Изображение на обложке

ПРИМЕНЕНИЕ РЕНТГЕНОФЛУОРЕСЦЕНТНОГО АНАЛИЗА В БИОЛОГИИ И МЕДИЦИНЕ

A. G. Revenko

Аннотация


В настоящее время рентгенофлуоресцентный анализ (РФА) широко используется для определения содержаний элементов в различных материалах при биологических исследованиях. В обзоре рассмотрены достижения, связанные с особенностями такого применения метода РФА. Рентгенофлуоресцентный анализ в большинстве случаев является недеструктивным методом, который доказал свой потенциал для измерения концентраций элементов с высоким атомным номером Z в органах и тканях в естественных условиях (in vivo). Основные области применения метода в биологии и медицине: определение содержаний основных и токсичных элементов в растениях, образцах костей, зубов, волос, ногтей и тканей жизненно важных органов, жидкостей организма, таких как кровь, сыворотка, плазма, слюна, урина и др. Как правило, эти исследования являются частью прикладных программ, включающих экологические и метаболические исследования населения, в т.ч. влияние профессиональных факторов. Применительно к биологическим материалам обсуждены преимущества РФА. Отмечено, что на результат анализа практически не влияет форма нахождения элемента в образце. В последние годы сконструирован ряд новых моделей спектрометров РФА, в которых используются поликапиллярные линзы и полулинзы в качестве коллимирующих систем. Это важно в случае применения in vivo рентгенофлуоресцентного определения некоторых элементов в костях и тканях. Динамичное развитие характерно для детекторов с термоэлектрическим охлаждением. Обсуждены варианты приготовления биологических материалов к анализу (измельчение, сухое или мокрое озоление, разложение кислотами, применение суспензий в случае РФА с полным внешним отражением). Представлены результаты оценки взаимных влияний элементов при РФА материалов растительного происхождения, в т.ч. трав, пряностей, яблочных листьев, листьев берёзы и томата, чая, пшеничной, ржаной, рисовой, овсяной, льняной муки, фасоли, молотого и растворимого кофе. Рассмотрены примеры применения РФА при различного рода криминалистических исследованиях: отравления, фальсификации лекарств и торговых марок пищевых продуктов, зубных имплантов, идентификации останков. В обзоре представлены примеры участия учёных рентгенофизиков из России в решении рассматриваемых задач. Список литературы составляет 399 наименований в основном публикации последних 20 лет.

Ключевые слова: рентгенофлуоресцентный анализ, исследование образцов костей, волос, ногтей, крови, слюны, лекарств.

DOI: http://dx.doi.org/10.15826/analitika.2020.24.4.005

Полный текст:

PDF

Литература


REFERENCES

Revenko A.G. [X-Ray fluorescence analysis of biological samples]. Vestnik Insituta biologii Komi NC UrO RAN [Annals of IB Komi SC UB RAS], 2000, vol. 28, no. 2, pp. 14-16 (in Russian).

Börjesson J., Isaksson M., Mattsson S. X-ray fluorescence analysis in medical sciences: a review. Acta Diabetol., 2003, vol. 40, pp. S39–S44. doi: 10.1007/s00592-003-0024-z

Chettle D. X-ray spectroscopy in medicine. X-Ray Spectrom., 2008, vol. 37, no. 1, pp. 1–2. doi: 10.1002/xrs.100#8

Börjesson J., Mattsson S. In vivo x-ray fluorescence measurements of lead, cadmium and mercury in occupational and environmental studies: a review of work conducted in Sweden 1970–2005. X-Ray Spectrom., 2008, vol. 37, no. 1, pp. 58–68. doi: 10.1002/xrs.995

Brito J.A.A., Fleming D.E.B., Chettle D.R. A review of EDXRS in the study of human lead metabolism. X-Ray Spectrom., 2008, vol. 37, no. 1, pp. 84-88. doi: 10.1002/xrs.1000

Revenko A.G. Development of X-Ray Fluorescence Analysis in Russia in 1991–2010. Journal of Analytical Chemistry, 2011, vol. 66, no. 11, pp. 1059–1072. doi: 10.1134/S1061934811110116

Revenko A.G. X-Ray fluorescence analysis of biological samples. Proc. of Vth

Intern. Conf. on Contemporary Physics, ICCP-V, Ulaanbaatar: University Press, 2013, pp. 175-197.

Vanhoof Ch., Bacon J.R., Ellis A.T., Fittschen U.E.A., Vincze L. 2019 atomic spectrometry update–a review of advances in X-ray fluorescence spectrometry and its special applications. J. Anal. At. Spectrom., 2019, vol. 34. no. 9. pp. 1750–1767. doi: 10.1039/c9ja90042j

Taylor A., Catchpole A., Day M.P., Hill S., Martin N., Patriarca M. Atomic spectrometry update: review of advances in the analysis of clinical and biological materials, foods and beverages. J. Anal. At. Spectrom., 2020, vol. 35, no. 3. pp. 426-454. doi: 10.1039/D0JA90005B

Kumakhov MA Capillary optics and their use in x-ray analysis. X-Ray Spectrom., 2000, vol. 29, no. 5, pp. 343-348. doi: 10.1002/1097-4539(200009/10)29:5<343::AID-XRS414>3.0.CO;2-S

Handbook of Practical X-Ray Fluorescence Analysis / Ed. by B. Beckhoff, B. Kanngiesser, N. Langhoff, R. Wedell, H. Wolff. Berlin/Heidelberg: Springer, 2006, 863 p.

Revenko A.G. Specific features of X-ray fluorescence analysis techniques using capillary lenses and synchrotron radiation. Spectrochim. Acta, Part B, 2007, vol. 62, no. 7, pp. 567-576. doi: 10.1016/j.sab.2007.04.019

Janssens K., Recent trends in quantitative aspects of microscopic X-ray fluorescence analysis. Trends in Anal. Chem., 2010, vol. 29, no. 6, pp. 464–478. doi: 10.1016/j.trac.2010.03.003

Mazel V., Reiche I., Busignies V., Walter P., Tchoreloff P. Confocal micro-X-ray fluorescence as a new tool for the non-destructive study of the elemental distribution in pharmaceutical tablets. Talanta, 2011, vol. 85, pp. 556–561. doi: 10.1016/j.talanta.2011.04.027

Haschke M. Laboratory Micro-X-Ray Fluorescence Spectroscopy. Instrumentation and applications. Springer, Cham-Heidelberg-N. Y. Dordrecht-London, 2013, 356 p.

Pantazis T., Pantazis J., Huber A., Redus R. The historical development of the thermoelectrically cooled X-ray detector and its impact on the portable and hand-held XRF industries (February 2009). X-Ray Spectrom., 2010, vol. 39, no. 2, pp. 90–97. doi: 10.1002/xrs.1227

Wobrauschek P. Total-reflection X-ray fluorescence analysis. A review. X-ray Spectrom., 2007, vol. 36, no. 5, pp. 289–300. doi: 10.1002/xrs.985

Meirer F. Synchrotron radiation-induced total reflection X-ray fluorescence analysis. Trends in Anal. Chem., 2010, vol. 29, no. 6, pp. 479-496. doi: 10.1016/j.trac.2010.04.00

Revenko A.G. [The special features of analytical techniques for geological samples using TXRF spectrometers.] Analitika i kontrol’ [Analytics and control], 2010, vol. 14, no. 2, pp. 42-64 (in Russian).

Klockenkaemper R., von Bohlen A. Total-reflection X-ray fluorescence analysis and related methods. Second Edition, John Wiley & Sons Inc., New Jersey, 2015, 519 p.

