Проточные методы, как общий подход к автоматизации химического анализа водных сред (обзор)
Аннотация
Предлагаемая статья посвящена рассмотрению общих подходов к автоматизации анализа водных сред, являющихся основными объектами химического анализа: природных и сбросных вод, а также технологических сред в различных областях промышленности: микроэлектронике, биохимических производствах, атомной и тепловой энергетике, являющихся главными потребителями воды высокой чистоты, необходимой для предпусковых промывок внутриконтурного оборудования до требуемых кондиций чистоты его поверхностей, для приготовления теплоносителей, обеспечивающих функционирование ядерно- и теплоэнергетических объектов. Во всех перечисленных случаях жестко регламентируется содержание примесей в используемых или отработанных и подлежащих сбросу водных средах. Поскольку изменение содержания примесей в контролируемых средах часто происходит спонтанно и связано с отказами в работе оборудования контролируемых объектов, для оперативного реагирования на них и для их своевременного устранения химико-технологический контроль нормируемых параметров водных сред любого из названных происхождения и назначения предпочтительно осуществлять в непрерывном автоматическом режиме on-line, гарантирующем исключение пропусков или задержек в получении информации об отказах оборудования в контролируемом объекте в случае технологического контроля или о несанкционированных сбросах загрязняющих веществ в случае экологического контроля. Исходя из этих предпосылок, рассматриваются возможные методические подходы к созданию систем непрерывного химического контроля качества или загрязненности водных сред, и обсуждается предпочтительность для этих целей различных вариантов проточных методов в порядке их появления в арсенале химиков-аналитиков.
Ключевые слова: автоматизация, химический анализа, водные среды, проточные методы, непрерывный проточный анализ, проточно - инжекционный, циклический инжекционный, последовательный инжекционный.
Полный текст:
PDFЛитература
REFERENCES
Foreman J.K., Stockwell P.B. Automatic Chemical Analysis. N.-Y., Wiley, 1975, 396 p.
Pipkin W., van Hout P. Analytical chemistry and the Rhine basin program. Anal. Chem.,1997, vol. 69, pp. 21A-25A.
Automated stream analysis for process control: ed. by: D.P. Manka. N.-Y., Academic Press, 1982, 557 p.
Clevett. K. Process analysers industry perspectives. Contr. Instrum.,1994, vol. 26, pp. 29 - 31.
Huang J., Liu H., Tan A., Xu J., Zhao X. A dual-wavelength light-emitting diode based detector for flow-injection analysis process analysers. Talanta, 1992, vol. 39, pp. 589 - 592. doi: 10.1016/0039-9140(92)80065-l.
Dasgupta P.K., Bellamy H.S., Liu H., Lopez J.L., Loree E.L., Morris K., Petresen K., Mir K.A. Light emitting diode based flow-through optical absorption detectors. Talanta, 1993, vol. 40, pp. 53 - 74. doi: 10.1016/0039-9140(93)80142-e.
Sirirakis A., Stillian J., Bostic D. Improved method for the determination of manganese in nuclear power plant waters. J. Chromatogr., 1993, vol. 640, pp. 371 - 378. doi.org/10.1016/0021-9673(93)80205-M.
Betti M. Use of ion chromatography for the determination of fission products and actinides in nuclear applications. J. Chromatogr., 1997, vol. 789, pp. 369 - 379. doi.org/10.1016/S0021-9673(97)00784-X.
Moskvin L.N., Gurskii V.S. [Improvement of ionochromatographic analysis of technological environments of nuclear power plants]. Tekhnologii obespecheniia zhiznennogo tsikla iadernykh energeticheskikh ustanovok [Technologies for ensuring the life cycle of nuclear power plants]. 2019, vol.16, no. 2, pp.71 - 77 (in Russian).
Slobodnik J., Brower E.R., Geerdind R.B., Mulder W.H., Lingeman H., Brinkman U.A.Th. Fully automated on-line chromatographic separation system for polar pollutants in various types of water. Anal. Сhim. Acta., 1992, vol. 268, pp. 55 - 65. doi.org/10.1016/0003-2670(92)85248-5.
Slobodnik J., Groenewegen M.G.M., Brower E.R., Lingeman H., Brinkman U.A.Th. Fully automated multi-residue method for trace level monitoring of polar pesticides by liquid chromatography. J. Chromatogr., 1993, vol. 642, pp. 359 - 370. doi.org/10.1016/0021-9673(93)80099-T.
Coakley W.A. Hadbook of Automated Analysis: Continious Flow Techniques. New York: Dekker, 1981, 376 p.
