Изображение на обложке

ОПРЕДЕЛЕНИЕ УРАНА В ВОДНЫХ РАСТВОРАХ МЕТОДОМ ВРЕМЯПРОЛЕТНОЙ МАСС-СПЕКТРОМЕТРИИ С ИМПУЛЬСНЫМ ТЛЕЮЩИМ РАЗРЯДОМ ПОСЛЕ ЕГО КОНЦЕНТРИРОВАНИЯ ОКИСЛЕННЫМИ УГЛЕРОДНЫМИ НАНОТРУБКАМИ

A. D. Titova, V. N. Postnov, Savinov S. S., Stolyarova N. V., N. B. Ivanenko, V. A. Chuchina, A. R. Gubal, A. A. Ganeev

Аннотация


Загрязнение окружающей среды ураном диктует необходимость контроля концентрации этого элемента в природных водах до допустимых пределов, что необходимо для стабильности экосистем и здоровья населения. Из-за сильной токсичности и радиоактивности в 2011 году ВОЗ установила предельно допустимую концентрацию урана в воде – 0.03 ppm. При транспортировке проб природной воды с низким содержанием урана (на уровне ПДК) их консервируют. В качестве удобного способа транспортировки пробы и одновременного концентрирования урана в данной работе предложено сорбировать его на однослойных углеродных нанотрубках. Поверхность углеродных нанотрубок предварительно модифицировали химическим окислением и обрабатывали кремнеземом аэросил А-380. Рассматривали два варианта концентрирования урана на поверхность сорбента: индивидуальные и модифицированные кремнеземом углеродные нанотрубки. Для анализа использовали прямой метод определения содержания урана в сорбенте − времяпролетную масс-спектрометрию с импульсным тлеющим разрядом (GD-MS). Показано, что наиболее эффективным подходом для определения урана в воде стала сорбция урана на таблетку, состоящую из модифицированных кремнеземом окисленных нанотрубок. Предел обнаружения при этом составил 0.2 ppb.

Ключевые слова: масс-спектрометрия, импульсный тлеющий разряд, окружающая среда, прямой анализ, уран, углеродные нанотрубки

DOI: http://dx.doi.org/10.15826/analitika.2020.24.2.001

Полный текст:

PDF (Russian)

Литература


REFERENCES

Guidelines for Drinking-water Quality, fourth ed. WHO Press, 2011. 564 p.

Guo Z., Yan C., Xu J., Wu W. Sorption of U (VI) and phosphate on –alumina: Binary and ternary sorption systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, vol. 336, pp. 123–129. doi: 10.1016/j.colsurfa.2008.11.032

Sylwester E.R., Hudson E.A., Allen P.G. The structure of uranium (VI) sorption complexes on silica, alumina, and montmorillonite. Geochimica et Cosmochimica Acta, 2000, vol. 64, pp. 2431–2438. doi: 10.1016/S0016-7037(00)00376-8

Niu Z., Fan Q., Wang W., Xu J., Chen L., Wu W. Effect of pH, ionic strength and humic acid on the sorption of uranium (VI) to attapulgite. Applied Radiation and Isotopes. 2009, vol. 67, pp. 1582–1590. doi: 10.1016/j.apradiso.2009.03.113

Kats E.M., Nikashina V.A., Serova I.B. [Study of sorption of uranium on zeolites modified with polyethyleneimine from carbonat-containing solutions and calculation of the dynamics of sorption]. Sorbtsionnye i Khromatograficheskie Protsessy [Sorption and Chromatographic Processes]. 2014, vol. 14, no. 3, pp. 406 (in Russian).

Fernandes M.M., Baeyens B., Dahn R., Scheinost A.C., Bradbury M.H. U(VI) sorption on montmorillonite in the absence and presence of carbonate: A macroscopic and microscopic study. Geochimica et Cosmochimica Acta, 2012, vol. 93, pp. 262–277. doi: 10.1016/j.gca.2012.04.017

Zhanga R., Chena C., Li J., Wang X. Preparation of montmorillonite@carbon composite and its application for U(VI) removal from aqueous solution. Applied Surface Science, 2015, vol. 349, pp. 129–137. doi: 10.1016/j.apsusc.2015.04.222

Tournassat C., Tinnacher R.M., Grangeon S., Davis J.A. Modeling uranium(VI) adsorption onto montmorillonite under varying carbonate concentrations: A surface complexation model accounting for the spillover effect on surface potential. Geochimica et Cosmochimica Acta, 2018, vol. 220, pp. 291–308. doi: 10.1016/j.gca.2017.09.049

Zelenin V.I., Saduakasova A.T., Samoylov V.I., Kulenova N.A., Zyapaeva T.A., Dryuchkova O.A. [Method of uranium recovery from dilute solutions and natural waters]. Gornyi informatsionno-analyticheskii byulleten’ [Mountain news and analytical bulletin], 2016, no. 9, pp. 252-258. (in Russian).

