Изображение на обложке

ЭФИРНЫЕ МАСЛА: МЕТОДЫ ОПРЕДЕЛЕНИЯ ПОДЛИННОСТИ И ВЫЯВЛЕНИЯ ФАЛЬСИФИКАЦИИ. ОБЗОР

I. V. Lapko, Yu. B. Aksenova, O. V. Kuznecova, S. V. Vasilevskij, A. V. Aksenov, V. F. Taranchenko, A. M. Antohin, A. A. Ihalajnen

Аннотация


Эфирные масла являются продуктами природного происхождения, которые находят самое разнообразное применение в различных областях промышленности. Высокая стоимость, трудоемкость производства и широкое использование приводят к тому, что в продаже наряду с качественными эфирными маслами часто встречают фальсифицированные. Применение поддельных масел повышает их опасность для человека, в связи с чем установление подлинности эфирных масел имеет большое значение. В обзоре проведен анализ опубликованных работ и нормативных документов, посвященных вопросам определения подлинности и выявления фальсификации эфирных масел. Рассмотрен компонентный состав эфирных масел, его вариабельность в зависимости от места произрастания эфиромасличного растения и технологии выделения масла. Обсуждены основные способы фальсификации эфирных масел и спектр используемых для этого приемов, необходимость применения соответствующих методов исследования, позволяющих контролировать подлинность продукции. Проведен анализ литературы и нормативной базы, регламентирующей качество эфирных масел, существующих методов определения их подлинности, указывают достоинства и недостатки. Особое внимание уделено методу масс-спектрометрии изотопных отношений, как наиболее перспективному, вследствие высокой точности и возможности применения для исследования практически любого типа масла. Приведены основные теоретические положения исследования стабильных изотопов и их фракционирования, принципиальные особенности методов измерения. Подтверждено широкое использование метода масс-спектрометрии изотопных отношений на практике конкретными примерами с демонстрацией новых возможностей данного метода, связанных с использованием изотопного профилирования и комбинированных методов изотопного анализа. Отмечена важность для определения подлинности масел информации об изотопном составе их компонентов, который является индикатором любых искусственных процессов, происходящих с эфирным маслом в результате фальсификации.

Ключевые слова: эфирные масла, компонентный состав, фальсификация, подлинность, методы, хроматография, спектроскопия, изотопная масс-спектрометрия

DOI: http://dx.doi.org/10.15826/analitika.2019.23.4.010

Полный текст:

PDF (Russian)

Литература


REFERENCES

Chueshov V.I., Gladuh Ye.V., Sayko I.V., Lyapunova O.A., Sichkar' A.A., Krutskih T.V., Ruban Ye.A., Chernyayev S.V. Tekhnologiia lekarstv promyshlennogo proizvodstva: ucheb. dlia stud. vyssh. ucheb. zaved.: perevod s ukr.: v 2 ch. Ch. 1 [Technology of drugs for industriak production: the textbook for students of higher ed. Inst. in two parts. Part 2]. Vinnitsa, Nova Kniga, 2014. 696 p. (in Russian).

Hüsnü K., Başer C., Demirci F. In Flavours and Fragrances: ed. R. Berger, Springer. 2007. P. 43.

Ponomareva Ye.I., Molokhova Ye.I., Kholov A.K. [The application of essential oils in pharmacy]. Sovremennye problemy nauki i obrazovaniia [Modern problems of science and education], 2015, no. 4, P. 567 (in Russian).

Kheifits L.A., Dashunin V.M. Dushistye veshchestva i drugie produkty dlia parfiumerii [Fragrant substances and other products for the perfumery]. Moscow, Khimiya, 1994. 226 p. (in Russian).

Shaaban H.A.E., El-Ghorab A., Shibamoto T. Bioactivity of essential oils and their volatile aroma components: Review. J. Essent. Oil Res., 2012, vol. 24, no. 2, pp. 203–212. doi: 10.1080/10412905.2012.659528.

Mirovoe proizvodstvo efirnykh masel [World production of essential oils]. Available at: http://vershen.ru/info/mirovoe_proizvodstvo_efirnyh_masel.html (accessed 30.09.2019) (in Russian).

Lamotkin S.A., Vladykina D.S., Samoryadov A.V., Malahovskaya G.V., Maruk Ye.S. [Quality control of raw materials for the profuction of cosmetics]. Trudy BGTU [Proc BGTU], 2011, no. 4, pp. 11–13 (in Russian).

Gurinovich L.K., Puchkova T.V. Efirnye masla: khimiia, tekhnologiia, analiz i primenenie [Essential oils: technology, analysis and application]. Moscow, School of cosmetic physicist, 2005. 192 p. (in Russian).

Ayupova R.B., Sakipova Z.B., Dil'barkhanov R.D. [Essential oils: achievements and prospects, current trends in the study and application]. Vestnik KazNMU [Bulletin of KazNMY], 2013, no 5, pp. 74 (in Russian).

Sarkis A., Stappten I. Essential Oils and Their Single Compounds in Cosmetics – A Critical Review. Cosmetics, 2018, vol. 5, no 11, pp. 1-21. doi: 10.3390/cosmetics5010011.

Tongnuanchan P., Benjakul S. Essential Oils: Extraction, Bioactivities, and Their Uses for Food Preservation. J. Food Sci., 2014, vol. 79, no 7, pp. R1231-R1248. doi: 10.1111/1750-3841.12492.

Asbahani A.El, Miladi K., Badri W., Sala M., Addi E.H. Aït, Casabianca H., Mousadik A. El, Hartmann D., Jilale A., Renaud F.N.R., Elaissari A. Essential oils: From extraction to encapsulation. International Journal of Pharmaceutics, 2015, vol. 483, pp. 220-243.