Ružicka J., Hansen E.H. Flow injection analyses: Part I. A new concept of fast continuous flow analysis. Anal. Chim. Acta., 1975, vol. 78, pp. 145 - 153. doi.org/10.1016/S0003-2670(01)84761-9.
Moskvin A.L., Mozzhukhin A.V., Moskvin L.N. [In-line analyzers with photometric detection for continuous monitoring of natural and waste water]. Zav. Lab. [Industrial laboratory]. 1996, no. 1, pp. 7 - 10 (in Russian).
Ružicka J., Marshall G.D. Sequential injection: a new concept for chemical sensors, process analysis and laboratory assays. Anal. Chim. Acta, 1990, vol. 237, pp. 329 - 343. doi.org/10.1016/S0003-2670(00)83937-9.
Scampavia L.D., Ruzicka «Micro-sequential injection: a multipurpose lab-on-valve for anvancement of bioanalytical assays. J. Anal. Sci., 2001, vol. 17, pp. 429 – 431. doi.org/10.14891/analscisp.17icas.0.i416.0.
Marshall G., Wolcott D., Olson D. Zone fluidics in flow analysis: potentialities and applications. Anal. Chim. Acta, 2003, vol. 499, pp. 29 - 40. doi.org/10.1016/j.aca.2003.09.003.
Diniz P.D., Almedia L.F., Harding D.P., Araujo M.C.U. Flow-batch analysis. Trends Anal. Chem., 2012, vol. 35, pp. 39 - 49. doi.org/10.1016/j.trac.2012.02.009.
Mozzhukhin A.V., Moskvin A.L., Moskvin L.N. Srepwise injection analysis as a new method for analysis. J. Anal. Chem. 2007, vol. 62, no. 5, pp. 475 - 478. doi.org/10.1134/S1061934807050152.
Moskvin L.N., Bulatov A.V., Kolomiets N.A., Moskvin A.L. Photometric cyclic-injection determination of arsenic in aqueous solutions. J. Anal. Chem., 2007, vol. 62, no. 12, pp. 1143 – 1145. doi.org/10.1134/S1061934807120076.
Bulatov A.V., Goldvirt D.K., Moskvin, L.N. Cyclic flow-injection photometric determination of mercaptans in hydrocarbon gases. J. Anal. Chem., 2008, vol. 63, pp. 228 – 231. doi.org/10.1134/S1061934808030064.
Moskvin L.N., Bulatov A.V., Goldvirt D.K. Cyclic injection-potentiometric determination of hydrogen sulfide in air. J. Anal. Chem., 2008, vol. 63, pp. 82 – 84. doi.org/10.1134/S1061934808010152.
Bulatov A.V., Moskvin A.L., Moskvin L.N., Mozhuhin A.V. J. The Stepwise Injection Analysis as a New Opportunity for Automation of Chemical Analysis of Liquid, Gaseous and Solid-Phase Samples. J. Flow Injection Anal., 2010, vol. 27, pp. 13 - 18. doi.org/10.24688/jfia.27.1_13.
Bulatov A., Medinskaia K., Ipatov A., Moskvin A., Moskvin L. Stepwise Injection Photometric Determination of Nitrogen Oxides in Atmospheric Air. J. Flow Injection Anal., 2011, vol. 28, pp. 146 - 149. doi.org/10.24688/jfia.28.2_146.
Bulatov A.V., Petrova A.V., Vishinkin A.B., Moskvin A.L., Moskvin L.N. Stepwise injection spectrophotometric determination of epinephrine. Talanta, 2012, vol. 96, pp. 62 - 67. doi.org/10.1016/j.talanta.2012.03.059.
Fulmes Ch.S., Bulatov A.V., Yasakov O.G., Moskvin A.L., Dedkov Y.M., Moskvin L.N. Multicommutated stepwise injection analysis as new approach for simultaneous determination of nickel (II), copper (II) and zinc (II) in wet aerosols. Microchem. J., 2013, vol. 110, pp. 649 - 655. doi.org/10.1016/j.microc.2013.06.007
Bulatov A.V., Petrova A.V., Vishinkin A.B., Moskvin L.N. Stepwise injection spectrometric determination of cysreine in biologically active supplements and fodders. Microchem. J., 2013, vol. 110, pp. 369 – 373.
Bulatov A.V., Timofeeva I.I., Moskvin A.L. Stepwise Injection Spectrophotometric Determination of Carbamides in Construction Materials. J. Flow Injection Anal., 2013, vol. 30, pp. 51 - 54. doi.org/10.24688/jfia.30.1_5.1.