Kawai J. Total Reflection X-Ray Fluorescence. Compendium of Surface and Interface Analysis: The Surface Science Society of Japan eds., Springer, 2018, pp. 763-768. doi: 10.1007/978-981-10-6156-1_122

Schmeling M. Total reflection X-ray fluorescence. Physical Sciences Reviews. 2019, 20170161, pp. 1-23. doi: 10.1515/psr-2017-0161

Heckel J., Brumme M., Weinert A., Irmer K. Multi-Element Trace Analysis of Rocks and Soils by EDXRF Using Polarized Radiation. X-Ray Spectrom., 1991, vol. 20, no. 6, pp. 287-292. doi: 10.1002/xrs.1300200608

Revenko A.G. Rentgenospektralnyi fluorestsentnyi analiz prirodnykh materialov [X-ray Spectral Fluorescence Analysis of Natural Materials]. Novosibirsk, Nauka Publ., 1994, 264 p. (in Russian).

Revenko A.G., Revenko V.A., Hudonogova E.V., Zhalsaraev B.Zh. [X-Ray fluorescence determination of Rb, Sr, Y, Zr, Nb, Sn, Ba, La, Ce in rocks using an energy-dispersive spectrometer with the polarizer]. Analitika i kontrol’ [Analytics and control], 2002, vol. 6, no. 4, pp. 400-407 (in Russian).

Zhan X. Application of polarized EDXRF in geochemical sample analysis and comparison with WDXRF. X-Ray Spectrom., 2005, vol. 34, no. 3, pp. 207-212. doi: 10.1002/xrs.794

Margui E., Padilla R., Hidalgo M., Queralt I., Van Grieken R. High-energy polarized-beam EDXRF for trace metal analysis of vegetation samples in environmental studies. X-Ray Spectrom., 2006, vol. 35, no. 3, pp. 169-177. doi: 10.1002/xrs.890

Zhalsaraev B.Zh. Development of polarized-beam and direct-excitation X-ray spectrometers. Proc. Conf. on X-Ray Analysis. Ulaanbaatar: University Press, 2012, pp. 111-123.

Bosco G.L. James L. Waters Symposium 2012. Report

Development and application of portable, hand-held X-ray fluorescence spectrometers. Trends in Anal. Chem., 2013, vol. 45, pp. 121-134. doi: 10.1016/j.trac.2013.01.006

Ridolfi S. Portable Systems for Energy-dispersive X-ray Fluorescence Analysis. Encyclopedia of Analytical Chemistry. John Wiley & Sons, Ltd., 2017, 22 p. doi: 10.1002/9780470027318.a6803.pub3

de Almeida E., Duran N.M., Gomes M.H.F., Savassa S.M., da Cruz T.N.M., Migliavacca R.A.., de Carvalho H.W.P. EDXRF for elemental determination of nanoparticle-related agricultural samples. X-Ray Spectrom., 2019, vol. 48, no. 2, pp. 151-161. doi: 10.1002/xrs.3001

Palmer P.T., Jacobs R., Baker P.E., Ferguson K., Webber S. Use of Field-Portable XRF Analyzers for Rapid Screening of Toxic Elements in FDA-Regulated Products. J. Agric. Food. Chem., 2009, vol. 57, pp. 2605-2613. doi: 10.1021/jf803285h.

Mihucz V.G., Silversmit G., Szalóki I., de Samber B., Schoonjans T., Tatár E., Vincze L., Virág I., Yao J., Záray G. Removal of some elements from washed and cooked rice studied by inductively coupled plasma mass spectrometry and synchrotron based confocal micro-X-ray fluorescence. Food Chem., 2010, vol. 121, pp. 290–297. doi: 10.1016/j.foodchem.2009.11.090

Lopes R.T., Lima I., Pereira G.R., Perez C.A. Synchrotron radiation X-ray microfluorescence techniques and biological applications. PRAMANA (J. of physics Indian Academy of Sciences), 2011, vol. 76, no. 2, pp. 271–279. https://www.ias.ac.in/article/fulltext/pram/076/02/0271-0279

Rak M., Salome M., Kaminskyj S.G.W., Gough K.M. X-ray microfluorescence (μXRF) imaging of Aspergillus nidulans cell wall mutants reveal biochemical changes due to gene deletions. Anal. Bioanal. Chem., 2014, vol. 406, pp. 2809–2816. doi: 10.1007/s00216-014-7726-7

Al-Ebraheem A., Geraki K., Leek R., Harris A.L., Farquharson M.J. The use of bio-metal concentrations correlated with clinical prognostic factors to assess human breast tissues. X-Ray Spectrom., 2013, vol. 42, no. 4, pp. 330–336. doi: 10.1002/xrs.2463.

Streli C., Wobrauschek P., Meirer F., Pepponi G. Synchrotron

radiation induced TXRF. J. Anal. At. Spectrom., 2008, vol. 23, pp. 792-798. doi: 10.1039/b719508g

Revenko A.G., Suvorova D.S., Khudonogova E.V. [Investigation of filter applicability for XRF analysis in the longwave range]. Analitika i kontrol’ [Analytics and control], 2018, vol. 22, no. 2, pp. 117-127. doi: 10.15826/analitika.2018.22.2.009 (in Russian).

Natelson S., Richelson M.R., Sheid B., Bender S.L. X-Ray Spectroscopy in the Clinical Laboratory: I. Calcium and Potassium. Clin. Chem., 1959, vol. 5, no. 6, pp. 519–531. doi: 10.1093/clinchem/5.6.519

Natelson S., Sheid B. X-Ray Spectroscopy in the Clinical Laboratory: II. Chlorine and Sulfur; Automatic Analysis of Ultramicro Samples. Clin. Chem., 1960, vol. 6, no. 4, pp. 299–313. doi: 10.1093/clinchem/6.4. 299

Natelson S., Sheid B. X-Ray Spectroscopy in the Clinical Laboratory: III. Sulfur Distribution in the Electrophoretic Protein Fractions of Human Serum; Abnormalities Observed in Certain Disease States. Clin. Chem.,1960, vol. 6, no. 4, pp. 314–326. doi: 10.1093/clinchem/6.4.314

Natelson S., Sheid B. X-Ray Spectroscopy in the Clinical Laboratory: IV. Phosphorus; Total Blood Fe as a Measure of Hemoglobin Content. Clin. Chem.,1961, vol. 7, no. 2, pp. 115-129. doi: 10.1093/clinchem/7.2.115

Gofman W. Chemical Elements of the Blood of Man in Health: X-Ray Spectrochemical Studies. Adv. in Biol. and Med. Phys., 1962, vol. 8, pp. 1-39. doi: 10.1016/B978-1-4831-9927-6.50004-6

Natelson S., Sheid B., Leighton D.R. X-Ray Spectrometry in the Clinical Laboratory: VII. Bromide Normally Present in Human Serum. Clin. Chem.,1962, vol. 8, no. 6, pp. 630-638. doi: 10.1093/clinchem/8.6.630

Natelson S., Vassilevsky A.N., De P.K., Whitford W.R. Microestimation of sodium, magnesium, and barium with the X-ray spectrometer. Microchem. J., 1964, vol. 8, no. 3, pp. 295-303. doi: 10.1016/0026-265X(64)90116-X

Kneip T.J., Laurer G.R. Isotope Excited X-Ray Fluorescence. Anal. Chem., 1972, vol. 44, no. 14, pp. 57A-68A. doi: 10.1021/ac60322a744

Cesario R., Del Principe D., Mancuso G., Tallarida B.M. Analysis of Iron in Blood by Radioisotope X-Ray Fluorescence. Isotopenpraxis, 1975, vol. 11, no. 1, pp. 16-19.

