Изображение на обложке

СРАВНИТЕЛЬНЫЙ АНАЛИЗ МЕТОДИК РЕНТГЕНОФЛУОРЕСЦЕНТНОГО ОПРЕДЕЛЕНИЯ ЭЛЕМЕНТНОГО СОСТАВА АРХЕОЛОГИЧЕСКОЙ КЕРАМИКИ ИЗ МАЛЫХ НАВЕСОК

G. V. Pashkova, M. M. Mukhamedova, V. M. Chubarov, A. S. Maltsev, A. A. Amosova, E. I. Demonterova, E. A. Mikheeva, D. L. Shergin, V. A. Pellinen, A. V. Teten'kin

Аннотация


Для изучения элементного состава древней керамики эпохи позднего неолита стоянки-могильника Поповский Луг (район поселка Качуг, верховье реки Лены, Россия) использованы два варианта рентгенофлуоресцентного анализа: традиционный рентгенофлуоресцентный анализ с волновой дисперсией (WDXRF) и рентгенофлуоресцентный анализ с полным внешним отражением (TXRF). Приближенно-количественный анализ фрагментов керамики без измельчения показал, что измерения внешней и внутренней поверхности фрагментов керамики являются менее информативными, по сравнению с измерением ее среза. Апробированы способы подготовки проб, ориентированные на анализ малых навесок измельченной керамики с целью сохранения материала: сплавление, прессование и приготовление суспензий. Для WDXRF излучатели готовили в виде сплавленных стекол из 150 мг пробы, а также в виде прессованных таблеток из 250 мг пробы. Для проведения TXRF использовали суспензии из 20 мг пробы на основе водного раствора поверхностно-активного вещества Triton X-100. В качестве методик сравнения при определении породообразующих оксидов применяли аттестованные методики количественного химического анализа, при определении микроэлементов – метод масс-спектрометрии с индуктивно-связанной плазмой. Проведенные исследования показали, что для получения данных об элементном валовом составе археологической керамики предпочтительно использование комбинации методов WDXRF (стекло) и TXRF (суспензия). Предложенная схема позволяет проводить количественное определение Na, Mg, Al, Si, P, K, Ca, Ti, Mn, Fe, V, Cr, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Pb и Ba из навески измельченной керамики массой примерно 170 мг.

Ключевые слова: рентгенофлуоресцентный анализ с волновой дисперсией, рентгенофлуоресцентный анализ с полным внешним отражением, керамика, археология, Поповский Луг, Верхняя Лена

DOI: http://dx.doi.org/10.15826/analitika.2020.25.1.001


Полный текст:

PDF (Russian)

Литература


REFERENCES

The Oxford handbook of archaeological ceramic analysis. Ed.: Hunt A. Oxfrod. Oxford University Press. 2016. 768 p.

Drebushchak V.A., Myl'nikova L.N., Drebushchak T.N., Boldyrev V.V., Molodin V.I., Derevianko E.I., Myl'nikov V.P. Nartova A.V. Fiziko-khimicheskoe issledovanie keramiki (na primere izdelii perekhodnogo vremeni ot bronzovogo k zheleznomu veku) [Physical and Chemical Characteristics of Late Bronze and Early Iron Age Ceramics] Novosibirsk, SB RAS Publ. 2006. 117 p. (in Russian).

Ponomarenko V.O., Sarychev D.A., Vodolazhskaya L.N. [Application of X-ray fluorescence analysis to study the chemical composition of amphora ceramics]. Vestnik Iuzhnogo nauchnogo tsentra RAN [Bulletin of the Southern Scientific Center of the Russian Academy of Sciences], 2012, vol. 8, no 1, pp. 9-17 (in Russian).

Antipin A.M., Kvartalov V.B., Svetogorov R.D., Seregin A.Y., Fedoseev N.F., Tereschenko E.Y., Alekseeva O.A., Yatsishina E.V. X-ray, synchrotron and mass-spectrometric methods for the study of ceramic objects of cultural heritage. Crystallography. Reports, 2019, vol. 64, no. 3, pp. 515-523. https://doi.org/10.1134/S1063774519030039 .

Dubovtseva E.N., Kiseleva D.V., Panteleeva S.E. [Technological research of Sintashta type ceramics from the Kamenny Ambar settlement]. Ural'skii istoricheskii vestnik [Ural Historical Bulletin], 2016, no. 4, pp. 99-110 (in Russian).

Kasymova M. T., Oruzbaeva G. T. [Physicochemical studies of the Jetn-Oguz ceramics]. Vestnik Kyrgyzsko-Rossiiskogo slavianskogo universiteta [Bulletin of the Kyrgys-Russian Slavic University], 2017, vol. 17, no. 8, pp. 112-115 (in Russian).