Moskvin L.N., Rodinkov O.V. [Chromatomembrane methods: Physicochemical principles, analytical and technological possibilities]. Russian Chemical Bulleten. 2012, vol. 61, no. 4. pp. 723 - 740. doi.org/10.1007/s11172-012-0105-7 (in Russian).
Falkova M.T., Pushina M.O., Bulatov A.V., Alekseeva G.M., Moskvin L.N. Stepwise Injection Spectrophotometric Determination of Flavonoids in Medicinal Plants. Anal. Lett., 2014, vol. 47, pp. 970 - 982. doi.org/10.1080/00032719.2013.862806.
Miro M., Hansen E.N. Miniaturization of environmental chemical assays in flowing systems: The lab-on-a-valve approach vis-à-vis lab-on-a-chip microfluidic devices. Anal. Chim. Acta, 2007, vol. 600, pp. 46 - 57. doi.org/10.1016/j.aca.2007.02.035.
Kim T.-H., Park J., Kim Ch. Fully Integrated Lab-on-a-Disc for Nucleic Acid Analysis of Food-Borne Pathogens. Anal. Chem., 2014, vol. 86, pp. 3841 - 3848. doi.org/10.1021/ac403971h.
Monte S.S., Lima M.B., Andrade S.I.E., Harding D.P., Fagundes Y.N.M. Santos S.R.B., Lemos S.G., Arauio M.C.U. Flow–batch miniaturization. Talanta, 2011, vol. 86, pp. 208 - 213. doi.org/10.1016/j.talanta.2011.08.063.
Truzell R., Karlberg B. Efficiency and response studies on gas diffusion manifolds in flow-injection systems. Anal. Chim. Acta, 1995, vol. 308, pp. 206 - 213. doi.org/10.1016/0003-2670(94)00332-G.
Dhaouadi A., Monser L., Sadok S., Adhoum N. Validation of a flow-injection-gas diffusion method for total volatile basic nitrogen determination in seafood products. Food Chem., 2007, vol. 103, pp. 1049 – 1053. doi.org/10.1016/j.foodchem.2006.07.066.
Junsomboon J., Jakmunee J. Flow-injection conductometric system with gas diffusion separation for the determination of Kjeldahl nitrogen in milk and chicken meat. Anal. Chim. Acta., 2008, vol. 627, pp. 232 - 238. doi.org/10.1016/j.aca.2008.08.012.
Oliveira S., Lopes T., Rangel A. Development of a Gas Diffusion Multicommuted Flow Injection System for the Determination of Sulfur Dioxide in Wines, Comparing Malachite Green and Pararosaniline Chemistries. Agric. Food Chem., 2009, vol. 57, pp. 3415 - 3422. doi.org/10.1021/jf803639n.
Mesquita R.B., Rangel A.O. Gas diffusion sequential injection system for the spectrophotometric determination of free chlorine with o-dianisidine. Talanta, 2005, vol. 68, pp. 268 - 273. doi.org/10.1016/j.talanta.2005.07.028.
Oms M.T., Cerda A., Cerda V. Preconcentration by flow reversal in conductometric sequential injection analysis of ammonium. Electroanal., 2005, vol. 8, pp. 387 - 390. doi.org/10.1002/elan.1140080416.
Peres-Ruiz T., Martinez-Lozano C., Tomas V., Sanz A., Sahuquillo E. Flow-injection extraction-spectrophotometric method for the determination of ranitidine in pharmaceutical preparations. J. Pharm. Biomed. Anal., 2001, vol. 26, pp. 609 – 615. doi.org/10.1016/S0731-7085(01)00489-7.
Burns D.T., Pornsinlapatin P. Flow injection extraction spectrofluorimetric determination of aluminium as the tetraphenylphosphonium aluminium(III) 8-hydroxyquinoline-5-sulphonate. Anal. Lett., 2002, vol. 35, pp. 1085 - 1093. doi.org/10.1081/AL-120004557.
Anthemidis A.N., Ioannou K.-I.G. On-line sequential injection dispersive liquid–liquid microextraction system for flame atomic absorption spectrometric determination of copper and lead in water samples. Talanta, 2009, vol.79, pp. 86 - 91. doi.org/10.1016/j.talanta.2009.03.005.
Anthemidis A.N., Ioannou K.-I.G. Development of sequential injection dispersive liquid-liquid microextraction system for electrothermal atomic absorption spectrometry by using a hydrophobic sorbent material: determination of lead and cadmium in natural waters. Anal. Chim. Acta., 2010, vol. 668, pp. 35 - 40. doi.org/10.1016/j.aca.2009.10.063.