Stump I.G., Carruthers J., D'Auria J.M., Applegarth D.A., Davidson A.G.F. Quantitative analysis of trace elements in human blood and plasma by energy dispersive X-ray fluorescence. Clin. Biochem., 1977, vol. 10, pp. 127-132. doi: 10.1016/S0009-120(77)91740-4

Duvaldestin P. Serum bromide concentrations in anesthetists. Anesthesiology, 1977, vol. 46, no. 5, pp. 375-376. doi: 10.1097/00000542-197705000-00022

Paradellis T. Determination of Trace Elements in Whole Blood by Photon-Induced X-Ray Fluorescence. Eur. J. Nucl. Med., 1977, vol. 2, no. 4, pp. 277-279.,doi: 10.1007/BF00252578

Versieck J., Cornelis R. Normal levels of serum of trace elements in human blood plasma. Anal. Chim. Acta, 1980, vol. 116. pp. 285-291. doi: 10.1016/S0003-2670(01) 95205-5

Robberecht H., van Grieken R., Shani J., Barak S. Evaluation of multi-element analysis of blood serum by energy-dispersive x-ray spectrometry. Anal. Chim. Acta, 1982, vol. 136, pp. 285-291. doi: 10.1016/S0003-2670(01)95388-7

Robberecht H., van Grieken R. Determination of trace selenium in biological material by preconcentration and x-ray emission spectrometry. Anal. Chim. Acta, 1983, vol. 147, pp. 113-121. doi: 10.1016/0003-2670(83)80077-4

Cesareo R., Viezzoli G. Trace element analysis in biological samples by using XRF

spectrometry with secondary radiation. Phys. Med. Biol., 1983, vol. 28, no. 11, pp. 1209-1218. doi: 10.1088/0031-9155/28/11/002

Havranek E., Bumbalova A., Harangozo M. Contribution to the radionuclide X-ray fluorescence analysis of human blood and plasma. J. Radioanal. Nucl. Chem., Letters, 1986, vol. 104, no. 4, pp. 223-230. doi: 10.1007/BF02165326

Rao N.V., Reddy S.B., Narayana D.G.S., Satyanarayana G., Sastry D.L. Quantitative estimates of potassium in whole blood samples from diabetic. X-Ray Spectrom. 1988, vol. 17, no. 1, pp. 33–35. doi: 10.1002/xrs.1300170109

Yap C.T. X-ray total reflection fluorescence analysis of iron, copper, zinc and bromine in human serum. Appl. Spectr., 1988, vol. 42, no. 7, pp. 1250–1253. doi: 10.1366%2F0003702884430038

Prange A., Boddeker H., Michaelis W. Multi-element determination of trace elements in whole blood and blood serum by TXRF. Fresenius Z. Anal. Chem., 1989, vol. 335, pp. 914–918. doi: 10.1007/BF00466381

Ayala R.E., Alvarez E.M., Wobrauschek P. Direct determination of lead in whole human blood by total reflection X-ray fluorescence spectrometry. Spectrochim. Acta, Part B, 1991, vol. 46, no. 10, pp. 1429–1432. doi: 10.1016/0584-8547(91)80193-7

Dogan P., Dogan M., Klockenkamper R. Determination of Trace Elements in Blood Serum of Patients with Behcet Disease by Total Reflection X-ray Fluorescence. Clin. Chem., 1993, vol. 39, pp. 1037–1041. doi: 10.1093/clinchem/39.6.1037

Viksna A., Mwiruki G., Jagner D., Selin E. Intercomparison between energy-dispersive x-ray fluorescence and stripping potentiometry for the determination of copper levels in human serum. X-Ray Spectrom., 1995, vol. 24, no. 2, pp. 76-80. doi: 10.1002/xrs.1300240210

Savage I., Haswell S.J. The development of analytical methodology for simultaneous trace elemental analysis of blood plasma samples using total reflection X-ray fluorescence spectrometry. J. Anal. At. Spectrom., 1998, vol. 13, pp. 1119–1122. doi: 10.1039/A804443K

Marcó L.M., Greaves E.D., Alvarado J. Analysis of human blood serum and human brain samples by total reflection X-ray fluorescence spectrometry applying Compton peak standardization. Spectrochim. Acta, Part B, 1999, vol. 54, no. 10, pp. 1469–1480. doi: 10.1016/S0584-8547(99)00085-3

Kupriyanova T.A., Lyamina O.I., Semenkov V.F., Shabalin V.N. [Features of procedure of the determination of basic and micro-elements in serum and cells of peripheral blood by the X-ray fluorescence method]. Klinicheskaiia laboratornaiia diagnostika [Clinical laboratory diagnostics], 1999, no. 8, pp. 11-15 (in Russian).

Bellisola G., Pasti F., Valdes M., Torboli A. The use of total-reflection X-ray fluorescence to track the metabolism and excretion of selenium in humans. Spectrochim. Acta, Part B, 1999, vol. 54, no. 10, pp. 1481–1485. doi: 10.1016/S0584-8547(99)00065-8

Savchenko T.I., Chankina O.V., Kovalskaya G.A., Osipova L.P. [Determination of the multielement composition of the blood and hair of the tundra Nenets by the method of X-ray fluorescence analysis using synchrotron radiation (SR XRF)]. Sibirskii ekologicheskii zhurnal [Sib. Ecol. J.], 2000, vol. 7, no. 1, pp. 85-91 (in Russian].

Greaves E.D., Parra L.M.M., Rojas A., Sajo-Bohus L. Determination of platinum levels in serum and urine samples from pediatric cancer patients by TXRF. X-Ray Spectrom., 2000, vol. 29, no. 5, pp. 349-353. doi: 10.1002/1097-4539(200009/10)29:5<349::AID-XRS434>3.0.CO;2-8

Chankina O.V., Kovalskaya G.A., Koutzenogii K.P., Osipova L.P., Savchenko T.I. SRXRF determination of the multielement composition of the hair and blood of the children of tundra Nenetz population. Nucl. Instrum. and Meth. in Phys. Res., 2001, vol. 470A, pp. 448-451. doi: 10.1016/S0168-9002(01)01095-6

Buoso M.C., Ceccato D., Moschini G., Bernardini D., Testoni S., Torboli A., Valdes M. Assessment of serum selenium levels in 2-month-old sucking calves using TXRF technique. Spectrochim. Acta, Part B, 2001, vol. 56, no. 11, pp. 2181-2186. doi: 10.1016/S0584-8547(01)00318-4

Marco Parra L.M., Jimenez E., Hernandez-Carabello E.A., Rojas A., Greaves E.D. Determination of Zn/Cu ratio and oligoelements in serum samples by total reflection X-ray fluorescence spectrometry for cancer diagnosis. Spectrochim. Acta, Part B, 2001, vol. 56, no. 11, pp. 2175–2201. doi: 10.1016/S0584-8547(01)00280-4

Zarkadas C., Karydas A.G., Paradellis T. Applicability of direct total reflection X-ray fluorescence analysis in the case of human blood serum samples. Spectrochim. Acta, Part B, 2001, vol. 56, no. 11, pp. 2219-2228. doi: 10.1016/S0584-8547(01)00343-3