Kabatov S.A., Kurochkina S.A., Alibekov S.Ya. [Using methods of science of natural history while analysing ceramic material of Vyozhi remainings]. Vestnik Kostromskogo gosudarstvennogo universiteta [Bulletin of the Kostroma State University], 2016, vol. 22, no. 2, pp. 14-20 (in Russian).

Bakhmatova V.N., Khramchenkova R.Kh., Sitdikov A.G. [Research in ceramics and sources of raw clay material used in ceramic production in the Middle Volga region of the XIII-XIV centuries]. Povolzhskaia Arkheologiia [Volga archeology], 2017, vol. 22, no. 4, pp. 126-146 (in Russian).

Potasheva I.M., Svetov S.A. [Geochemical research in archeology: ICP-MS analysis of samples of circular ceramics from ancient Karelian towns]. Trudy Karel'skogo nauchnogo tsentra Rossiiskoi akademii nauk [Proceedings of the Karelian Scientific Center of the Russian Academy of Sciences], 2013, no. 4, pp. 136-142 (in Russian).

Potasheva I.M., Svetov S.A. [ICP-MS analysis of ancient ceramics as identification method of clay sources and pottery production area]. Uchenye zapiski Petrozavodskogo gosudarstvennogo universiteta [Scientific notes of Petrozavodsk State University], 2014, vol. 141, no. 4, pp. 71-77 (in Russian).

Summanen I.M, Svetov S.A. [ICP-MS analysis of the hand-bult ceramics of Medieval Karelian sites]. Uchenye zapiski Petrozavodskogo gosudarstvennogo universiteta [Scientific notes of Petrozavodsk State University], vol. 162, no. 1, pp. 18-26 (in Russian).

Revenko A.G., Revenko V.A. [Use of X-ray spectral analysis method for the study of cultural heritage materials]. Metody i ob"ekty khimicheskogo analiza [Methods and objects of Chemical Analysis], 2007, vol. 2, no. 1, pp. 4–29 (in Russian).

Georgakopoulou M., Hein A., Müller N.S. Kiriatzi E. Development and calibration of a WDXRF routine applied to provenance studies on archaeological ceramics. X-ray Spectrometry, 2017, vol. 46, no. 3, pp. 186-199. doi: 10.1002/xrs.2745

Hein A., Tsolakidou A., Iliopoulos I., Mommsen H., Buxeda i Garrigós J., Montana G., Kilikoglou V. Standardisation of elemental analytical techniques applied to provenance studies of archaeological ceramics: an inter laboratory calibration study. Analyst, 2002, vol. 127, no. 4, pp. 542-553. doi: 10.1039/b109603f

Nakayama K., Ichikawa S., Nakamura T. Glass bead with minimized amount (11 mg) of sample for X‐ray fluorescence determination of archaeological ceramics. X-ray Spectrometry, 2011, vol. 41, no. 1, pp. 16-21. doi: 10.1002/xrs.1371

Ichikawa S., Nakamura T. X-ray fluorescence analysis with micro glass beads using milligram-scale siliceous samples for archeology and geochemistry. Spectrochimica Acta Part B: Atomic Spectroscopy, 2014, vol. 96, pp. 40-50. doi: 10.1016/j.sab.2014.04.002

Ichikawa S., Nakayama K., Nakamura T. Loose‐powder technique for X‐ray fluorescence analysis of ancient pottery using a small (100 mg) powdered sample. X-Ray Spectrometry, 2012, vol. 41, no. 5, pp. 288-297. doi: 10.1002/xrs.2394

Gazulla M.F., Vicente S., Orduna M., Ventura M. J. Chemical analysis of very small-sized samples by wavelength-dispersive X-ray fluorescence. X-Ray Spectrometry, 2012, vol. 41, no. 3, pp. 176-185. doi: 10.1002/xrs.2381

De Vleeschouwer F., Renson V., Claeys P., Nys K., Bindler R. Quantitative WD‐XRF calibration for small ceramic samples and their source material. Geoarchaeology, 2011, vol. 26, no. 3, pp. 440-450. doi: 10.1002/gea.20353

García-Heras M., Fernández-Ruiz R., Tornero J.D. Analysis of archaeological ceramics by TXRF and contrasted with NAA. Journal of Archaeological Science, 1997, vol. 24, no. 11, pp. 1003-1014. doi: 10.1006/jasc.1996.0178