Rubiolo P., Sgorbini B., Liberto E., Cordero C., Bicchi C. Essential Oils and volatiles: sample preparation and analysis. A review. Flavour Fragr. J., 2010, vol. 25, pp. 282-290. doi: 10.1002/ffj.1984.

Gosudarstvennaia farmakopeia Rossiiskoi Federatsii. T. 2. Obshchie metody analiza. Izd. XIII-e, dop. [State pharmacopoeia of the Russian Federation. V.2. General methods of analysis. XIII ed., supp.]. M.: Nauchnyy tsentr ekspertizy sredstv meditsinskogo primeneniya, 2018. P. 2284 (in Russian).

Seguru N.V, Rudakova I.P., Vandyshev V.V., Samylina I.A. [Essential oil quality control methods]. Farmatsiya [Pharmacy], 2005, no. 3, pp. 3–5 (in Russian).

Bakkali F., Averbeck S., Averbeck D., Idaomar M. Biological effects of essential oils – a review. Food Chem. Toxicol., 2008, vol. 46, pp. 446–475. doi: 10.1016/j.fct.2007.09.106.

Bonaccorsi I., Trozzi A., Cotroneo A., Dugo G. Composition of industrial bergamot petitgrain produced in Calabria. J. Essent. Oil Res., 2013, vol. 25, no 5, pp. 359–363. doi: 10.1080/10412905.2013.809324.

Verma R.S., Verma R.K., Yadav A.K., Chauhan A. Changes in essential oil composition of rose-scented geranium (Pelargonium graveolens L’Herit ex Ait.) due to date of transplanting under hill conditions of Uttarakhand. Ind. J. Nat. Prod. Res., 2010, vol. 1, no 3, pp. 367–370.

Punetha D, Tewari G., Pande C. Compositional variability in inflorescence essential oil of Coriandrum sativum from North India. J. Essent. Oil Res., 2018, vol. 30, no 2, pp. 113–119. doi: 10.1080/10412905.2017.1399169.

Khalil N., Ashour M., Fikry S., Singab A.N., Salama O. Chemical composition and antimicrobial activity of the essential oils of selected Apiaceous fruits. Fut. J. Pharmaceut. Sci., 2018, no 4, pp. 88–92. doi: 10.1016/j.fjps.2017.10.004.

Misharina T.A., Terenina M.B., Krikunova N.I., Kalinchenko M.A. [The effect of the composition of lemon essential oils on their antioxidant properties and component stability]. Khimiia rastitel'nogo syr'ia [Chemistry of the plant raw materials], 2010, no. 1, pp. 87–92 (in Russian).

Aziz E.E., Craker L.E. Essential Oil Constituents of Peppermint, Pennyroyal, and Apple Mint Grown in a Desert Agrosystem. J. Herbs, Spices Med. Plants., 2009. vol. 15, pp. 361–367. doi: 10.1080/10496470903507940.

Kürkçüoglu M., AbdelMegeed A., Başera K.H.C. The composition of Taif rose oil. J. Essent. Oil Res., 2013, vol. 25, no 5, pp. 364–367. doi: 10.1080/10412905.2013.809322.

Kumar R., Sharma S., Pathania V. Effect of shading and plant density on growth, yield and oil composition of clary sage (Salvia sclarea L.) in north western Himalaya. J. Essent. Oil Res., 2013, vol. 25, no 1, pp. 23–32. doi: 10.1080/10412905.2012.742467.

Sahraoui N., Vian M.A., Bornard I., Boutekedjiret C., Chemat F. Improved microwave steam distillation apparatus for isolation of essential oils. Comparison with conventional steam distillation. J. Chromatogr. A., 2008, vol. 1210, pp. 229–233. doi: 10.1016/j.chroma.2008.09.078.

Acimovic M., Stankovic J., Cvetkovic M., Kiprovski B., Todosijevic M. Essential Oil Quality of Tetraploid Chamomile Cultivars Grown in Serbia. J. Essent. Oil Bear. Plants., 2018, vol. 21, no 1, pp. 15–22. doi: 10.1080/0972060X.2017.1401962.

Chahal K.K., Bhardwaj U., Kaushal S., Sandhu A.K. Chemical composition and biological properties of Chrysopogon zizanioides (L.) Roberty syn. Vetiveria zizanioides (L.) Nash. - A Review. Ind. J. Nat. Prod. Res., 2015, vol. 6, no 4, pp. 251–260. IPC code; Int. cl. (2015.01)– A61K36/00.

Figueredo G., Özcan M.M., Chalchat J.C., Chalard P., Çelik B., Özcan M.M. The Effect of Harvest Years on Chemical Composition of Essential Oil of Basil (Ocimum minimum L.) Leaves. J. Essent. Oil Bear. Plants., 2017, vol. 20, no 3, pp. 864-868. doi: 10.1080/0972060X.2017.1355266.

Huang X.-w., Feng Y.-c. , Huang Y., Li H.-l. Chemical composition, antioxidant and the possible use as skin-care ingredient of clove oil (Syzygium aromaticum (L.) Merr. & Perry) and citronella oil (Cymbopogon goeringii) from China. J. Essent. Oil Res., 2013, vol. 25, no 4, pp. 315–323. doi: 10.1080/10412905.2013.775082.

Xin-Hua Z., Jaime A. Teixeira da Silva, Yong-Xia J., Jian Y., Guo-Hua M. Essential Oils Composition from Roots of Santalum album L. J. Essent. Oil Bear. Plants., 2012, vol. 15, no 1, pp. 1–6. doi: 10.1080/0972060X.2012.10644011.

Saxena S.N., Kakani R.K., Rathore S.S., Meena R.S., Vishal M.K., Sharma L.K., Agrawal D., John S., Panwar A., Singh B. Genetic Variation in Essential Oil Constituents of Fennel (Foeniculum vulgare Mill) Germplasm. J. Essent. Oil Bear. Plants., 2016, vol. 19, no 4, pp. 989–999. doi: 10.1080/0972060X.2016.1191378.