Ates A., Ertugrul M. Determination of trace elements of emboli (clot) in the cardiovascular systems of patients by energy dispersive X-ray fluorescence analysis. Instrum. Sci. & Technol., 2002, vol. 30, no. 4, pp. 449-454. doi: 10.1081/CI-120015452

Viksna A., Lindgren E.S., Kjellmer I., Bursa J. Analysis of whole blood and placenta—a case study of mothers and their babies. J. Trace Microprobe Technol., 2002, vol. 20, no. 4, pp. 553-564. doi: 10.1081/TMA-120015616

Hernandez-Caraballo E.A., Marco-Parra L.M. Direct analysis of blood serum by total reflection X-ray fluorescence spectrometry and application of an artificial neural network approach for cancer diagnosis. Spectrochim. Acta., Part B, 2003, vol. 58, pp. 2205–2213. doi: 10.1016/j.sab.2003.07.003

Bounakhla M., Doukkali A., Lalaoui K., Akuenaou H., Mokhtar N., Attrassi B. Determination of some heavy metals (Fe, Cu, Zn and Pb) in blood by total reflection X-ray fluorescence. J. Phys. IV France, 2003, vol. 107, pp. 203-206. doi: 10.1051/jp4:20030278

Martinez T., Determination of lead in blood by TXRF and its correlation to environmental lead. Nucl. Instrum. Methods Phys. Res., 2004, vol. 213B, pp. 584-589. doi: 10.1016/S0168-583X(03)01754-3

Martinez T., Determination of trace elements in blood samples by TXRF analysis. J. Radioanal. Nucl. Chem., 2004, vol. 259, no. 3, pp. 511-514. doi: 10.1023/B:JRNC.0000020928.45385.5f

Moriya F., Furumiya J., Hashimoto Y. A case of fatal arsenic poisoning. Forensic Toxicol., 2006, vol. 24, pp. 88–91. doi: 10.1007/s11419-006-0015-1

Griesel S., Mundry R., Kakuschke A., Fonfara S., Siebert U., Prange A. Mineral elements and essential trace elements in blood of seals of the North Sea measured by total-reflection X-ray fluorescence analysis. Spectrochim. Acta, Part B, 2006, vol. 61, pp. 1158–1165. doi: 10.1016/j.sab.2006.07.008

Greaves E.D., Angeli-Greaves M., Jaehde U., Drescher A., von Bohlen A. Rapid determination of platinum plasma concentrations of chemotherapy patients using total reflection X-ray fluorescence. Spectrochim. Acta, Part B, 2006, vol. 61, pp. 1194–1200. doi: 10.1016/j.sab.2006.09.006

Khuder M.A., Bakir M.A., Sawan M.Kh. XRF and TXRF techniques for multielement determination of trace elements in whole blood and human hair samples. J. Radioanal. Nucl. Chem., 2007, vol. 273, pp. 435–442. doi: 10.1007/s10967-007-6869-9

Koutzenogii K.P., Savchenko T.I., Chankina O.V., Popov S.A. SRXFA in the studies of the correlation between the element composition of human blood and environment objects. Nucl. Instrum. and Meth. in Phys. Res., 2009, vol. 603A, no. 1-2, pp. 134–136. doi: 10.1016/j.nima.2008.12.177

Pinheiro T., Barreiros A., Alves L.C., Neres M., Fleming R., Silva J.N., Filipe P., Silva R. Changes of iron concentrations in skin and plasma of patients with hemochromatosis along therapy. J. Radioanal. Nucl. Chem., 2009, vol. 81, pp. 161–164. doi: 10.1007/s10967-009-0125-4

Szoboszlai N., Polgari Z., Mihucz C.Z., Zaray G. Recent trends in total reflection X-ray fluorescence spectrometry for biological applications. Anal. Chim. Acta, 2009, vol. 633, no. 1-2, pp. 1-18. doi: 10.1016/j.aca.2008.11.009

Stosnach H., Mages M. Analysis of nutrition-relevant trace elements in human blood and serum by means of total reflection X-ray fluorescence (TXRF) spectroscopy. Spectrochim. Acta, Part B, 2009, vol. 64, pp. 354–356. doi: 10.1016/j.sab.2009.03.019

Kakuschke A., Griesel S., Fonfara S., Rosenberger T., Prange A. Concentrations of Selected Essential and Non-essential Elements in Blood of Harbor Seal (Phoca vitulina) Pups of the German North Sea. Biol. Tr. Elem. Res., 2009, vol. 127, pp. 28–36. doi: 10.1007/s12011-008-8220-x

Takahashi M., Kinoshita H., Nishiguchi M., Nishio H. Bromide detection in blood using energy dispersive X-ray fluorescence; a chemical marker supportive of drowning in seawater. Legal Medicine, 2010, vol. 12, pp. 132–136. doi: 10.1016/j.legalmed.2010.01.006

Baptista T.S., Redígolo M.M., Zamboni C.B., Sato I.M., Marcelino J.R. Comparative study of inorganic elements determination in whole blood from Crioula breed horse by EDXRF and NAA analytical techniques. J. Radioanal. Nucl. Chem., 2012, vol. 291, pp. 399–403. doi: 10.1007/s10967-011-1299-0

Lyamina O.I., Kupriyanova T.A., Stolyarov I.P., Filippov M.N., Viryus A.A. [X-ray spectralanalysisof blood without separation of organic component]. Analitika i kontrol’ [Analytics and control], 2013, vol. 17, no. 2, pp. 148-152 (in Russian).

Canellas C.G.L., Carvalho S.M.F., Bellido A.V.B., Leitao R.G., Anjos M.J. Lopes R.T. Determination of low Z in human serum of patients with Idiopathic Thrombocytopenic Purpura by total reflection X-ray fluorescence. X-Ray Spectrom., vol. 42, no. 4, pp. 312–315. doi: 10.1002/xrs.2466

Redígolo M.M., Aguiar R.O., Zamboni C.B., Sato I. Determination of reference interval values for inorganic elements in whole blood samples of humans and laboratory animals by X-ray fluorescence spectrometry. J. Radioanal. Nucl. Chem., 2013, vol. 297, pp. 463–467. doi: 10.1007/s10967-012-2415-5

Medhat M.E., Shan W., Kurudirek M. Modern utilization of an accurate method for detecting essential elements in whole blood using low energy photons. X-Ray Spectrom., 2015, vol. 44, no. 6, pp. 418–425. doi: 10.1002/xrs.2604

Lopes da Silva L.F.F., Zamboni C.B., Bahovschi V., Metairon S., Suzuki M.F., Sant´Anna O.A., Rizzutto M.A. Determination of inorganic elements in blood of mice immunized with Bothrops Snake venom using XRF and NAA. J. of Physics: Conf. Ser., 2015, vol. 630, pp. 012005. doi: 10.1088/1742-6596/630/1/012005

Redígolo M.M., Sato I.M., Metairon S., Zamboni C.B. Comparative study of inorganic elements determined in whole blood from Dmdmdx/J mice strain by EDXRF

and NAA analytical techniques. Appl. Radiat. Isot., 2016, vol. 110, pp. 189–192. doi: 10.1016/j.apradiso.2016.01.022

Majewska U., Łyżwa L., Łyżwa K., Banaś D., Kubala-Kukuś A., Wudarczyk-Moćko J., Stabrawa I., Braziewicz J., Pajek M., Antczak G., Borkowska B., Góźdź S. Determination of element levels in human serum: Total reflection X-ray fluorescence applications. Spectrochim. Acta, Part B, 2016, vol. 122, pp. 56–61. doi: 10.1016/j.sab.2006.09.006