Cariati F., Fermo P., Gilardoni S., Galli A., Milazzo M. A new approach for archaeological ceramics analysis using total reflection X-ray fluorescence spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 2003, vol. 58, no. 2, pp. 177-184. doi: 10.1016/S0584-8547(02)00253-7

Fernández-Ruiz R., Garcia-Heras M. Study of archaeological ceramics by total-reflection X-ray fluorescence spectrometry: Semi-quantitative approach. Spectrochimica Acta Part B: Atomic Spectroscopy, 2007, vol. 62, no. 10, pp. 1123-1129. doi: 10.1016/j.sab.2007.06.015

Fernández-Ruiz R., Garcia-Heras M. Analysis of archaeological ceramics by total-reflection X-ray fluorescence: Quantitative approaches. Spectrochimica Acta Part B: Atomic Spectroscopy, 2008, vol. 63, no. 9, pp. 975-979. doi: 10.1016/j.sab.2008.06.004

Horcajada P., Roldán C., Vidal C., Rodenas I., Carballo J., Murcia S., Juanes D.. Archaeometric study of ceramic figurines from the Maya settlement of La Blanca (Petén, Guatemala). Radiation Physics and Chemistry, 2015, vol. 97, pp. 275-283. doi: 10.1016/j.radphyschem.2013.12.016

Holmqvist E. Handheld portable energy-dispersive X-ray fluorescence spectrometry (pXRF). The Oxford Handbook of Archaeological Ceramic Analysis. Ed.: Hunt A., Oxfrod. Oxford University Press. 2016, pp 363-381.

Hunt A.M., Speakman R.J. Portable XRF analysis of archaeological sediments and ceramics. Journal of Archaeological Science, 2015, vol. 53, pp. 626-638. doi: 10.1016/j.jas.2014.11.031

Speakman R.J., Little N.C., Creel D., Miller M.R., Iñañez J.G. Sourcing ceramics with portable XRF spectrometers? A comparison with INAA using Mimbres pottery from the American Southwest. Journal of Archaeological Science, 2011, vol. 38, no. 12, pp. 3483-3496. doi: 10.1016/j.jas.2011.08.01.

Wilke D. Some updated quality concerns on non-destructive geochemical analysis with XRF spectrometry. Advances in Applied Science Research, 2017, vol. 8, no. 2, pp. 90-94.

Jacobson L., van der Westhuizen W.A., Oosthuysen J. SARM 69 CERAMIC-1: a new pottery certified reference material for inter-and intra-laboratory calibration. Proceedings of the 31st International Symposium on Archaeometry, Budapest, 2002, vol. 26, pp. 585-586.

Shakhashiro A., Trinkl A., Törvenyi A., Zeiller E., Benesch T., Sansone U. Report on the IAEA-CU-2006-06 proficiency test on the Determination of Major, Minor and Trace Elements in Ancient Chinese Ceramic. International Atomic Energy Agency. Department of Nuclear Sciences and Applications Physics, Chemistry and Instrumentation Laboratory, Seibersdorf, 2006, 88 p.

Vetrov V.M. [Stratigraphy of the Popovsky Lug site. On the time of the origin of ceramic production in the Upper Lena]. Sotsiogenez Severnoi Azii: proshloe, nastoiashchee, budushchee. Materialy regional'noi nauchno-prakticheskoi konferentsii [Sociogenesis of North Asia: past, present, future. Materials of the regional scientific and practical conference], Irkutsk, 2003, pp. 49-53 (in Russian).

Shergin D.L. [On the history of exploration of the site Popovsky Lug on the Upper Lena]. Drevnie kul'tury Mongolii i Baikal'skoi Sibiri: Materialy Mezhdunarodnoi nauchnoi konferentsii [Ancient cultures of Mongolia and Baikal Siberia: Proceedings of the International Scientific Conference], Ulan-Ude, 2010, pp. 56-60 (in Russian).

Savel'ev N.A. Neolit iuga Srednei Sibiri (istoriia osnovnykh idei i sovremennoe sostoianie problemy [Neolithic of the south of Central Siberia (history of main ideas and current state of the problem)]. Thesis abstract for the degree of candidate of historical sciences. Novosibirsk. 1989. 25 p. (in Russian).

Pashkova G. V., Ivanov E. V., Aisueva T.S., Shchetnikov. А.А., Markova Yu.N, Finkelshtein A. L. [X-ray fluorescence determination of bromine in lake sediments for paleoclimatic studies]. Analitika i Kontrol [Analytics and Control], 2015, vol. 19, no. 4, pp. 340-346. doi: 10.15826/analitika.2018.22.2.004 (in Russian).