Baydar H., Baydar N.G. The effects of harvest date, fermentation duration and Tween 20 treatment on essential oil content and composition of industrial oil rose (Rosa damascena Mill.). Industr. Crops Prod., 2005, vol. 21, pp. 251–255. doi: 10.1016/j.indcrop.2004.04.004.

Neneleva Ye.V. [Comparative pharmacological study of the genus Cinnamomum L. as a source of drugs]. Dis. … kand. farm. nauk [Diss. … cand. pharm. sci.]: 04.04.17. Sankt-Petersburgh, 2017. 163 p. (in Russian).

Farhat G.N., Affara N.I., Gali-Muhtasib H.U. Seasonal changes in the composition of the essential oil extract of East Mediterranean sage (Salvian libanotica) and its toxicity in mice. Toxicon, 2001, vol. 39, no 10, pp. 1601–1605. PII: S0041-0101(01)00143-X.

Voytkevich S.A. Efirnyye masla dlia parfiumerii i aromaterapii [Essential oils for paefumes and aromatherapy]. Moscow, Pishchevaya promyshlennost', 1999. 282 p. (in Russian).

Nekotorye voprosy kachestva efirnykh masel i ikh standartizatsii [Some issues of the quality of essential oils and their standardization.]. Available at: http://www.sib-bio.com/literature/24-quality-and-standardization-of-essential-oils.html (Accessed 30.09.2019) (in Russian).

Metodologiia ispol'zovaniia efirnykh masel dlia meditsinskikh tselei [Methodology for the use of essential oils for medical purposes]. Available at: https://www.korolevpharm.ru/dokumentatsiya/efirnie-masla/primenenie-efirnykh-masel-v-meditsine.html (Accessed 06.10.2019) (in Russian).

Manouchehri R, Saharkhiz M.J., Karami A., Niakousari M. Extraction of essential oils from damask rose using green and conventional techniques: Microwave and ohmic assisted hydrodistillation versus hydrodistillation. Sustainable Chem. Pharm., 2018, vol. 8, pp. 76–81. doi: 10.1016/j.scp.2018.03.002.

Mohamadi M., Shamspur T., Mostafavi A. Comparison of microwave-assisted distillation and conventional hydrodistillation in the essential oil extraction of flowers Rosa damascena Mill. J. Essent. Oil Res., 2013, vol. 25, no 1, pp. 55-61. doi: 10.1080/10412905.2012.751555.

Wang H.-Wu, Liu Y.-Q., Wei S.-L., Yan Z.-J., Lu K. Comparison of Microwave-Assisted and Conventional Hydrodistillation in the Extraction of Essential Oils from Mango (Mangifera indica L.) Flowers. Molecules, 2010, vol. 15, pp 7715-7723. doi: 10.3390/molecules15117715.

Baseri H., Haghighi-Asl A., Lotfollahi M.N. Effects of Operating Parameters on the Cinnamaldehyde Content of Extracted Essential Oil Using Various Methods. Chem. Eng. Technol, 2010, vol. 33, no 2, pp. 267–274. doi: 10.1002/ceat.200900263.

Tikhomirov A.A. [Principles of the use of essential oils for medical purposes]. Sbornik nauchnykh trudov GNBS [Collection of scientific works of the GNBC], 2014, vol. 139, pp. 116-126 (in Russian).

Franz C.M. Essential oil research: past, present and future. Flavour Fragr. J., 2010, vol. 25, pp. 112–113. doi: 10.1002/ffj .1983.

Plata-Rueda A., Campos J.M., Rolim G.S., Martínez L.C., Dos Santos M.H., Fernandes F.L., Serrão J.E., Zanuncio J.C. Terpenoid constituents of cinnamon and clove essential oils cause toxic effects and behavior repellency response on granary weevil, Sitophilus granaries. Ecotoxicol. Environm. Saf., 2018, vol. 156, pp. 263–270. doi: 10.1016/j.ecoenv.2018.03.033.

Standarty po ISO/TC 54 [Standarts according to ISO/TC 54]. Available at: https://www.iso.org/ru/committee/48956/ x/catalogue/p/1/u/0/w/0/d/0 (Accessed 07.10.2019) (in Russian).

EOA Book of Standards and Specification. Essential Oil Association of U.S.A., 1978. 582 p.

Setting the standard for safe use of fragrance materials. Available at: http://www.ifraorg.org/(Accessed 07.10.2019).

Research institute for fragrance materials. Available at: https:// www.rifm.org (Accessed 07.10.2019).

British Pharmacopoeia: British Pharmacopoeia Commission Laboratory London. 2009. Available at: https://www.pharmacopoeia.com/ (Accessed 07.10.2019).

Ispytaniya efirnykh masel [Testing of essential oils.]. Available at: http://www.ilab-inbi.ru/services/analysis/ispytaniya-efirnyh-masel (Accessed 07.10.2019) (in Russian).

GOST 31791 – 2017. Efirnye masla i tsvetochno-travianistoe efiromaslichnoe syr'e. Tekhnicheskie usloviia [State Standart 31791-2017. Essential oils and floral-herbaceous essential oil raw materials. Technical conditions]. Moscow, 2018. 19 p. (in Russian).

Federal'nyi zakon № 29-FZ ot 2 ianvaria 2000g. «O kachestve i bezopasnosti pishchevykh produktov» [Federal Law no. 29-FL from 02.01.2000. “About the quality and safety of food products]. Available at: http:// www.consultant.ru/document/cons_doc_LAW_25584 (Accessed 05.10.2019) (in Russian).

Chepurnoy I.P. Identifikatsiia i fal'sifikatsiia prodovol'stvennykh tovarov [Identification and falsification of food products]. Moscow, Izdatel'sko-torgovaia korporatsiia «Dashkov i Ko», 2002. 460 p. (in Russian).