Canellas C.G.L., Carvalho S.M.F., Leitão R.G., Bellido A.V.B., Anjos M.J., Lopes R.T. Multielement analysis in serum of healthy population of the metropolitan region of Rio de Janeiro in Brazil by SRTXRF. X-Ray Spectrom., 2016, vol. 45, no. 1, pp. 14-18. doi: 10.1002/xrs.2631

Zamboni C.B., Metairon S., Suzuki M.F., Bahovschi V., Rizzutto M.A. Determination of iron content in whole blood in different mouse strains using a portable XRFS spectrometer. J. Radioanal. Nucl. Chem., 2016, vol. 309, no. 1, pp. 333–336. doi: 10.1007/s10967-016-4832-3

Zamboni C.B., Metairon S., Kovacs L., Macedo D.V., Rizzutto M.A. Determination of Fe in blood using portable X-ray fluorescence spectrometry: an alternative for sports medicine. J. Radioanal. Nucl. Chem., 2016, vol. 307, pp. 1641–1643. doi: 10.1007/s10967-015-4511-9

Metairon S., Zamboni C.B., Suzuki M.F., Lopes da Silva L.F.F., Rizzutto M.A. Inorganic

elements in blood of mice immunized with snake venom using NAA and XRF techniques. J. Radioanal. Nucl. Chem., 2016, vol. 309, pp. 59–64. doi: 10.1007/s10967-016-4770-0

Metairon S., Zamboni C.B., Giovanni D.N.S., Suzuki M.F., Bueno Jr C.R., Rizzutto

M.A. Iron determination in whole blood samples of dystrophic mouse strains using X-Ray fluorescence spectrometry. Musculoskelet. Disord. Treat., 2017, vol. 3, no. 3, pp. 1–5. doi: 10.23937/2572-3243.1510039

Margui E., Queralt I., García-Ruiz E., García-González E., Rello L., Resano M. Energy dispersive X-ray fluorescence spectrometry for the direct multi-element analysis of dried blood spots. Spectrochim. Acta, Part B, 2018, vol. 139, pp. 13–19. doi: 10.1016/j.sab.2017.11.003

Metairon S., Zamboni C.B., Suzuki M.F., Bueno C.R. Evaluation of ions and metals in the blood of GRMD dogs submitted to hASCs therapy by NAA and XRF techniques. Appl. Radiat. and Isot., 2019, vol. 143, pp. 107–112. doi: 10.1016/j.apradiso.2018.10.024

Margui E., Jablan J., Gerić M., Inić S., Domijan A.-M., Janušić R., Šarčević B., Queralt I., Garaj-Vrhovac V. Critical evaluation of the use of total reflection X-ray fluorescence spectrometry for the analysis of whole blood samples: application to patients with thyroid gland diseases. Anal. and Bioanal. Chem., 2019, vol. 411, pp. 1659–1670. doi: 10.1007/s00216-019-01618-3

Kubala-Kukus A., Pajek M. Total Reflection X-ray fluorescence studies of trace elements in biomedical samples, Spectrochim. Acta, Part B, 2004, vol. 59, no. 8, pp. 1283–1289. doi: 10.1016/j.sab.2004.05.020

Liendo J.A., González A.C., Castelli C., Gómez J., Jiménez J., Marcó L., Sajo-Bohus L., Greaves E.D., Fletcher N.R., Bauman S. Comparison between proton-induced x-ray emission (PIXE) and total reflection x-ray fluorescence (TXRF) spectrometry for the elemental analysis of human amniotic fluid. X-Ray Spectrom., 1999, vol. 28, no. 1, pp. 3–8. doi: 10.1002/(SICI)1097-4539(199901/02)28:1<3::AID-XRS298>3.0.CO;2-5

Carvalho M.L., Custodio P.J., Reus U., Prange A. Elemental analysis of human amniotic fluid and placenta by total-reflection X-ray fluorescence and energy-dispersive X-ray fluorescence: child weight and maternal age dependence. Spectrochim. Acta, Part B, 2001, vol. 56, no. 11, pp. 2175–2180. doi: 10.1016/S0584-8547(01)00280-4

Sanchez H.J., Valentinuzzi M.C., Grenón M.S., Abraham J.A. Total reflection X-ray fluorescence analysis of oral fluids of women affected by osteoporosis and osteopenia. Spectrochim. Acta, Part B, 2008, vol. 63, no. 12, pp. 1485–1488. doi: 10.1016/j.sab.2008.10.011

Watanabe K., Tanaka T., Shigemi T., Hayashida Y., Mak K. Mn and Cu concentrations in mixed saliva of elementary school children in relation to sex, age, and dental caries. J. of Tr. Elem. in Med. and Biol., 2009, vol. 23, pp. 93–99. doi: 10.1016/j.jtemb.2009.01.003

Abraham J.A., Sánchez H.J., Valentinuzzi M.C., Grenón M.S. Influence of smoking on the elemental composition of oral fluids: a TXRF approach. X-Ray Spectrom., 2010, vol. 39, no. 6, pp. 372–375. doi: 10.1002/xrs.1278

Abraham J.A., Sánchez H.J., Grenón M.S., Pérez C.A. TXRF analysis of metals in oral fluids of patients with dental implants. X-Ray Spectrom., 2014, vol. 43, no. 4, pp. 193–197. doi: 10.1002/xrs.2538

Cleto D.A.M., Andrello A.C., Netto Í.J.V., Appoloni C.R. Analysis of saliva and gingival crevice fluid by total reflection X-ray fluorescence (TXRF), X-Ray Spectrom., 2016, vol. 45, no. 4, pp. 220–224. doi: 10.1002/xrs.2693

Lages R.B., Bridi E.C., Pérez C.A., Basting R.T. Salivary levels of nickel, chromium, iron, and copper in patients treated with metal or esthetic fixed orthodontic appliances: A retrospective cohort study. J. of Tr. Elem. in Med. and Biol., 2017, vol. 40, pp. 67–71. doi: 10.1016/j.jtemb.2016.12.011

Kudryavtseva T.V., Cheminava N.R. [Influence of the mineral composition of the oral fluid for dental and somatic health]. Parodontologiia [Parodontology], 2016, vol. 21, no. 4, pp. 17-23 (in Russian).

Ostachowicz B., Lankosz M., Tomik B., Adamek D., Wobrauschek P., Streli C., Kregsamer P. Analysis of some chosen elements of cerebrospinal fluid and serum in amyotrophic lateral sclerosis patients by total reflection X-ray fluorescence. Spectrochim. Acta, Part B, 2006, vol. 61, pp. 1210-1213. doi: 10.1016/j.sab.2006.08.008

Hong N.T., Ha H.V. Application of EDXRF to the determination of lead and other trace elements in the body fluids of industrial workers in Vietnam. X-Ray Spectrom., 1996, vol. 25, no. 1, pp. 3–14. doi: 10.1002/(SICI)1097-4539(199601)25:1<3::AID-XRS115>3.0. CO;2-%23

Messerschmidt J., A. von Bohlen, F. Alt, R. Klockenkämper Separation and enrichment of palladium and gold in biological and environmental samples, adapted to the determination by total reflection X-ray fluorescence. Analyst, 2000, vol. 125, pp. 397–399. doi: 10.1039/b000471p

Zarkadas Ch., Karydas A.G., Paradellis T. Determination of uranium in human urine by total reflection X-ray fluorescence. Spectrochim. Acta, Part B, 2001, vol. 56, pp. 2505–2511. doi: 10.1016/S0584-8547(01)00348-2