Niu Z., Wie X., Qiang S., Wu H., Pan D., Wu W., Fan Q. Spectroscopic studies on U(VI) incorporation into CaCO3: Effects of aging time and U(VI) concentration. Chemosphere, 2019, vol. 220, pp. 1100-1107. doi: 10.1016/j.chemosphere.2019.01.010

Postnov V.N., Rodinkov O.V., Moskvin L.N., Novikv A.G., Bugaichenko A.S., Krokhina O.A. From carbon nanostructures to high-perfomance sorbents for chromatographic separation and preconcentration. Russian Chemical Reviews, 2016, vol. 85, pp. 115-138. doi: 10.1070/RCR4551

Yang J., Hou B., Wang J., Tian B., Bi J., Wang N., Li X., Huang X. Nanomaterials for the Removal of Heavy Metals from Wastewater. Nanomaterials, 2019, vol. 9, pp. 424. doi:10.3390/nano9030424

Mohamud H., Ivanov P., Russell B.C., Regan P.H., Ward N.I.

Selective sorption of uranium from aqueous solution by graphene oxide-modified materials. Journal of Radioanalytical and Nuclear Chemistry, 2018, vol. 316, pp. 839–848. doi: 10.1007/s10967-018-5741-4

Gupta V.K., Moradi O., Tyagi, I., Agarwal S., Sadegh H., Shahryari-Ghoshekandi R., Makhlouf A.S.H., Goodarzi M., Garshasbi A. Study on the removal of heavy metal ions from industry waste by carbon nanotubes: Effect of the surface modification: A review. Critical Review in Environmental Science Technology, 2016, vol. 46, pp. 93–118. doi: 10.1080/10643389.2015.1061874

Kahkha M., Kaykhaii M. Removal of Uranium (VI) From Aqueous Solution Using Modified Multiwalled Carbon Nanotubes: Kinetic, Isotherm and Thermodynamic Study. Pollution Research, 2016, vol. 35, pp. 29.

Fasfous I., Dawoud J. Uranium (VI) sorption by multiwalled carbon nanotubes from aqueous solution. Applied Surface Science, 2012, vol. 259, pp. 433-440. doi: 10.1016/j.apsusc.2012.07.062

Novichkova A.A., Zakharchenko E.A., Tiupina E.A. [Concentration of uranium with new sorption materials based on «Taunit» carbon nanotubes]. Uspekhi v khimii i khimicheskoi tekhnologii [Advances in chemistry and chemical technology], 2012, vol. XXVI, № 6, рр. 88-91 (in Russian).

Mokhodoeva O.B., Malikov D.A., Molochnikova N.P., Zakharchenko E.A., Perevalov S.A., Miasoedova G.V., Kuliako Iu.M., Tkachev A.G., Mishchenko S.V., Miasoedov B.F. [Carbon nanotubes: Applications for the concentration of radionuclides]. Rossiiskii khimicheskii zhurnal [Russian chemical journal], 2010, vol. LIV, no 3, pp. 61-68 (in Russian).

Sun Y., Yang S., Sheng G., Guo Z., Wang X. The removal of U(VI) from aqueous solution by oxidized multiwalled carbon nanotubes. Journal of Environmental Radioactivity, 2012, vol. 105, pp. 40-47. Doi: 10.1016/j.jenvrad.2011.10.009

Ihsanullah A.A., Al-Amer A.M., Laoui T., Al-Marri M.J., Nasser M.S., Khraisheh M., Atieh M.A. Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Separation and Purification Technology, 2016, vol. 157, pp.141–161. Doi: 10.1016/j.seppur.2015.11.039

Chingombe P., Saha B., Wakeman R.j. Surface modification and characterization of a coal-based activated carbon. Carbon, 2005, vol. 43, pp. 3132–3143. doi: 10.1016/j.carbon.2005.06.021

Wilson H., Ripp S., Prisbrey L., Brown M., Sharf T., Myles D.J.T., Blank K.G., Minot E.D. Electrical monitoring of sp3 defect formation in individual carbon nanotubes. Journal of Physical Chemistry. C, 2016, vol. 120, pp. 1971–1976. doi: 10.1021/acs.jpcc.5b11272

Rakov E.G. Uchebnoe posobie. Nanotrubki i fullereny [Tutorial. Nanotubes and fullerenes]. Мoscow, Universitetskaia kniga, Logos, 2006. 376 p. (in Russian).