Dmitrichenko M.I. Ekspertiza kachestva i obnaruzhenie fal'sifikatsii prodovol'stvennykh tovarov [Expertise of quality and detection of food products adulteration]. Sankt-Petersburgh, Piter, 2003. 60 p. (in Russian).

Koenig W.A., Hochmuth D.H. Enantioselective gas chromatography in flavor and fragrance analysis: strategies for the identification of known and unknown plant volatiles J. Chromatogr. Sci., 2004, vol. 42, pp. 423–439. doi: uaccess.univie.ac.at/10.1093/chromsci/42.8.423.

Salgueiro L., Martins A.P., Correia H. Raw materials: the importance of quality and safety. A review. Flavour. Fragr. J., 2010, vol. 25, pp. 253–271. doi: 10.1002/ffj .1973.

McHale D. Adulteration of citrus oils. Med. Aromat. Plants Ind. Profiles., 2002, vol. 26, pp. 496–517.

Schulz H., Quilitzsch R., Krüger H. Rapid evaluation and quantitative analysis of thyme, origano and chamomile essential oils by ATR-IR and NIR spectroscopy. J. Mol. Struct., 2003, vol. 661–662, pp. 299–306. doi: 10.1016/S0022-2860(03)00517-9.

Boren K.E., Young D.G., Woolley C.L., Smith B.L., Carlson R.E. Detecting Essential Oil Adulteration. J Environ. Anal. Chem., 2015, vol. 2, no 2, pp. 1000132. doi: 10.4172/2380-2391.1000132Revi.

Jung J., Sewenig S., Hener U., Mosandl A. Comprehensive authenticity assessment of lavender oils using multielement/multicomponent isotope ratio mass spectrometry analysis and enantioselective multidimensional gas chromatography–mass spectrometry. Eur Food Res. Technol., 2005, vol. 220, pp. 232-237. doi: 10.1007/s00217-004-1049-4.

Hoer K., Ruff C., Weckerle B., Koenig T., Schreier P. Flavor authenticity studies by 2H/1H ratio determination using on-line gas chromatography pyrolysis isotope ratio mass spectrometry. J. Agric. Food Chem., 2001, vol. 49, pp. 21–25. doi: 10.1021/jf000829x.

Souza R., Eiras M., Cabral E., Barata L., Eberlin M., Catharino R. The famous Amazonian rosewood essential oil: characterization and adulteration monitoring by electrospray ionization mass spectrometry fingerprinting. Anal. Lett., 2011, vol. 44, pp. 2417–2422. doi: 10.1080/00032719.2011.551852.

Feudjio W., Ghalila H., Nsangou M., Majdi Y., Kongbonga Y., Jaïdane N. Fluorescence Spectroscopy Combined with Chemometrics for the Investigation of the Adulteration of Essential Oils. Food Anal. Methods. 2017, vol. 10, pp. 2539-2548. doi: 10.1007/s12161-017-0823-4.

Baser K.H.C., Buchbauer G. Handbook of Essential Oils: Science, Technology, and Applications. Boca Raton, Taylor & Francis, 2009. 1128 p.

Cordella C., Moussa I., Martel A.-C., Sbirrazzuoli N., Lizzani-Cuvelier L. Recent developments in food characterization and adulteration detection: technique oriented perspectives. J. Agric. Food Chem., 2002, vol. 50, pp. 1751–1764. doi: 10.1021/jf011096z.

Application Note of HPTLC Association, Ylang-Ylang oil (Cananga odorata). Available at: http://www.hptlc-association.org, 29/04/2012) (Accessed 07.10.2019).

Kuriakose S., Thankappan X., Joe H., Venkataraman V. Detection and quantification of adulteration in sandalwood oil through near infrared spectroscopy. Analyst, 2010, vol. 135, pp. 2676–2681. doi: 10.1039/c0an00261e.

Skaria B.P., Joy P.P., Mathew S.,Mathew G., Joseph A., Joseph R. Aromatic Plants. Horticulture Science series – 1: ed. K.V. Peter. New Delhi, New India publishing Agency, 2007. 270 p.

Beale D., Morrison P., Karpe A., Dunn M. Chemometric Analysis of Lavender Essential Oils Using Targeted and Untargeted GC-MS Acquired Data for the Rapid Identification and Characterization of Oil Quality. Molecules, 2017, vol. 22, pp. 1339. doi: 10.3390/molecules22081339.

Sewenig S., Hener U., Mosandl A. Online determination of 2H/1H and 13C/12C isotope ratios of cinnamaldehyde from different sources using gas chromatography isotope ratio mass spectrometry. Eur. Food Res. Technol., 2003, vol. 217, no 5, pp. 444–448. doi: 10.1007/s00217-003-0801-5.

Schipilliti L., Tranchida P., Sciarrone D., Russo M., Dugo P., Dugo G., Mondello L. Genuineness assessment of mandarin essential oils employing Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry (GC-C-IRMS). J. Sep. Sci., 2010, vol. 33, pp. 617-625. doi: 10.1002/jssc.200900504.

Schipilliti L., Dugo P., Bonaccorsi I., Mondello L. Authenticity control on lemon essential oils employing Gas Chromatography-Combustion-Isotope Ratio Mass Spectrometry (GC-C-IRMS). Food Chem., 2012, vol. 131, pp. 1523-1530. doi: 10.1016/j.foodchem.2011.09.119.

Acosta G., Arce S., Martínez L.D., Llabot J., Gomez M.R. Monitoring of phenolic compounds for the quality control of melissa officinalis products by capillary electrophoresis. Phytochem. Anal., 2012, vol. 23, pp. 177–183. doi: 10.1002/pca.1340.

