Изображение на обложке

АМПЕРОМЕТРИЧЕСКИЕ ИММУНОСЕНСОРЫ НА ОСНОВЕ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ И КЛАСТЕРОВ РЕНИЯ ДЛЯ ОПРЕДЕЛЕНИЯ ТРИЦИКЛИЧЕСКИХ АНТИДЕПРЕССАНТОВ В ПОСЛЕДОВАТЕЛЬНОЙ ИНЖЕКЦИОННОЙ СИСТЕМЕ

E. P. Medyantseva, E. R. Gazizullina, D. V. Brusnitsyn, A. B. Dobrynin, K. A. Brylev, A. R. Mustafina, J. G. Elistratova

Аннотация


Предложен способ последовательного инжекционного определения трициклических антидепрессантов (амитриптилин, дезипрамин, имипрамин) с использованием амперометрических иммуносенсоров на основе печатных графитовых электродов, модифицированных углеродными наноматериалами (углеродные нанотрубки, оксид графена или фуллерен) в сочетании с гексарениевыми халькогенидными кластерами. Последовательный инжекционный анализ проводили при скорости развертки 10 мВ/с, также варьировали скорость потока (фоновый электролит - фосфатный буферный раствор с рН 7.0) от 20 до 40 мкл/с. Состав модификатора оказывает влияние на аналитические возможности иммуносенсоров. Скрининг различных вариантов модификаторов показал, что наибольшая чувствительность 23.9 ± 0.9 с диапазоном рабочих концентраций 1 ·10-10 – 1 · 10-5 М характерна для иммуносенсора на основе оксида графена и цианидных комплексов халькогенидных кластеров рения, а более широкая область определяемых содержаний 1 · 10-10 – 1 · 10-4 М наблюдается в случае иммуносенсора на основе фуллерена и цианидных комплексов халькогенидных кластеров рения. Нижняя граница определяемых содержаний находится на уровне (4 – 7)·10-11 М.

Относительное стандартное отклонение повторяемости (Sr) не более 0.046. Полученные результаты показывают, что предлагаемые иммуносенсоры могут найти применение в последовательном инжекционном определении следовых содержаний лекарственных соединений (антидепрессантов) в медико-биологических объектах.

Ключевые слова: иммуносенсор, углеродные наноматериалы, гексарениевые халькогенидные кластеры, трициклические антидепрессанты, последовательный инжекционный анализ


Полный текст:

PDF

Литература


REFERENCES

Kudryashov N.V., Kalinina T.S., Shimshirt A.A., Volkova A.V., Narkevich V.B., Naplekova P.L., Kasabov K.A., Kudrin V.S., Voronina T.A., Fisenko V.P. The behavioral and neurochemical aspects of the interaction between antidepressants and unpredictable chronic mild stress. Acta Naturae, 2020, vol. 12, no. 1, pp. 63-72. doi: 10.32607/actanaturae.10942.

Vardanyan R., Hruby V. Synthesis of best-seller drugs. Amsterdam, Academic Press, 2016. 846 p.

Ghafoor R., Rasool F. Antidepressants and antipsychotics: Anaesthetic implications. Anaesthesia and intensive care medicine. Pharmacology, 2017, vol. 18, no. 7, pp. 340-343. doi: 10.1016/j.mpaic.2017.04.005.

Thanacoody R. Antidepressant and antipsychotic poisoning. Medicine, 2020, vol. 48, no. 3, pp. 194-196. doi:10.1016/j.mpmed.2019.12.012.

Bizina E.V., Farafonova O.V., Ermolaeva T.N., Zolotareva N.I., Grazhulene S.S. [A piezoelectric immunosensor based on magnetic carbon nanocomposites for the determination of ciprofloxacin]. Zh. analit. khimii [J. Analit. Chem.], 2022, vol. 77, № 4, pp. 458-465. doi: 10.31857/S0044450222040041 (in Russian).

Shinko E.I., Farafonova O.V., Ermolaeva T.N. [The use of carbon nanotubes to increase the sensitivity of the antibiotic determination with a piezoelectric immunosensor]. Zavodskaia laboratoriia. Diagnostika materialov [Industrial laboratory. Diagnostics of materials], 2021, vol. 87, no. 12, pp. 11-16. doi: 10.26896/1028-6861-2021-87-12-12-17 (in Russian).

Balahura L.R., Stefan-Van Staden R.I., Van Staden J.F., Aboul-Enein H.Y. Advances in immunosensors for clinical applications. J. of Immunoassay Immunochemistry, 2019, vol. 40, pp. 40-51. doi:10.1080/15321819.2018.1543704.

Bastos-Soares E.A., Sousa R.M.O., Gómez A.F., Alfonso J., Kayano A.M., Zanchi F.B., Funes-Huacca M.E., Stábeli R.G., Soares A.M., Pereira S.S., Fernandes C.F.C. Single domain antibodies in the development of immunosensors for diagnostics. International J. of Biological Macromolecules, 2020, vol. 165, pp. 2244-2252. doi:10.1016/j.ijbiomac.2020.10.031.