Andruch V., Acebal C.C., Skrilkova J., Sklenarova H., Solich P., Balogh I.S., Billes F., Kocurova L. Automated on-line dispersive liquid–liquid microextraction based on a sequential injection system. Microchem. J., 2012, vol. 100, pp. 77 - 82. doi.org/10.1016/j.microc.2011.09.006.
Moskvin L.N., Moskvin A.L., Moszhuchin A.V., Fomin V.V. Extraction-chromatographic preconcentration with chromatomembrane separarion of extract from aqueous phase for luminescence Determination of oil products and phenols in natural water by flow injection analysis. Talanta, 1999, vol. 50, pp. 113 – 120. doi.org: 10.1016/s0039-9140(99)00114-9.
Moskvin L., Simon j. Gas/Liquid and Liquid/Liquid Solvent Extraction in Flow Analysis with the Chromatomembrane Cell. Sensors 2006, vol. 6, pp. 1321 - 1332. doi.org/10.3390/s6101321.
Costa R., Cardoso M., Araujo A. Metals Determination in Wines by Sequential Injection Analysis With Flame Atomic Absorption Spectrometry. Am. J. Enol. Vitic., 2000, vol. 51, pp. 131 - 136. doi.org/10.5344/ajev.2000.51.2.131.
Chen G., Liu L. Hyphenation of Sorbent Extraction and Solid-Matrix Time-Resolved Luminescence Using Tetracycline in Milk as a Model Analyte. Agric. Food Chem., 2004, vol. 52, pp. 7199 - 7205. doi.org/10.1021/jf049023d.
Zhou Y.Y., Yan X.P., Kim K.N., Wang S.W., Liu M.G. Exploration of Coordination Polymer as Sorbent for Flow Injection Solid-Phase Extraction on-Line Coupled with High-Performance Liquid Chromatography for Determination of Polycyclic Aromatic Hydrocarbons in Environmental Materials. J. Chromatogr. A, 2006, vol. 1116, pp. 172 - 178. doi.org/10.1016/j.chroma.2006.03.061.
Moskvin L.N., Drogobuzhskaja S.V., Moskvin A.L. [Flow photometric determination of beryllium with sorption preconcentration on a fibrous sorbent]. Zh. Anal. Khimii [J. Anal.Chem.]. 1999, vol. 54, pp. 272 - 276. (in Russian).
Tsizin G.I., Zolotov Y.A. Flow Sorption–Spectroscopic Analysis. J. Anal. Chem., 2002, vol. 57, pp. 562 – 580. doi.org/10.1023/A:1016265631350.
Moskvin L.N., Moskvin L.N. [Water and aquatic environments: "on line" chemical analysis, problems and solutions]. Uspehi himii [Advances in chemistry]. 2005, vol. 74, pp. 155 - 163. (in Russian).
Gonzalesa A.P.S., Firminob M.A., Nomuraa C.S., Rochac F.R.P., Oliveirac P.V., Gaubeur I. Peat as a natural solid-phase for copper preconcentration and determination in a multicommuted flow system coupled to flame atomic absorption spectrometry. Anal. Chim. Acta., 2009, vol. 636, pp. 198 - 206. doi.org/10.1016/j.aca.2009.01.047.
Sabarudin A., Lenghor N., Oshima M., Hakin L., Takayanagi T., Gao Y., Motomizu S. Sequential-injection on-line preconcentration using chitosan resin functionalized with 2-amino-5-hydroxy benzoic acid for the determination of trace elements in environmental water samples by inductively coupled plasma-atomic emission spectrometry. Talanta, 2007, vol. 72, pp. 1609 – 1617. doi.org/10.1016/j.talanta.2007.01.024.
Kuban P., Reinhard M., Muller D., Hauser P.C. On-site simultaneous determination of anions and cations in drainage water using a flow injection-capillary electrophoresis system with contactless conductivity detection. J. Environ. Monitor., 2004, vol. 6, pp. 169 - 174. doi.org/10.1039/B31622E.
Mesquita R.B.R., Fernandes S.M.V., Rangel A.O.S.S. A flow system for the spectrophotometric determination of lead in different types of waters using ion-exchange for pre-concentration and elimination of interferences. Talanta, 2004, vol.62, pp. 395 - 401. doi.org/10.1016/j.talanta.2003.08.009.