Pellati F., Orlandini G., Leeuwen K. A., Anesin G., Bertelli D., Paolini M., Benvenuti S., Camin F. Gas chromatography combined with mass spectrometry, flame ionization detection and elemental analyzer/isotope ratio mass spectrometry for characterizing and detecting the authenticity of commercial essential oils of Rosa damascena Mill. Rapid Commun. Mass Spectrom., 2013, vol. 27, pp. 591-602. doi: 10.1002/rcm.6489.

Ng T.B., Fang E.F., Bekhit A.El-Din.A., Wong J.H. Methods for the Characterization, Authentication, and Adulteration of Essential Oils. Essential Oils in Food Preservation, Flavor and Safety. 2016, pp. 11-16. doi: 10.1016/B978-0-12-416641-7.00002-X.

Osman S.M.E., El-Obeid H.A., Ayoub M.H. Physical and chemical analysis of some imported essential oils in the Sudanese market. Afr. J. Pharm. Pharmacol., 2012, vol. 6, pp. 1477–1481.

GOST ISO 279-2014 Masla efirnyye. Metod opredeleniia otnositel'noi plotnosti pri temperature 20 °C. Kontrol'nyi metod. [State Standart 279-2014. Essential oils. Method for determining the relative density at a temperature of 20 °C. Control method]. Moscow, 2015. 8 p. (in Russian).

GOST ISO 280-2014 Masla efirnyye. Metod opredeleniia pokazatelia prelomleniia. [State Standart 280-2014 Essential oils. Method for determination of the refractive index]. Moscow, 2015. 6 p. (in Russian).

Peter K.V. Handbook of Herbs and Spices, USA, CRC Press, 2001. 319 p.

GOST ISO 1242-2014 Masla efirnye. Metod opredeleniia kislotnogo chisla [State Standart 1242-2014 Essential oils. Method for determination of the acid number]. Moscow, 2015. 6 p. (in Russian).

Eurорeаn Рhаrmаcороeiа. 7th editiоn. Strаsbоurg: EDQM; 2010. Available at: httр://оnline.edqm.eu/entry.htm (Accessed 30.09.2019).

GOST ISO 709-2014 Masla efirnye. Metod opredeleniia efirnogo chisla [State Standart 709-2014 Essential oils. Method for determination of the either number]. Moscow, 2015. 6 p. (in Russian).

GOST ISO 875-2014 Masla efirnyye. Metod opredeleniia rastvorimosti v etilovom spirte [State Standart 875-2014 Essential oils. Method for determination of solubility in ethyl alcohol]. Moscow, 2015. 8 p. (in Russian).

Howes M.-J.R., Simmonds M.S.J., Kite G.C. Evaluation of the quality of sandalwood essential oils by gas chromatography–mass spectrometry. J. Chromatogr. A., 2004, vol. 1028, pp. 307–312. doi: 10.1016/j.chroma.2003.11.093.

Sciarrone D., Costa R., Ragonese C., Tranchida P.Q., Tedone L., Santi L., Dugo P., Dugo G., Mondelloa L. Application of a multidimensional gas chromatography system with simultaneous mass spectrometric and flame ionization detection to the analysis of sandalwood oil. J. Chromatogr. A., 2011, vol. 1218, pp. 137–142. doi: 10.1016/j.chroma.2010.10.117.

Thao N.T. Enantiomeric and stable isotope analysis. Citrus Essential Oils: Flavor and Fragrance: еd. M. Sawamura. Hoboken, John Wiley & Sons, 2010, pp. 165-168.

Shutova A.G. [Optically active isomers of representatives of the genus pinus and their use in chemosystematics]. Faktory eksperimental'noi evoliutsii organizmov [Factors of experimental evolution of organisms], 2017, vol. 20. pp. 154-158 (in Russian).

Tkachev A.V. [Chirospecificanalysis of volatile plant substances]. Uspekhi khimii. [Russian chem. rew.], 2007, vol. 76, no 10, p. 1014-1033 (in Russian).

Mosandl A. Enantioselective capillary gas chromatography and stable isotope ratio mass spectrometry in the authenticity control of flavors and essential oils. Food Rev. Int., 1995, vol. 11, pp. 597–664.

Konig W.A., Fricke C., Saritas Y., Momeni B., Hohenfeld G. Adulteration or natural variability enantioselective gas chromatography in purity control of essential oils. J. High Resolut. Chromatogr., 1997, vol. 20, pp. 55–61.

Kreis P., Mosandl A. Chiral compounds of essential oils. Part XVI. enantioselective multidimensional gas chromatography in authenticity control of balm oil (melissa officinalis l.). Flavour Fragr. J., 1994, vol. 9, pp. 249-256.

Hener U., Faulhaber S., Kreis P., Mosandl A. On the authenticity evaluation of balm oil. Pharmazie, 1995, vol. 50, pp. 60-62.

Smelcerovic A., Djordjevic A., Lazarevic J., Stojanovic G. Recent Advances in Analysis of Essential Oils. Curr. Anal. Chem., 2013, vol. 9, no 1, pp. 61-70. doi: 1875-6727/13.

Bansal S., Singh A., Mangal M., Mangal A.K., Kumar S. Food adulteration: Sources, health risks, and detection methods. Crit. rev. food sci. nutr., 2017, vol. 57, no. 6, pp. 1174–1189. doi: 10.1080/10408398.2014.967834.

Bonaccorsi I.L., McNair H.M., Brunner L.A., Dugo P., Dugo G. Fast HPLC for the Analysis of Oxygen Heterocyclic Compounds of Citrus Essential Oils. J. Agric. Food Chem., 1999, vol. 47, pp. 4237-4239. doi: 10.1021/jf990417s.

Russo M., Bonaccorsi I., Costa R., Trozzi A., Dugo P., Mondello L. Reduced time HPLC analyses for fast quality control of citrus essential oils. J. Essent. Oil Res., 2015, vol. 27, no 4, pp. 307-315. doi: 10.1080/10412905.2015.1027419.