Medyantseva E.P., Brusnitsyn D.V., Varlamova R.M., Maksimov A.A., Konovalova O.A., Budnikov G.K. [Surface modification of electrodes by carbon nanotubes and gold and silver nanoparticles in monoaminoxidase biosensors for the determination of some antidepressants]. Zh. analit. khimii [J. Analit. Chem.], 2017, vol. 72, no. 4, pp. 362-370. doi: 10.1134/S1061934817040086 (in Russian).

Fan Y., Shi S., Ma J., Guo Y. A paper-based electrochemical immunosensor with reduced graphene oxide/thionine/gold nanoparticles nanocomposites modification for the detection of cancer antigen 125. Biosensensors and Bioelectronics, 2019, vol. 135, pp. 1-7. doi: 10.1016/j.bios.2019.03.063.

Zhang Z., Yang M., Wu X., Dong S., Zhu N., Gyimah E., Wang K., Li Y. A competitive immunosensor for ultrasensitive detection of sulphonamides from environmental waters using silver nanoparticles decorated single-walled carbon nanohorns as labels. Chemosphere, 2019, vol. 225, pp. 282-287. doi: 10.1016/j.chemosphere.2019.03.033.

Wang Z., Yang S., Wang Y., Feng W., Li B., Jiao J., Han B., Chen Q. A novel oriented immunosensor based on AuNPs-thionine-CMWCNTs and staphylococcal protein A for interleukin-6 analysis in complicated biological samples. Anal. Chim. Acta, 2020, vol. 1140, no. 23, pp. 145-152. doi: 10.1016/j.aca.2020.10.025.

Medyantseva E.P., Brusnitsyn D.V., Gazizullina E.R., Beilinson R.M., Eremin S.A., Kutyreva M.P., Ulakhovich N.A., Budnikov G.K. [Nanoscale materials as part of biosensors for the determination of amitriptyline]. Zavodskaia laboratoriia. Diagnostika materialov [Industrial laboratory. Diagnostics of materials], 2021, vol. 87, no. 9, pp. 20-29. doi: 10.26896/1028-6861-2021-87-9-20-29 (in Russian).

Farias E.D., Passeggi M.C.G., Brunetti V. Thermal transitions in hyperbranched polyester-polyol assemblies on carbon. European Polymer J., 2018, vol. 102, pp. 68-74. doi: 10.1016/j.eurpolymj.2018.03.021.

Medyantseva E.P., Gazizullina E.R., Brusnitsyn D.V., Ziganshin M.A., Elistratova Iu.G., Mustafina A.R., Brylev K.A., Budnikov G.K. [Rhenium nanoclusters as immunosensor modifiers in the determination of tricyclic antidepressants]. Zh. analit. khimii [J. Analit. Chem.], 2021, vol. 76, no. 12, pp. 1123-1136. doi: 10.31857/S0044450221120070 (in Russian).

Bavol D., Economou A., Zima J., Barek J., Dejmkova H. Simultaneous determination of sinapic acid and tyrosol by flow-injection analysis with multiple-pulse amperometric detection. Monatshefte für Chemie Chemical Monthly, 2018, vol. 149, no. 9, pp. 1679-1684. doi: 10.1007/s00706-018-2189-8.

Frangu A., Pravcová K., Šilarová P., Arbneshi T., Sýs M. Flow injection tyrosinase biosensor for direct determination of acetaminophen in human. Analytical and Bioanalytical Chemistry, 2019, vol. 411, no. 11, pp. 2415-2424. doi: 10.1007/s00216-019-01687-4.

Shaidarova L.G., Chelnokova I.A., Il’ina M.A., Leksina Iu.A., Budnikov G.K. [Amperometric detection of tryptophane and pyridoxine on a dual screen-printed electrode modified by gold nanoparticles in a flow-injection system]. Zh. analit. khimii [J. Analit. Chem.], 2019, vol. 74, no. 6, pp. 584-590. doi: 10.1134/S106193481906011X (in Russian).

Santos A.M., Silva T.A., Vicentini F.C., Fatibello-Filho O. Flow injection analysis system with electrochemical detection for the simultaneous determination of nanomolar levels of acetaminophen and codeine. Arabian J. of Chemistry, 2020, vol. 13, no. 1, pp. 335-345. doi: 10.1016/j.arabjc.2017.04.012.

Kurbanoglu S., Unal M.A., Ozkan S.A. Recent developments on electrochemical flow injection in pharmaceuticals and biologically important compounds. Electrochimica Acta, 2018, vol. 287, pp. 135-148. doi: 10.1016/j.electacta.2018.04.217.

Krasilnikova A.A., Solovieva A.O., Ivanov A.A., Trifonova K.E., Pozmogova T.N., Tsygankova A.R., Smolentsev A.I., Kretov E.I., Sergeevichev D.S., Shestopalov M.A., Mironov Y.V., Shestopalov A.M., Poveshchenko A.F., Shestopalova L.V. Comprehensive study of hexarhenium cluster complex Na4[Re6Te8(CN)6] – In terms of a new promising luminescent and X-ray contrast agent. Nanomedicine: NBM, 2017, vol. 13, no. 2, pp. 755-763. doi: 10.1016/j.nano.2016.10.016.