Abboud I.A. Concentration effect of trace metals in Jordanian patients of urinary calculi. Environ. Geochem. Health., 2008, vol. 30, pp. 11–20. doi: 10.1007/ s10653-007-9103-3

Guimarães D., Carvalho M.L., Becker M., von Bohlen A., Geraldes V., Rocha I., Santos J.P. Lead concentration in feces and urine of exposed rats by x-ray fluorescence and electrothermal atomic absorption spectrometry. X-Ray Spectrom., 2012, vol. 41, no. 2, pp. 80–86. doi: 10.1002/xrs.2361

Kayalar H., Durmuşkahya C., Hortooğlu Z.S. Elemental Analysis of Galium incanum SM subsp Centrale Ehrend by X-ray Fluorescence Spectroscopy. Tropical J. of Pharm. Res., 2013, vol. 12, no. 6, pp. 1039-1043. doi: 10.4314/tjpr. v12i6.26

Mantuano A., Pickler A., Barroso R.C., de Almeida A.P., Braz D., Cardoso S.C., Gonzalez M.S., Figueiredo M.B., Garcia E.S., Azambuja P. Elemental changes in hemolymph and urine of Rhodnius prolixus induced by in-vivo exposure to mercury: A study using synchrotron radiation total reflection X-ray fluorescence. Spectrochim. Acta, Part B, 2012, vol. 71-72, pp. 127–130. doi: 10.1016/j.sab.2012.05.009

Mikhailov I.F., Budreiko E.A., Baturin A.A., Shlyakhova N.V., Mikhailov A.I., Borisova S.S., Reshetnyak M.V., Galata D.I. [X-ray fluorescent analysis of traces of iodine in urine]. Ukr. J. of Radiol., 2015, vol. XXIII, no. 3, pp. 38-41 (in Russian). doi: 10.3233/XST-16204

Jablan J., Inic S., Stosnach H., Hadziabdi M.O., Vujic L., Domijan A.-M. Level of minerals and trace elements in the urine of the participants of mountain ultra-marathon race. J. of Trace Elem. in Med. and Biol., 2017, vol. 41, no. 1, pp. 54–59. doi: 10.1016/j.jtemb.2017.02.004

García-Rico L., Meza-Figuero D., Gandolfi A.J., del Rivero C.I., Martínez-Cinco M.A., Meza-Montenegro M.M. Health Risk Assessment and Urinary Excretion of Children Exposed to Arsenic through Drinking Water and Soils in Sonora, Mexico. Biol. Tr. Elem. Res., 2019, vol. 87, no. 1, pp. 9–21. doi: 10.1007/s12011-018-1347-5

Hoffer P.B., Jones W.B., Crawford R.B., Beck R., Gottschalk A. Fluorescent thyroid scanning: A new method of imaging the thyroid. Radiology, 1968, vol. 90, pp. 342–344. doi: 10.1148/90.2.342

Gronberg T., Sjoberg S., Almen T., Golman K., Mattsson S. Noninvasive estimation of kidney function by X-ray fluorescence analysis: elimination rate and clearance of contrast media injected for urography in man. Invest Radiol., 1983, vol. 18, pp. 445–452.

Christoffersson J.-O., Mattsson S. Polarised X-rays in XRF-analysis for improved in vivo detectability of cadmium in man. Phys. Med. Biol., 1983, vol. 28, no. 10, pp. 1135-1144. doi: 10.1088/0031-9155/28/10/005

Chettle D.R., Scott M.C., Somervaille L.J. Lead in bone: sampling and quantitation using К x-rays excited by 109Cd. Environ. Health Perspect., 1991, vol. 91, pp. 49-55. doi: 10.1289/ehp.919149

Ahlgren L., Liden K., Mattsson S., Tejning S. X-ray fluorescence analysis of lead in human skeleton ‘in vivo. Scand. J. Work, Environ. Health., 1976, vol. 2, no. 2, pp. 82–86. doi: 10.5271/sjweh.2815

Wielopolski L., Rosen J.F., Slatkin D.N., Vartsky D., Ellis K.J., Cohn S.H. Feasibility of noninvasive analysis of lead in the human tibia by soft x-ray fluorescence. Med. Phys., 1983, vol. 10, no. 2, pp. 248–251. doi: 10.1118/1.595244

Somervaille L.J., Chettle D.R., Scott M.C. In vivo measurement of lead in bone using X-ray fluorescence. Phys. Med. Biol., 1985, vol. 30, pp. 929-943. doi: 10.1088/0031-9155/30/9/005

Jonson R., Mattsson S., Unsgaard B. A method for in vivo analysis of platinum after chemotherapy with cisplatin. Phys. Med. Biol., 1988, vol. 33, no. 7, pp. 847-857. doi: 10.1088/0031-9155/33/7/008.

Scott J., Lillicrap S. 133Xe for the x-ray fluorescence assessment of gold in vivo. Phys. Med. Biol., 1988, vol. 33, no. 7, pp. 859-864.

Borjesson J., Barregikd L., SidIsten G., Schiitz A., Jonson R., Alpsten M.,

Mattsson S. In vivo XRF analysis of mercury: the relation between concentrations in the kidney and the urine. Phys. Med. Biol., 1995, vol. 40, pp. 413-426. doi: 10.1088/0031-9155/40/3/006

O’Meara J.M., Chettle D.R., McNeill F.E., Webber C.E. The feasibility of measuring bone uranium concentrations in vivo using source excited K x-ray fluorescence. Phys. Med. Biol., 1997, vol. 42, pp. 1109–1120.

Pejovic-Milic A., Stronach I.M., Gyorffy J., Webber C.E., Chettle D.R. Quantification of bone strontium levels in humans by in vivo x-ray fluorescence. Med. Phys., 2004, vol. 31, pp. 528–538. doi: 10.1118/1.1644931

Estevam M., Appoloni C.R. Use of portable x-ray fluorescence (PXRF) in vivo as an alternative technique for the assessment of iron levels in patients with thalassemia and hemochromatosis. Health physics, 2013, vol. 104, no. 2, pp.132-138. doi: 10.1097/HP.0b013e3182667721

Lord M., McNeill F., Gräfe J., Noseworthy M., Chettle D. A phantom-based feasibility study for detection of gadolinium in bone in-vivo using x-ray fluorescence. Appl. Radiat. Isot., 2016, vol. 112, pp. 103–109. doi: 10.1016/j.apradiso.2016.12.011

Ahlgren L., Mattsson S. An X-ray fluorescence technique for in vivo determination of lead concentration in a bone matrix. Phys. Med. Biol., 1979. vol. 24, pp. 136-145.

Todd A.C., Chettle D.R. In vivo X-ray fluorescence of lead in bone: review and current issues. Environ. Health Perspect., 1994, vol. 102, no. 2, pp. 172-177. doi: 10.1289/ehp.94102172

Börjesson J., Mattsson S. Toxicology In vivo X-Ray Fluorescence the Assessment of Heavy Metal Concentrations in Man. Appl. Radiat. Isot., 1995, vol. 46, no. 6/7, pp. 571-576. doi: 10.1016/0969-8043(95)00093-3

Bradley D.A., Farquharson M.J. XRF and the in vivo evaluation of toxicological metals. X-Ray Spectrom., 1999, vol. 28, no. 4, pp. 270-274. doi: 10.1002/(SICI)1097-4539(199907/08)28:4<270::AID-XRS350>3.0.CO;2-U

Bradley D.A., Kissel L., Pratt R.H. Elastic photon scattering and normalization of In Vivo XRF Analyses of Lead in Bone. X-Ray Spectrom., 1999, vol. 28, no. 5, pp. 339-341. doi: 10.1002/(SICI)1097-4539(199909/10)28:5%3C339::AID-XRS363%3E3.0.CO;2-R

McNeill F.E., Stokes L., Chettle D.R., Kaye W.E. Factors affecting in vivo measurement precision and accuracy of 109Cd К X-ray fluorescence measurements. Phys. Med. Biol., 1999. vol. 44, pp. 2263-2274.