Waksmundzka-Hajnos M., Sherma J., Kowalska T. Thin Layer Chromatography in Phytochemistry. Chromatographic science series, CRC Press, Boca Raton, 2008. 896 p.

Talibova A.G, Kolesnov A.Yu. [Evaluation of the quality and safety of food products by isotope ratio mass spectrometry]. Analitika [Analytics], 2011, no. 1, pp. 44-48 (in Russian).

Li S., Zhu X., Zhang J., Li G., Su D., Shan Y. Authentication of pure camellia oil by using near infrared spectroscopy and pattern recognition techniques. J. Food Sci., 2012, vol. 77, pp. C374–C380. doi: 10.1111/j.1750-3841.2012.02622.x.

Hidalgo F.J., Zamora R. Edible oil analysis by high-resolution nuclear magnetic resonance spectroscopy: recent advances and future perspectives. Trends Food Sci. Technol., 2003, vol. 14, pp. 499–506. doi: 10.1016/j.tifs.2003.7.001.

Kuriakose S., Joe I.H. Feasibility of using near infrared spectroscopy to detect and quantify an adulterant in high quality sandalwood oil. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2013, vol. 115, pp. 568–573.

Kuriakose S., Thankappan X., Joe H., Venkataraman V. Detection and quantification of adulteration in sandalwood oil through near infrared spectroscopy. Analyst, 2010, vol. 135, pp. 2676–2681. doi: 10.1039/c0an00261e.

Jentzsch P.V., Gualpa F., Ramos L.A., Ciobotă V. Adulteration of clove essential oil: Detection using a handheld Raman spectrometer. Flavour Fragr J., 2018, vol. 33, pp. 184-190. doi: 10.1002/ffj.3438.

Pisarev D.I., Novikov O.O. [Methods for the isolation and analysis of essential oils]. Farmatsiya [Pharmacy], 2012, no. 10, pp. 25-29 (in Russian).

Skakovskiy Ye.D., Kiselev V.P., Tychinskaya L.Yu., Shutova A.G., Goncharova L.V., Spiridovich Ye.V., Lamotkin S.A., Bovdey N.A., Kiselev P.A. [Development of an approach for express analysis of the authenticity and qualityof essential oils based on high resolution NMR spectroscopy]. Trudy BGU [Proc BGU], 2010, vol. 5, no. 2, pp. 16-26 (in Russian).

Krause A., Wu Y., Tian R., Beek T. Is Low-field NMR a Complementary Tool to GC-MS in Quality Control of Essential Oils? A Case Study: Patchouli Essential Oil. Planta Med., 2018, vol. 84, pp. 953-963. doi: 10.1055/a-0605-3967.

Braunsdorf R., Hener U., Przibilla G., Piecha S., Mosandl A. The influence of analytical and technological procedures on the 13C/12C ratio of orange oil compounds. Z. Lebensm. Unters Forsch, 1993, vol. 197, pp. 24-28.

Nhu-Trang T.-T., Casabianca H., Grenier-Loustalot M.-F. Authenticity control of essential oils containing citronellal and citral by chiral and stable-isotope gas-chromatographic analysis. Anal. Bioanal. Chem., 2006, vol. 386, pp. 2141-2152. doi: 10.1007/s00216-006-0842-2.

Wagner S., Vreca P., Leis A., Boechzelt H. Carbon isotope ratio analysis of authentic and commercial essential oils of lemon balm. Nat. Prod. Commun., 2008, vol. 3, no. 7, pp. 1165-1170.

Frank C., Dietrich A., Kremer U., Mosandl A. GC-IRMS in the authenticity control of the essential oil of Coriandrum sativum L. J. Agric. Food Chem., 1995, vol. 43, pp. 1634-1637.

Faber B., Bangert K., Mosandl A. GC–IRMS and enantioselective analysis in biochemical studies in dill (Anethum graveolens L.). Flavour Fragr. J., 1997, vol. 12, pp. 305.

Bilke S., Mosandl A. 2H/1H and 13C/12C isotope ratios of trans-anethole using gas chromatographyisotope ratio mass spectrometry. J. Agric Food Chem., 2002, vol. 50, no. 14, pp. 3935–3937. doi: 10.1021/jf0117208.

Ruff C., Hör K., Weckerle B, König T, Schreier P. Authenticity Assessment of Estragole and Methyl Eugenol by On-Line Gas Chromatography-Isotope Ratio Mass Spectrometry. J. Agric. Food Chem., 2002, vol. 50, pp. 1028-1031. doi: 10.1021/jf011204h.

Greule M., Moreno A., Castro M., Falqué E. Feed additives: authenticity assessment using multicomponent-/multielement-isotope ratio mass spectrometry. Eur. Food Res. Technol., 2008, vol. 227, pp. 767-776. doi: 10.1007/s00217-007-0770-1.

Bonaccorsi I., Sciarrone D., Schipilliti L., Trozzi A., Fakhry H.A., Dugo G. Composition of Egyptian neroli oil. Nat. Prod. Comm., 2011, vol. 6, pp. 1009-1014.

Schipilliti L., Dugo G., Santi L., Paola Dugo, Mondello L. Authentication of bergamot essential oil by gas chromatographycombustion-isotope ratio mass spectrometer (GC-C-IRMS). J. Essent. Oil Res., 2011, vol. 23, no. 2, pp. 60-71. doi: 10.1080/10412905.2011.9700447.

Galimov E.M. Geokhimiia stabil'nykh izotopov ugleroda [The geochemistry of stable isotopes of carbon]. Moscow, Nedra, 1968, 226 p. (in Russian).

Rundel P.W., Ehleringer J.R., Nagy K.A. Stable Isotopes in Ecological Research. New York, Springer, 1989. 525 p.

