernet Sauvignon wines from Australia (Suppl.). // Amer. J. Enol. Vitic., 2012, vol. 64, no. 4, pp. 467-476. doi: 10.5344/ajev.2012.12023.

D’Arcy B.R., Rintoul G.B., Rowland C.Y., Blackman A.J. Composition of Australian honey extractives. 1. Norisoprenoids, monoterpenes, and other natural volatiles from blue gum (Eucaliptus leucoxylon) and yellow box (Eucaliptus melliodora) honeys. // J. Agric. Food Chem., 1997, vol. 45, no. 5, pp. 1834-1843. doi: 10.1021/jf960625.

Korany K., Mednyanszky Zs., Amtmann M. Preliminary results of a recognition method visualizing the aroma and fragrance features. // Acta Aliment., 2000, vol. 29, no. 2, pp. 187-198. doi: 10.1556/Aalim.29.2000.2.9.

Ledauphin J., Saint-Clair J.-F., Labanguie O., Guichard H., Founier N., Guichard E., Barillier D. Identification of trace volatile compounds in freshly distilled calvados and cognac using preparative separation coupled with gas chromatography – mass spectrometry. // J. Agric. Food Chem., 2004, vol. 52, no. 16, pp. 5124-5134. doi: 10.1021/jf040052y.

Mateo J., Aguirrezabal M., Dominguez C., Zumalacarregui J.M. Volatile compounds in Spanish paprika. // J. Food Comp. Anal., 1997, vol. 10, no. 3, pp. 225-232. doi: 10.1006/jfca1997.0535.

Bosch-Fuste J., Riu-Aumatell M., Guadayol J.M., Caixach J., Lopez-Tamames E., Buxaderas S. Volatile profiles of sparkling wines obtained by three extraction methods and gas chromatography – mass spectrometry (GC-MS) analysis. // Food Chem., 2007, vol. 105, no. 1, pp. 428-435. doi: 10.1016/j.foodchem.2006.12.053.

Mateo J., Zumalacarregul J.M. Volatile compounds in chorizo and their changes during ripening. // Meat Sci., 1996, vol. 44, no. 4, pp. 255-273. doi: 10.1016/S0309-1740(96)00028-9.

Ferrari G., Lablanquie O., Cantagrel R., Ledauphin J., Payot T., Fournier N., Gui-chard E. Determination of key odorant compounds in freshly distilled cognac using GC-O, GC-MS and sensory evaluations. // J. Agric. Food Chem., 2004, vol. 52, no. 18, pp. 5670-5676. doi: 10.1021/jf049512d.

Tian Y., Zhang X., Huang T., Zou K., Zhou J. Research advances on the essential oils from leaves of Eucalyptus. // Food Fermentation Ind. (Chinese), 2007, vol. 33, no. 10, pp. 143-147.

Zhao Y., Xu Y., Li J., Fan W., Jiang W. Profile of volatile compounds in 11 brandies by headspace solid-phase microextraction followed by gas chromatography – mass spectrometry. // J. Food Sci., 2009, vol. 74, no. 2, pp. c90-c99. doi: 10.1111/j.1750-3841.2008.01029.x.

Perestrelo R., Barros A.S., Camara J.S., Rocha S.M. In-depth search focused on furans, lactones, volatile phenols, and acetals as potential age markers of Madeira wines by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry combined with solid phase microextraction. // J. Agric. Food Chem., 2011, vol. 59, no. 7, pp. 3186–3204. doi: 10.1021/jf104219t.

McFadden W.H., Wasserman J., Corse J., Lundin R.E., Teranishi R. Correlations and anomalies in mass spectra: acetals. // Anal. Chem., 1964, vol. 36, no. 6, pp. 1031-1037. doi: 10.1021/ac60212a024.

Christiansen K., Mahadevan V., Viswanathan C.V., Holman R.T. Mass-spectrometry of long-chain aliphatic aldehydes, dimethyl acetals, and alk-1-enyl ethers // Lipids, 1969, vol. 4, no. 6, Ppp. 421-427.

Bogoslovskii Yu.N., Anvaer B.I., Vigdergauz M.S. Chromatographic invariants in gas chromatography. Hydrocarbons and Oxygen-containing compounds. Reference book. Moscow: Standards Publ. House, 1978. 192 p.

Jafari F., Khodabakhshi S. Mg(HSO4)2 / SiO2 as a highly efficient catalyst for the green preparation of 2-aryl-1,3-dioxolanes / dioxanes and linear acetals. // Org. Chem. Internat., 2012, Article ID 475301, 5 p. doi: 10.1155/2012/475301.

Mansilla H., Afonso M.M. Iron (III) tosylate in the preparation of dimethyl and diethyl acetals from ketones and -keto enol ethers from cyclic -diketones. // Synth. Commun., 2008, vol. 38, pp. 2607-2618. doi: 10.1080/00397910802219361.

Zenkevich I.G. Chromatographic characterization of organic reactions using additivity of variations of chromatographic parameters of reagents and products. // J. Org. Chem.Russ. J. Org. Chem, 1992, vol. 29, no. 9, pp. 1829-1840 (In Russian).

Zenkevich I.G., Ioffe B.V. Interpretation of mass spectra of organic compounds. Leningrad: Khimia Publ. House, 1986. 176 p.

Zenkevich I.G. Homologous increments of gas chromatographic retention indices as characteristics of organic substances polarity. // Rus. J. General Chem., 2019, vol. 89, no. 3. pp. 369-377. doi: 10.1134/S1070363219030010.


Ссылки

  • На текущий момент ссылки отсутствуют.