Amosova A. A., Chubarov V. M., Pashkova G. V. [X-ray fluorescence analysis of peat sediments of the Sentca river for paleoclimatic studies]. Voprosy estestvoznaniia [Natural Science Issues], 2018, vol. 15, no. 1, pp. 47-52. (in Russian).

Amosova A. A., Chubarov V. M., Kaneva E. V., Markova Yu. N. [Determination of main rock-forming elements, strontium and zirconium by X-ray fluorescence analysis for the geochemical characterization of bottom sediments]. Analitika i Kontrol [Analytics and Control], 2017, vol. 21, no. 1, pp. 16-24. doi: 10.15826/analitika.2017.21.1.003 (in Russian).

Amosova A.A., Chubarov V.M., Pashkova G.V., Finkelshtein A.L., Bezrukova E.V. Wavelength dispersive X-ray fluorescence determination of major oxides in bottom and peat sediments for paleoclimatic studies. Applied Radiation and Isotopes, 2019, vol. 144, pp. 118-123. doi: 10.1016/j.apradiso.2018.11.004

Amosova A.A., Panteeva S.V., Tatarinov V.V., Chubarov V.M., Finkelshtein A.L. [X-ray fluorescence determination of major rock forming elements in small samples 50 and 110 mg]. Analitika i Kontrol [Analytics and Control], 2015, vol. 19, no. 2, pp. 130-138. doi: 10.15826/analitika.2015.19.2.009 (in Russian).

Amosova A.A., Panteeva S.V., Chubarov V.M., Finkelshtein A.L. Determination of major elements by wavelength-dispersive X-ray fluorescence spectrometry and trace elements by inductively coupled plasma mass spectrometry in igneous rocks from the same fused sample (110 mg). Spectrochimica Acta Part B: Atomic Spectroscopy, 2016. vol. 122, pp. 62-68. doi: 10.1016/j.sab.2016.06.001

Gunicheva T.N., Aisueva T.S., Afonin V.P. Non-destructive x-ray fluorescence analysis of soils and friable and marine sediments . X-ray spectrometry, 1995, vol. 24, pp. 187-192. doi: 10.1002/xrs.1300240408

Revenko A.G. [X-ray fluorescence analysis of rocks, soils and sediments]. Analitika i Kontrol [Analytics and Control], 2002, vol. 6, no. 3, pp. 231-246 (in Russian).

Pashkova G.V., Aisueva T.S., Finkelshtein A.L., Cherkashina T.Yu., Shchetnikov A.A. Quantitative approaches to the determination of elements in lake sediments by total reflection X-ray fluorescence. Microchemical Journal, 2018, vol. 143, pp. 264-271. doi: 10.1016/j.microc.2018.08.020

Pashkova G.V., Panteeva S.V., Ukhova N.N., Chubarov V.M., Finkelshtein A.L., Ivanov A.V., Asavin A.M. Major and trace elements in meimechites – rarely occurring volcanic rocks: developing optimal analytical strategy. Geochemistry: Exploration, Environment, Analysis, 2019, vol. 3, pp. 233-243. doi: 10.1144/geochem2017-099

Pashkova G.V., Chubarov V.M., Akhmetzhanov T.F., Zhilicheva A.N., Mukhamedova M.M., Finkelshtein A.L., Belozerova O.Y. Total-reflection X-ray fluorescence spectrometry as a tool for the direct elemental analysis of ores: Application to iron, manganese, ferromanganese, nickel-copper sulfide ores and ferromanganese nodules. Spectrochimica Acta Part B: Atomic Spectroscopy, 2020 105856. doi: 10.1016/j.sab.2020.105856

Webb P.C., Thompson M., Potts P.J., Prusisz B., Young K. An international proficiency test for analytical geochemistry laboratories – report on round 33 (Ball Clay, DBC-1), GeoPT33. 2013. 34 p.

Berkovits L.A., Lukashin V.N. Three marine sediment reference samples: SDO-1, SDO-2 and SDO-3. Geostandards and Geoanalytical Research, 1984, vol. 8, pp. 51-56. doi: 10.1111/j.1751-908X.1984.tb00412.x

Tsolakidou A., Buxeda i Garrigós J.B., Kilikoglou V. Assessment of dissolution techniques for the analysis of ceramic samples by plasma spectrometry. Analytica Chimica Acta, 2002, vol. 474, no. 1-2. pp. 177-188. doi: 10.1016/S0003-2670(02)01029-2




DOI: https://doi.org/10.15826/analitika.2021.25.1.001

Ссылки

  • На текущий момент ссылки отсутствуют.