Brand W.A., Coplen T.B. Stable isotope deltas: tiny, yet robust signatures in nature. Isotopes Environ Health Stud., 2012, vol. 48, no. 3, pp. 393-409. doi: 10.1080/10256016.2012.666977.

Wieser M.E., Holden N., Coplen T.B., Bцhlke J.K., Berglund M., Brand W.A., Biиvre P.D., Grцning M., Loss R.D., Meija J., Hirata T., Prohaska T., Schцnberg R., O’Connor G., Walczyk T., Yoneda S., Zhu X.-K. Atomic weights of the elements 2011 (IUPAC Technical Report). Pure Appl. Chem., 2013, vol. 85, pp. 1047. doi: 10.1351/PAC-REP-13-03-02.

Galimov E.M. Priroda biologicheskogo fraktsionirovaniia izotopov [The nature of the biological fractionation of isotopes]. Moscow, Nauka, 1981. 247 p. (in Russian).

Stabil'nye izotopy v prirode – na sluzhbe cheloveka [Stable isotopes in nature - at the service of man]. Available at: https://textronica.com/?p=823 (Accessed 07.10.2019) (in Russian).

Krueger H.W., Reesman R.H. Carbon isotope analyses in food technology. Mass Spectrom. Rev., 1982, vol. 1, pp. 205-236.

O’Leary M.H. Carbon isotopes in photosynthesis fractionation techniques may reveal new aspects of carbon dynamics in plants. Bio Sci., 1988, vol. 38, pp. 328-336.

Winkler F.J. Chromatography and mass spectrometry in nutrition science and food safety: ed. A. Frigerio, H. Milon. Amsterdam, Elsevier Science Publishers B.V., 1984. P. 173.

BIPM. International Vocabulary of Metrology – Basic and General Concepts and Associated Terms (VIM), 3rd ed. Bureau International des Poids et Mesures, Geneva. Available at: http://www.bipm.org/en/publications/guides/vim.https://nucleus.iaea.org/rpst/referenceproducts/ReferenceMaterials/Stable_Isotopes/2H13C15Nand18O/index.htm (accessed 07.10.2019).

Meier-Augenstein W.M., Coleman M. Ignoring IUPAC guidelines for measurement and reporting of stable isotope abundance values affects us all. Rapid Commun. Mass Spectrom., 2014, vol. 28, pp. 1953-1955. doi: 10.1002/rcm.6971.

Coplen T.B. Guidelines and recommended terms for expression of stable isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom., 2011, vol. 25, pp. 2538-2560. doi: 10.1002/rcm.5129.

Carter J.F., Fry B. Ensuring the reliability of stable isotope ratio data-beyond the principle of identical treatment. Anal. Bioanal. Chem., 2013, vol. 405, pp. 2799-2814. doi: 10.1007/s00216-012-6551-0.

Reference and intercomparison materials for stable isotopes of light elements. IAEA-TECDOC-825. Vienna, International Atomic Energy Agency, 1995, 159 p.

Sevast'yanov V.S. Izotopnaia mass-spektrometriia legkikh gazoobrazuiushchikh soedinenii [Isotopic mass-spectrometry of light gas-generating elements]. Moscow, FIZMATLIT, 2011. 236 p. (in Russian).

Gauchotte-Lindsay C., Turnbull S.M.On-line high-precision carbon position-specific stable isotope analysis: A review. Trends Analyt. Chem., 2016, vol. 76, pp. 115-125. doi:10.1016/j.trac.2015.07.010.

Flash EA for IRMS Operating Manual. Thermo Fisher Scientific Inc., 2011, Chapter 3, pp. 1-27.

High Temperature Conversion Elemental Analyzer (TC/EA). Operating Manual. ThermoFinnigan, 2001, pp. 11.

Sharp Z.D., Atudorei V., Durakiewicz T.A. A rapid method for determination of hydrogen and oxygen isotope ratios from water and hydrous minerals. Chemical geology., 2001, vol. 178, pp. 197-210. PII: S0009-2541Ž01.00262-5.

Tokarev M.I., Faynberg V.S., Khodeyev Yu.S. [Modern possibilities and prospects of mass-spectrometry of light elements (review)]. Mass-spektrometriia [Mass-spectrometry], 2004, vol. 1, pp. 179-190 (in Russian).

Benson S., Lennard C., Maynard P., Roux C. Forensic applications of isotope ratio mass spectrometry – A review. Forensic Sci. Int., 2006, vol. 157, pp. 1-22. doi: 10.1016/j.forsciint.2005.03.012.

Galimov E.M., Sevast'yanov V.S., Kuznetsova O.V. [On the accuracy of determination of the isotopic composition of light elements while reducing the size of the analyzed samples]. Mass-spektrometriia [Mass-spectrometry], 2009, vol. 6, pp. 37-46 (in Russian).

López Días V., Hoang H.Q., Martínez-Carreras N., Barnich F., Wirtz T., McDonnell J.J., Pfister L. The use of nafion membranes to measure of 2H/1H and 18O/16O isotopic ratios in water. J. Membr. Sci., 2019, vol. 572, pp. 128-139. doi: 10.1016/j.memsci.2018.11.003.

W.Meier-Augenstein. Review: applied gas chromatography coupled to isotope ratio mass spectrometry. J. Chromatogr. A., 1999, vol. 842, pp. 351-371. PII: S0021-9673(98)01057-7.

Fink K., Richling E., Heckel F., Schreier P. Determination of 2H/1H and 13C/12C Isotope Ratios of (E)-Methyl Cinnamate from Different Sources Using Isotope Ratio Mass Spectrometry. J. Agric. Food Chem., 2004, vol. 52, pp. 3065-3068. doi: 10.1021/jf040018j.