Chen G.-X., Shimizu H. Multiwalled carbon nanotubes grafted with polyhedral oligomeric silsesquioxane and its dispersion in poly(L-lactide) matrix. Polymer, 2008, vol. 49, pp. 943–951. doi: 10.1016/j.polymer.2008.01.014

Kumar N.A., Ganapathy H.S., Kim J.S., Jeong Y.S., Jeong Y.T. Preparation of poly 2-hydroxyethyl methacrylate functionalized carbon nanotubes as novel biomaterial nanocomposites. European Polymer Journal, 2008, vol. 44, pp. 579–586. doi: 10.1016/j.eurpolymj.2007.12.009

Kumar S., Kumar R., Jindal V.K., Bharadwaj L.M. Immobilization of single walled carbon nanotubes on glass surface. Materials Letters, 2008, vol. 62, pp. 731–734. doi: 10.1016/j.matlet.2007.06.045

Datsyuk V., Kalyva M., Papagelis K., Parthenios J., Tasis D., Siokou A., Kallitsis I., Galiotis C. Chemical oxidation of multiwalled carbon nanotubes. Carbon, 2008, vol. 46, pp. 833–840. doi: 10.1016/j.carbon.2008.02.012

Wang J.J., Yin G.P., Zhang J., Wang Z.B., Gao Y.Z. High utilization platinum deposition on single-walled carbon nanotubes as catalysts for direct methanol fuel cell. Electrochimica. Acta, 2007, vol. 52, pp. 7042–7050. doi: 10.1016/j.electacta.2007.05.038

Chiang Y.C., Lin W., Chang Y. The influence of treatment duration on multi-walled carbon nanotubes functionalized by H2SO4/HNO3 oxidation. Applied Surface Science, 2011, vol. 257, pp. 2401–2410. doi: 10.1016/j.apsusc.2010.09.110

Xie X.L., Mai Y.-W., Zhou X.-P. Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Material Science and Engineering: R, 2005, vol. 49, pp. 89–112. doi: 10.1016/j.mser.2005.04.002

Saleh T.A. The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4. Applied Surface Science, 2011, vol. 257, pp. 7746–7751. doi: 10.1016/j.apsusc.2011.04.020

Wang Z., Shirley M.D., Meikle S.T., Whitby R.L.D., Mikhalovsky S.V. The surface acidity of acid oxidized multi-walled carbon nanotubes and the influence of in-situ generated fulvic acids on their stability in aqueous dispersions. Carbon, 2009, vol. 47, pp. 73–79. doi: 10.1016/j.carbon.2008.09.038

Xia W., Wang Y., Bergstraßer R., Kundu S., Muhler M. Surface characterization of oxygen-functionalized multi-walled carbon nanotubes by high-resolution X-ray photoelectron spectroscopy and temperature-programmed desorption. Application of Surface Science, 2007, vol. 254, pp. 247–250. doi: 10.1016/j.apsusc.2007.07.120

Smith B., Wepasnick K., Schrote K. E., Cho H.-H., Ball W.P., Fairbrother D.H. Influence of surface oxides on the colloidal stability of multi-walled carbon nanotubes: a structure– property relationship. Langmuir, 2009, vol. 25, pp. 9767–76. doi: 10.1021/la901128k

Rosca I.D., Watari F., Uo M., Akasaka T. Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon, 2005, vol. 43, pp. 3124–3131. doi: 10.1016/j.carbon.2005.06.019

Bergeret C., Cousseau J., Fernandez V., Mevellec J.-Y., Lefrant S. Spectroscopic evidence of carbon nanotubes metallic character loss induced by covalent functionalization via nitric acid purification. Journal of Physical Chemistry. C, 2008, vol. 112, pp. 16411–16416. doi: 10.1021/jp806602t

Hou P.X., Bai S., Yang Q.H., Liu C., Cheng H.M. Multi-step purification of carbon nanotubes. Carbon, 2002, vol. 40, pp. 81–85. doi: 10.1016/S0008-6223(01)00075-6

Martinez M.T., Callejas M.A., Benito A.M., Cochet M., Seeger T., Anson A, Schreiber J., Gordon C., Marhic C., Chauvet O. and Maser W.K. Modifications of single-wall carbon nanotubes upon oxidative purification treatments. Nanotechnology, 2003, vol. 14, pp. 691–695. doi: 10.1088/0957-4484/14/7/301

Sezer N., Koc M. Dispersion stability of CNT and CNT/metal-based nanofluids. International Conference on Thermal Engineering: Theory and Applications, 2018, pp.1–4.