Zaichick V., Ovchjarenko N., Zaichick S. In vivo energy dispersive X-ray fluorescence for measuring the content of essential and toxic trace elements in teeth. Appl. Radiat. Isot., 1999, vol. 50, no. 2, pp. 283-293. doi: 10.1016/S0969-8043(97)10150-6

Kondrashov V.S., Rothenberg S.J. How to calculate lead concentration and concentration uncertainty in XRF in vivo bone lead analysis. Appl. Radiat. Isot., 2001, vol. 55, no. 6, pp. 799-803. doi: 10.1016/S0969-8043(01)00121-X

Lee S.H., Gardner R.P., Todd A.C. Preliminary studies on combining the K and L XRF methods for in vivo bone lead measurement. Appl. Radiat. Isot., 2001, vol. 54, no. 6, pp. 893-904. doi: 10.1016/S0969-8043(00)00350-X

Nie H., Chettle D., Stronach I., Arnold M., Huang S., McNeill F., O'Meara J.A study of MDL improvement for the in vivo measurement of lead in bone. Nucl. Instrum. Meth., 2004, vol. 213B, pp. 579-583. doi: 10.1016/S0168-583X(03)01675-6

Chettle D.R. Three decades of in vivo x-ray fluorescence of lead in bone. X-Ray Spectrom., 2005, vol. 34, no. 5, pp. 446-450. doi: 10.1002/xrs.860

Ahmed N., Osika N.A., Wilson A.M., Fleming D.E.B. In vivo K-shell X-ray fluorescence bone lead measurements in young adults. J. Environ. Monit., 2005, vol. 7, pp. 457-462. doi: 10.1039/B418385A

Zamburlini M., Pejovic-Milic A., Chettle D.R. Evaluation of geometries appropriate for 125I in vivo bone strontium X-ray fluorescence measurement. J. of Radioanal. and Nucl. Chem., 2006, vol. 269, no. 3, pp. 625–629. doi: 10.1007/s10967-006-0275-6

Zamburlini M., Pejovic-Milic A., Chettle D.R. Spectrometry methods for in vivo bone strontium measurements. X-Ray Spectrom., 2008, vol. 37, no. 1, pp. 42-50. doi: 10.1002/xrs.997

Nie H., Hu H., Chettle D.R. Application and methodology of in vivo K x-ray fluorescence of Pb in bone (impact of KXRF data in the epidemiology of lead toxicity, and consistency of the data generated by updated systems). X-Ray Spectrom., 2008, vol. 37, no. 1, pp. 69-75. doi: 10.1002/xrs.992

Fleming D.E.B., Gherase M.R., Alexander K.M. A miniature X-ray tube approach to measuring lead in bone using L-XRF. X-Ray Spectrom., 2011, vol. 40, no. 5, pp. 343–347. doi: 10.1002/xrs.1358

Moise H., Adachi J.D., Chettle D.R., Pejovic-Milic A. Monitoring bone strontium levels of an osteoporotic subject due to self-administration of strontium citrate with a novel diagnostic tool, in vivo XRF: A case study. Bone, 2012, vol. 51, no. 1, pp. 93–97. doi: 10.1016/j.bone.2012.04.008

Wohl G.R., Chettle D.R., Pejovic-Milic A., Druchok Ch., Webber C.E., Adachi J.D., Beattie K.A. Accumulation of bone strontium measured by in vivo XRF in rats supplemented with strontium citrate and strontium ranelate. Bone, 2013, vol. 52, no. 1, pp. 63-69. doi: 10.1016/j.bone.2012.09.002

Specht A.J., Weisskopf M., Nie L.H. Portable XRF technology to quantify Pb in bone in vivo. J. Biomark, 2014, 398032. doi: 10.1155/2014/398032

Lord M.L., McNeill F.E., Grаfe J.L., Galusha A.L, Parsons P.J., Noseworthy M.D., Howard L., Chettle D.R. Confirming improved detection of gadolinium in bone using in vivo XRF. Appl. Radiat. and Isot., 2017, vol. 120, pp. 111-118. doi: l0.1016/j. apradiso.2016.12.01

Chettle D.R., McNeill F.E. Elemental analysis in living human subjects using biomedical devices. Physiol. Meas., 2019, vol. 40, no. 12, 12TR01. doi: 10.1088/1361-6579/ab6019

Grаfe J.L., McNeill, F.E., Noseworthy M.D., Chettle D.R. Gadolinium detection via in vivo prompt gamma neutron activation analysis following Gd-based contrast agent injection: a pilot study in 10 human participants. Physiol. Meas., 2014, vol. 35, no. 9, pp. 1861-1872. doi: 10.1088/0967-3334/35/9/1861

Lord M.L., Chettle D.R., Gräfe J.L., Noseworthy M.D., McNeill F.E. Observed deposition of gadolinium in bone using a new non-invasive in vivo biomedical device: results of a small pilot feasibility study. Radiology, 2018, vol. 287, no. 1, pp. 96-103.

Chamberlain M., Gräfe J.L, Aslam, Byun S.H., Chettle D.R., Egden L.M., Webber C.E., McNeill F.E. In-vivo quantification of bone-fluorine by neutron activation analysis: a pilot study of hand-bone-fluorine levels in a Canadian population. Physiol. Meas., 2012, vol. 33, no. 3, pp. 375-384. doi: 10.1088/0967-3334/33/3/375

Revenko A.G., Rodionova L.V., Petrova G.P., Khudonogova E.V., Anand K., Kitov B.I., Cherkashina T.Yu., Panteeva S.V. [X-ray fluorescence determination of the chemical composition of the femoral heads and ossificates]. Tezisy dokladov 3 Vserossiiskoi i VI Sibirskoi konferentsii po rentgenospektral’nomu analizu [Proc. 3rd All-Russian and VIth Conf. on XRF]. Irkutsk, 1998. p. 85 (in Russian).

Pinheiro T., Carvalho M.L., Casaca C., Barreiros M.A., Cunha A.S., Chevallier P. Microprobe analysis of teeth by synchrotron radiation: environmental contamination. Nucl. Instrum. and Meth. in Phys. Res., 1999, vol. 158B, pp. 393-398. doi: 10.1016/S0168-583X(99)00370-5

Carvalho M.L., Casaca C., Marques J.P., Pinheiro T., Cunha A.S. Human teeth elemental profiles measured by synchrotron X-ray fluorescence: dietary habits and environmental influence. X-Ray Spectrom., 2001, vol. 30, no. 3, pp. 190–193. doi: 10.1002/xrs.487

Ubelaker D.H., Ward D.C., Braz V.S., Stewart J. The use of SEM/EDS analysis to distinguish dental and osseus tissue from other materials. J. Forensic Sci., 2002, vol. 47, no. 5, pp. 940-943.