Yarovoi S.S., Mironov Y.V., Naumov D.Y., Gatilov Y.V., Kozlova S.G., Kim S.J., Fedorov V.E. Octahedral hexahydroxorhenium cluster complexes [Re6Q8(OH)6]4– (Q = S, Se): Synthesis, structure, and properties. European J. of Inorganic Chemistry, 2005, vol. 19, no. 19, pp. 3945-3949. doi: 10.1002/ejic.200500284.

Medyantseva E.P., Brusnitsyn D.V., Gazizullina E.R., Varlamova R.M., Konovalova O.A., Budnikov G.K. [Hybrid nanocomposites as electrode modifiers in amperometric immunosensors for the determination of amitriptyline]. Zh. analit. khimii [J. Analit. Chem.], 2020, vol. 75, no. 4, pp. 536-543. doi: 10.1134/S1061934820040103 (in Russian).

Landry J.P., Ke Y., Yu G.L., Zhu X.D. Measuring affinity constants of 1450 monoclonal antibodies to peptide targets with a microarray-based label-free assay platform. J. of Immunological Methods, 2015, vol. 417, pp. 86-96. doi: 10.1016/j.jim.2014.12.011.

Felix F.S., Angnes L. Electrochemical immunosensors – A powerful tool for analytical applications. Biosensensors and Bioelectronics, 2018, vol. 102, pp. 470-478. doi: 10.1016/j.bios.2017.11.029.

Kutyreva M.P., Medyantseva E.P., Haldeeva E.V., Gataulina A.R., Ulakhovich N.A., Budnikov G.K. [Determination of the binding constants of immune complexes according to voltammetric measurements]. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki [Scientists Notes of Kazan University. Natural Science Series], 2012, vol. 154, no. 4, pp. 124-134 (in Russian).

Medyantseva E.P., Brusnitsyn D.V., Varlamova R.M., Baibatarova M.A., Budnikov G.K. [Amperometric L- cysteinedisulfhydrase biosensors based on modified graphite screen-printed electrodes for the determination of antidepressants]. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki [Scientists Notes of Kazan University. Natural Science Series], 2013, vol. 155, no. 2, pp. 51-65 (in Russian).

Zolotov Iu. A., Problemy analiticheskoj himii. T. 17. Protochnyj himicheskij analiz [Problems of analytical chemistry. Vol. 17. Flow chemical analysis.], Moscow: Nauka, 2014 (in Russian).

Bulatov A.V., Moskvin A.L., Moskvin L.N., Vakh K.S., Fal’kova M.T., Shishov A.Iu. [Automation and miniaturization of chemical analysis based on the principles of flow methods (review)]. Nauchnoe priborostroenie [Scientific instrumentation], 2015, vol. 25, no. 2, pp. 3-26 (in Russian).

Šramkova I.H., Carbonell-Rozas L., Horstkotte B., Hakova M., Erben J., Chvojka J., Švec F., Solich P., Garcia-Campana A.M., Šatinsky D. Screening of extraction properties of nanofibers in a sequential injection analysis system using a 3D printed device. Talanta, 2019, vol. 197, pp. 517-521. doi: 10.1016/j.talanta.2019.01.050.

Naumov N., Ostanina E.V., Virovets A.V., Schmidtman M., Müller A., Fedorov V. Electron Re6 metal clusters: Syntheses and crystal structures of (Ph4P)3[Re6S8(CN)6], (Ph4P)2(H)[Re6Se8(CN)6]⋅8H2O, and (Et4N)2(H)-[Re6Te8(CN)6]⋅2H2O. Russian Chemical Bulletin, 2002, vol. 51, no. 5, pp. 866-871. doi: 10.1023/A:1016053305232.

Rysava L., Dvorak M., Kuban P. The effect of membrane thickness on supported liquid membrane extractions in-line coupled to capillary electrophoresis for analyses of complex samples. J. of Chromatography A, 2019, vol. 1596, pp. 226-232. doi: 10.1016/j.chroma.2019.02.067.

Tabani H., Shokri A., Tizro S., Nojavan S., Varanusupakul P., Alexovič M. Evaluation of dispersive liquid–liquid microextraction by coupling with green-based agarose gel-electromembrane extraction: An efficient method to the tandem extraction of basic drugs from biological fluids. Talanta, 2019, vol. 199, pp. 329-335. doi: 10.1016/j.talanta.2019.02.078.

Farnoudian-Habibi A., Massoumi B., Jaymand M.A novel strategy for spectrophotometric simultaneous determination of amitriptyline and nortriptyline based on derivation with a quinonoid compound in serum samples. Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy, 2016, vol. 168, pp. 235-243. doi: 10.1016/j.saa.2016.06.013.




DOI: https://doi.org/10.15826/analitika.2022.26.4.002

Ссылки

  • На текущий момент ссылки отсутствуют.