Hu H., Zhao B., Itkis M.E., Haddon R.C. Nitric acid purification of single-walled carbon nanotubes. Journal of Physical Chemistry. В, 2003, vol. 107, pp. 13838–13842. doi: 10.1021/jp035719i

Martinez M.T., Callejas M.A., Benito A.M., Cochet M., Seeger T., Anson A., Schreiber J., Gordon C., Marhic C., Chauvet O., Fierro J.L.G. and Maser W.K Sensitivity of single-wall carbon nanotubes to oxidative processing: structural modification, intercalation and functionalization. Carbon, 2003, vol. 41, pp. 2247–2256. doi: 10.1016/S0008-6223(03)00250-1

Liu Y., Zhao Z., Yuan D., Wang Y., Dai Y., Zhu Y., Chew J.W. Introduction of amino groups into polyphosphazene framework supported on CNT and coated Fe3O4 nanoparticles for enhanced selective U(VI) adsorption. Applied Surface Science, 2019, vol. 466, pp. 893-902. doi: 10.1016/j.apsusc.2018.10.097

Ganeev A.A., Gubal A.R., Uskov K.N., Potapov S.V. Analytical glow discharge mass spectrometry. Russian Chemical Bulletin, 2012, vol. 61, pp. 752-767.

Voronov M., Ganeev A. Model of microsecond pulsed glow discharge in hollow cathode for mass spectrometry. Spectrochimica Acta. Part B, 2009, vol. 64, pp. 416-426. doi:10.1016/j.sab.2009.05.004

Ganeev A.A., Gubal A.R., Potapov S.V., Pogarev S.E., Sholupov S.E., Uskov K.N., Ivanov I.S. Elimination of water interference in pulsed glow discharge time-of-flight mass spectrometry. Journal of Analytical Chemistry, 2013, vol. 68, pp. 1205-1211. doi: 10.1134/S1061934813140050

Ganeev A.A., Gubal A.R., Potapov S.V., Tyukal’tsev R.V. Time-of-flight mass spectrometry with pulsed gas-discharge ionization: Study of relative sensitivities of components. Journal of Analytical Chemistry, 2009, vol. 64, pp. 696-704. doi: 10.1134/S1061934809070077

King F.L., Teng J., Steiner R.E. Glow discharge mass spectrometry: Trace element determination in solid samples. Journal of mass spectrometry, 1995, vol. 30, pp. 1061-1075.

Vyacheslavov А.S., Efremova М. Metodicheskaia razrabotka. Opredelenie ploshchadi poverkhnosti i poristosti metodom sorbtsii gazov [Methodological development. Determination of surface and porosity by gas sorption]. Мoscow, MSU, faculty of Materials Science, 2011, 65 p. (in Russian).

J.P.Gustafsson, Visual MINTEQ version 2.51, 2016.

Kobets S.A., Pshinko G.N., Puzyrnaia L.N. [Uranium (VI) in natural waters: a study of the forms of occurrence]. Khimiia i tekhnologiia vody [Journal of Water Chemistry and Technology], 2012, vol. 34, no. 6, pp.469.

Fasfous I.I., Dawous J.N. Uranium (VI) sorption by multiwalled carbon nanotubes from aqueous solution. Applied Surface Science, 2012, vol. 259, pp.433-440. doi: 10.1016/j.apsusc.2012.07.062

Ganeev A., Titova A., Korotetski B., Gubal A., Solovyev N., Vyacheslavov A., Iakovleva E., Sillanpää M. Direct quantification of major and trace elements in geological samples by time-of-flight mass spectrometry with pulsed glow discharge. Analytical Letters, 2019, vol. 52, no. 4, pp. 671–684. doi: 10.1080/00032719.2018.1485025




DOI: https://doi.org/10.15826/analitika.2020.24.2.001

Ссылки

  • На текущий момент ссылки отсутствуют.