Pinoyou P., Hartwell S.K., Jakmunee J., Lapanantnoppakhun S., Grudhan K. Flow Injection Determination of Iron Ions with Green Tea Extracts as a Natural Chromogenic Reagent. Anal. Sci., 2010, vol. 26, pp. 619 - 623. doi.org/10.2116/analsci.26.619.
Tarley C.R.T., Ferreira S.L.C., Arruda M.A.Z. Use of modified rice husks as a natural solid adsorbent of trace metals: characterisation and development of an on-line preconcentration system for cadmium and lead determination by FAAS. Microchem. J., 2004, vol. 77, pp. 163 – 175. doi.org/10.1016/j.microc.2004.02.019.
Bianchin J.N., Martendal E., Mior R., Alves V.N., Araujo C.S.T., Coelho N.M.M., Carasek E. Development of a flow system for the determination of cadmium in fuel alcohol using vermicompost as biosorbent and flame atomic absorption spectrometry. Talanta, 2009, vol. 78, pp. 333 - 336. doi.org/10.1016/j.talanta.2008.11.012.
Nakajima H., Yanagihara R. Rapid determination of HCIO4 - H2SO4 degradation nitrogen and phosphorus in farm soils, crops and organic manure using flow injection analysis. J. Flow Injection Anal., 1993, vol. 10, pp. 224 - 235.
Ferreira A.M.R., Rangel A.O.S.S., Lima J.L.F.C. Determination of chloride in soils by flow injection potentiometric pseudo‐titration. Soil Sci. Plant Anal., 1996, vol. 27, pp. 1437 - 1445, doi.org/10.1080/00103629609369644.
Pistonasi M., Centurion M.E., Band B.S.F., Damiani P.C., Oliveri A.C. Simultaneous determination of levodopa and benserazide by stopped-flow injection analysis and three-way multivariate calibration of kinetic-spectrophotometric data. J. Pharm. Biomed. Anal., 2004, vol. 36, pp. 541 - 547. doi.org/10.1016/j.jpba.2004.07.006.
Tzanavaras P.D., Verdoukas A., Themlis D.G. Development and Validation of a Flow-Injection Assay for Dissolution Studies of the Anti-depressant Drug Venlafaxine. Anal. Sci., 2005, vol. 21, pp. 1515 - 1518. doi.org/10.2116/analsci.21.1515.
Abdurahman L.K., Al-Abachi A.M., Al-Qaissy M.H. Flow injection-spectrophotometric determination of some catecholamine drugs in pyarmaceutical preparations via oxidative coupling reaction with p-toluidine and sodium periodate. Anal. Chim. Acta., 2005, vol. 538, pp. 331 - 335. doi.org/10.1016/j.aca.2005.02.045.
Fanjul-Bolado P., Lamas-Ardisana P.J., Hernandez-Abedul D., Costa-Garcia A. Electrochemical study and flow injection analysis of paracetamol in pharmaceutical formulations based on screen-printed electrodes and carbon nanotubes. Anal. Chim. Acta, 2009, vol. 638, pp. 133 - 138. doi.org/10.1016/j.aca.2009.02.019.
Can N.O., Antiokka G., Aboul-Enein H.Y. Determination of cefuroxime axetil in tablet and biological fluids using liquid chromatography and flow injection analysis. Anal. Chim. Acta, 2006, vol. 576, pp. 246 - 252. doi.org/10.1016/j.aca.2006.06.007.
Brunetto M.R., Delgado Y., Clavijo S., Contreras Y., Torres D., Ayala C., Gallingnani M., Forteza R., Cerda M.V. Analysis of cocaine and benzoylecgonine in urine by using multisyringe flow injection analysis-gas chromatography-mass spectrometry system. J. Sep. Sci., 2010, vol. 33, pp. 1779 – 1786. https://doi.org/10.1002/jssc.200900833.
Liu X., Zhang J., Chen X. Separation and determination of three water-soluble compounds in Salvia miltiorrhiza Bunge and two related traditional medicinal preparations by flow injection-capillary electrophoresis. J. Chromatogr. B, 2007, vol. 852, pp. 325 - 332. doi.org/10.1016/j.jchromb.2007.01.034.
Rama M.J.R., Medina A.R., Diaz A.M. Selective kinetic determination of amikacin in serum using long-wavelength fluorimetry. J. Pharm. Biomed. Anal., 2004, vol. 35, pp. 1021 - 1027. doi.org/10.1016/j.jpba.2003.11.015Get rights and content.
DOI: https://doi.org/10.15826/analitika.2023.27.1.001
Ссылки
- На текущий момент ссылки отсутствуют.