Culp R.A., Noakes J.E. Determination of Synthetic Components in Flavors by Deuterium/Hydrogen Isotopic Ratios. J. Agric. Food Chem., 1992, vol. 40, pp. 1092-1097.

Butzenlechner M., Rosmann A., Schmidt H.-L. Assignment of bitter almond oil to natural and synthetic sources by stable isotope ratio analysis. J. Agric. Food Chem., 1989, vol. 37, pp. 410-412.

Schipilliti L., Bonaccorsi I.L., Occhiuto C., Dugo P., Mondello L. Authenticity of citrus volatiles based on carbon isotope ratios. J. Essent. Oil Res., 2018, vol. 30, no. 1, pp. 1-15. doi: 10.1080/10412905.2017.1377123.

Braunsdorf R., Hener U., Stein S., Mosandl A. Comprehensive GC-IRMS analysis in the authenticity control of flavours and essential oils. Part I: Lemon oil. Z. Lebensm. Unters. Forsch., 1993, vol. 197, no. 2, pp. 137-141.

Schipilliti L., Bonaccorsi I.L., Mondello L. Evaluation of the carbon isotope ratios of selected volatiles determined in several citrus authentic petitgrain oils. Bigarade (C. aurantium) petitgrain oil’s first case report. J. Essent. Oil Res., 2019, vol. 31, no. 2, pp. 99-110. doi: 10.1080/10412905.2018.1556745.

Dugo G., Bonaccorsi I., Sciarrone D., Schipilliti L., Russo M., Cotroneo A., Dugo P., Mondello L., Raymo V. Characterization of cold-pressed and processed bergamot oils by using GC-FID, GC-MS, GC-C-IRMS, enantio-GC, MDGC, HPLC and HPLC-MSIT-TOF. J. Essent. Oil Res., 2012, vol. 24, no. 2, pp. 93-117. doi: 10.1080/10412905.2012.659526.

Kumar A., Niranjan A., Lehri A., Tewari S., Amla D., Raj S., Srivastava R., Shukla S. Isotopic Ratio Mass Spectrometry Study for Differentiation Between Natural and Adulterated Essential Oils of Lemongrass (Cymbopogon flexuosus) and Palmarosa (Cymbopogon martinii). J. Essent. Oil Bear. Pl., 2015, vol. 18, pp. 368-373. doi: 10.1080/0972060X.2014.971061.

Schipilliti L., Bonaccorsi I., Cotroneo A., Dugo P., Mondello L. Carbon isotope ratios of selected volatiles in Citrus sinensis and in orange-flavoured food. J. Sci. Food Agric., 2015, vol. 95, pp. 2944-2950. doi: 10.1002/jsfa.7037.

Bilke S., Mosandl A. Authenticity assessment of lavender oils using GC-P-IRMS: 2H/1H isotope ratios of linalool and linalyl acetate. Eur. Food Res. Technol., 2002, vol. 214, pp. 532-535. doi: 10.1007/s00217-002-0508-z.

Bonaccorsi I., Sciarrone D., Schipilliti L., Dugo P., Mondello L., Dugo G. Multidimensional enantio gas chromatography/mass spectrometry and gas chromatography–combustion-isotopic ratio mass spectrometry for the authenticity assessment of lime essential oils (C. aurantifolia Swingle and C. latifolia Tanaka). J. Chromatogr. A., 2012, vol. 1226, pp. 87-95. doi: 10.1016/j.chroma.2011.10.038.

Butzenlechner M., Rossmann A., Schmidtet H.-L. Assignment of bitter almond oil to natural and synthetic sources by stable isotope ratio analysis. J. of Agric. Food Chem., 1989, vol. 37, pp. 410-412. doi: 0021-8561/89/1437-0410$01.50/0.

Ruff C., Hör K., Weckerle B., Schreier P. 2H/1H ratio analysis of flavor compounds by on-line gas chromatography pyrolysis isotope ratio mass spectrometry (HRGC-P-IRMS): Benzaldehyde. J. High Res. Chrom., 2000, vol. 23, pp. 357-359. doi: 10.1002/(SICI)1521-4168(20000501)23:5<357::AID-JHRC357>3.0.CO;2-R.

Remaud G.S., Martin Y.-L., Martin G.G., Naulet N. Authentication of mustard oils by combined stable isotope analysis (SNIF-NMR and IRMS). J. Agric. Food Chem., 1997, vol. 45, pp. 1844-1848.

Nhu-Trang T.-T., Casabianca H., Grenier-Loustalot M.-F. Deuterium/hydrogen ratio analysis of thymol, carvacrol, γ-terpinene and p-cymene in thyme, savory and oregano essential oils by gas chromatography–pyrolysis–isotope ratio mass spectrometry. J. Chromatogr. A., 2006, vol. 1132, pp. 219-227. doi: 10.1016/j.chroma.2006.07.088.

Schipilliti L., Bonaccorsi I., Cotroneo A., Dugo P., Mondello L. Evaluation of Gas Chromatography−Combustion−Isotope Ratio Mass Spectrometry (GC-C-IRMS) for the Quality Assessmentof Citrus Liqueurs. J. Agric. Food Chem., 2013, vol. 61, pp. 1661-1670. doi: 10.1021/jf3028073.

Aksenova Yu.B., Lapko I.V., Kuznetsova O.V., Vasilevskiy S.V., Aksenov A.V. [Isotope ratio mass spectrometry study of changes in the isotopic composition if carbon and hydrogen of cinnamon essential oil during adulteration]. Tez. dokl. simpoziuma po geokhimii izotopov imeni akademika A.P. Vinogradova. [Proc. XXII Symp. Isotope geochemistry im. A.P. Vinogradova]. Moscow, 2019, P. 15 (in Russian).




DOI: https://doi.org/10.15826/analitika.2019.23.4.010

Ссылки

  • На текущий момент ссылки отсутствуют.