Preoteasa E.A., Ciortea C., Constantinescu B., Fluerasu D., Enescu S.-E., Pantelica D., Negoita F., Preoteasa E. Analysis of composites for restorative dentistry by PIXE, XRF and ERDA. Nucl. Instrum. and Meth. in Phys. Res., 2002, vol. 189B, no. 1-4, pp. 426–430. doi: 10.1016/S0168-583X(01)01119-3

Carvalho M.L., Marques J.P., Brito J., Casaca C., Cunha A.S. Hg, Bi, Cu and Zn distribution in human teeth treated by dental amalgam measured by synchrotron microprobe. Nucl. Instrum. and Meth. in Phys. Res., 2002, vol. 196B, no. 1-2, pp. 148–154. doi: 10.1016/S0168-583X(02)01280-6

Abraham J., Grenon M., Sanchez H.J., Perez C.A., Barrea R.A. Spectrochemical analysis of dental calculus by synchrotron radiation X-ray fluorescence. Anal. Chem., 2002, vol. 74, no. 2, pp. 324–329. doi: 10.1021/ac0106389

Xie Z., Sun L., Long N., Zhang L., Kang S., Wu Z., Huang Y., Ju X. Analysis of the distribution of chemical elements in Adelie penguin bone using synchrotron radiation X-ray fluorescence. Polar Biol., 2003, vol. 26, no. 3, pp. 171–177. doi: 10.1007/s00300-002-0466-8

Fleming D.E.B., Chettle D.R., McNeill F.E., Weedon A.G.P. Effects оf measurement distance and source activity on the precision of X-ray fluorescence measurements of lead in a bone phantom. Nucl. Instrum. and Meth. in Phys. Res., 2004, vol. 217B, no. 3, pp. 471-477. doi: 10.1016/j.nimb.2003.10.014

Ahmed N., Fleming D.E.B., O'Meara J.M. Monte Carlo investigations of distance-dependent effects on energy deposition in K-shell X-ray fluorescence bone lead measurement. Phys. Med. Biol., 2004, vol. 49, pp. N267-N276.

Anjos M.J., Barroso R.C, Perez C.A., Braz D., Moreira S., Dias K.R.H.C., Lopes R.T. Elemental mapping of teeth using µSRXRF. Nucl. Instrum. and Meth. in Phys. Res., 2004, vol. 213B, pp. 569–573. doi: 10.1016/S0168-583X(03)01673-2

Perez C.A., Sanchez H.J., Barrea R.A., Greno M., Abraham J. Microscopic X-ray fluorescence analysis of human dental calculus using synchrotron radiation. J. Anal. At. Spectrom., 2004, vol. 19, pp. 392-397. doi: 10.1039/B211253A

Marques A.F., Marques J.P., Casaca C., Carvalho M.L. X-ray microprobe synchrotron radiation X-ray fluorescence application on human teeth of renal insufficiency patients. Spectrochim. Acta, Part B, 2004, vol. 59, pp. 1675–1680. doi: 10.1016/j.sab.2004.07.017

Antunes A., Salvador V.L.R., Scapin M.A., de Rossi W., Zezell D.M. Nanosecond Nd:YAG laser on dental enamel: compositional analysis by X-ray fluorescence. Laser Phys. Lett., 2005, vol. 2, no. 6, pp. 318-323.

Zoeger N., Wobrauschek P., Streli C., Pepponi, Roschger P., Falkenberg G., Osterode W. Distribution of Pb and Zn in slices of human bone by synchrotron µ-XRF. X-Ray Spectrom., 2005, vol. 34, no. 2, pp. 140-143. doi: 10.1002/xrs.788

Carew S.E., Gastaldo J., H.A.Roels, O'Meara J.M., Chettle D.R. Development of a K-shell x-ray fluorescence measurement of cadmium in bone. X-Ray Spectrom., 2005, vol. 34, no. 6, pp. 498–501. doi: 10.1002/xrs.870

Gerhardsson L., Akantis A., Lundstrom N.-G., Nordberg G.F., Schutz A., Skerfving S. Lead concentrations in cortical and trabecular bones in deceased smelter workers. J. of Tr. Elem. in Med. and Biol., 2005, vol. 19, pp. 209–215. doi: 10.1016/j.jtemb.2005.06.004

Rodionova L.V., Revenko A.G., Shenderova E.A. [Spectral analysis of femoral heads and ossifications obtained during total hip arthroplasty in patients with deforming coxarthrosis]. Palliativnaia meditsina i reabilitatsiia [Palliative Medicine and Rehabilitation], 2005, no. 2, pp. 82a-82 (in Russian) .

Gonchar A.M., Kolmogorov U.P., Gladkikh E.A., Shuvaeva O.V., Beisel N.F., Kolosova N.G. X-ray fluorescent analysis and atomic spectrometry for the bone's elemental composition determination. Nucl. Instrum. and Meth. in Phys. Res., 2005, vol. 543A, no. 1, pp. 271-273. doi: 10.1016/j.nima.2005.01.239

Ahmed N., Fleming D.E.B., Wilkie D., O’Meara J.M. Effects of overlying soft tissue on X-ray fluorescence bone lead measurement uncertainty. Radiat. Phys. and Chem., 2006, vol. 75, pp. 1-6. doi: 10.1016/j.radphyschem.2005.05.021

Oste L., Verberckmoes S.C., Behets G.J., Dams G., Bervoets A.R., Van Hoof V.O., Bohic S., Drakopoulos M., De Broe M.E., D'Haese P.C. Strontium incorporates at sites critical for bone mineralization in rats with renal failure. X-Ray Spectrom., 2007, vol. 36, no. 1, pp. 42-49. doi: 10.1002/xrs.929

Ahmed N., Fleming D.E.B. Early experiences with the Mount Allison University four- detector X-ray fluorescence bone lead measurement system. Nucl. Instrum. and Meth. in Phys. Res., 2007, vol. 263B, no. 1, pp. 32-35. doi: 10.1016/j.nimb.2007.04.133

Zhang Y.X., Investigation of elemental distribution in human femoral head by PIXE and SRXRF microprobe. Nucl. Instrum. and Meth. in Phys. Res., 2007, vol. 260B, no. 1, pp. 178–183. doi: 10.1016/j.nimb.2007.02.013

Carvalho M.L., Marques A.F., Marques J.P., Casaca C. Evaluation of the diffusion of Mn, Fe, Ba and Pb in Middle Ages human teeth by synchrotron microprobe X-ray fluorescence. Spectrochim. Acta, Part B, 2007, vol. 62, no. 6-7, pp. 702–706. doi: 10.1016/j.sab.2007.02.011

Zamburlini M., Pejovic-Milic A., Chettle D.R. Spectrometry methods for in vivo bone strontium measurements. X-Ray Spectrom., 2008, vol. 37, no. 1, pp. 42-50. doi: 10.1002/xrs.997

Zoeger N., Streli C., Wobrauschek P., Jokubonis C., Pepponi G., Roschger P., Hofstaetter J., Berzlanovich A., Wegrzynek D., Chinea-Cano E., Markowicz A., Simon R., Falkenberg G. Determination of the elemental distribution in human joint bones by SR micro XRF. X-Ray Spectrom., 2008, vol. 37, no. 1, pp. 3-11. doi: 10.1002/xrs.998

Carvalho M.L., Marques A.F. Diagenesis evaluation in Middle Ages human bones using EDXRF. X-Ray Spectrom., 2008, vol. 37, no. 1, pp. 32-36. doi: 10.1002/xrs.1006




DOI: https://doi.org/10.15826/analitika.2020.24.4.005

Ссылки

  • На текущий момент ссылки отсутствуют.