Применение масс-спектральных методов для аналитического контроля функциональных материалов на основе редкоземельных металлов
Аннотация
Редкоземельные металлы и соединения на их основе востребованы в разработке и производстве функциональных материалов, таких как оптическая керамика, постоянные магниты, люминофоры, катализаторы, стекла, сплавы и др. Уникальные физические и химические свойства данных материалов во многом зависят от элементного состава (панорамного и целевого), который нужно контролировать на всех стадиях производства, от исходных соединений до промежуточных и конечных продуктов. Метод масс-спектрометрии с различными источниками ионизации (индуктивно связанная плазма, вакуумный искровой разряд, тлеющий разряд, лазерный источник, источник вторичных ионов) и системами ввода образца (распыление растворов, лазерный пробоотбор, электротермическое испарение) является одним из перспективных и востребованных при определении целевых элементов в материалах сложного состава с высокой чувствительностью. Есть ряд других преимуществ, которые обеспечивает данный метод, а именно: селективность сигнала определяемых элементов, возможность проведения многоэлементного анализа, точность результатов анализа. Однако материалы сложного состава, в том числе содержащие редкоземельные металлы в качестве основных элементов, требуют изучения влияния условий анализа и других факторов для получения достоверных результатов и разработки методик. В данной статье проведен обзор публикаций, содержащих методические решения и подходы для преодоления ограничений метода масс-спектрометрии с различными источниками ионизации применительно к анализу редкоземельных металлов и функциональных материалов на их основе. Обзор включает в себя российские и зарубежные публикации с 2014 по 2023 года.
Ключевые слова: масс-спектрометрия, редкоземельные металлы, анализ, функциональные материалы, обзор
Полный текст:
PDFЛитература
REFERENCES
Baranovskaya V.B., Karpov Yu.A., Petrova K.V., Korotkova N.A. [Current trends in the use of rare earth metals and their compounds in metallurgy and production of optical materials]. Tsvet. Metal [Non-ferrous metals], 2020, no. 11, pp. 54-62. doi: 10.17580/tsm.2020.11.08.
Baranovskaya V.B., Karpov Yu.A., Petrova K.V., Korotkova N.A. Actual Trends in the Application of Rare-Earth Metals and Their Compounds in the Production of Magnetic and Luminescent Materials: A Review. Russ. J. Non-ferrous Metal., 2021, vol. 62, no. 1, pp. 10-31. doi: 10.3103/S1067821221010041.
Baranovskaya V.B., Petrova K.V., Doronina М.S., Kosel’ Е.S., Korotkova N.A., Arhipenco А.А. [A set of methods for optical-spectral and mass-spectral analysis to establish the target chemical purity of compounds of rare earth metals and materials based on them]. Analitika [Analytics], 2022, vol, 12, no. 4, pp. 268-279. doi: 10.22184/2227-572X.2022.12.4.268.278 (In Russian)
Karandashev V.K., Zhernokleeva K.V., Baranovskaya V.B., Karpov Yu.A. Analysis of High Purity Materials by Inductively Coupled Plasma Mass Spectrometry (Review). Inorg. Mater. 2013, vol. 49, no. 14, pp. 1249-1263.
Balaram V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 2019, vol. 10, no. 4, pp. 1285-1303. doi: 10.1016/j.gsf.2018.12.005
Gorbatenko A.A., Revina E.I. A review of instrumental methods for determination of rare earth elements. Inorg. Mater., 2015, vol. 51, pp. 1375-1388. doi: 10.1134/S0020168515140058
Hoffmann E., Stroobant V. Mass Spectrometry: Principles and Applications. 3rd Edition. Paperback. 2007. 502 p.
Ganeev A.A., Gubal A.R., Potapov S.V. Agafanova N.N. German V.M. [Mass spectral methods of direct elemental and isotopic analysis of solid materials]. Uspekhi khimii [Adv. Chem.], 2016, vol. 85, no. 4, pp. 427-444. doi: 10.1070/RCR4504 (In Russian)
Williams J., Putman J. Advances in Trace Element Solid Sample Analysis: Laser Ablation Laser Ionization TOF Mass Spectrometry (LALI-TOF-MS). Spectroscopy, 2020, vol. 35, no. 5, P. 9-16.
Carter S., Clough R., Fisher A., Gibson B., Russelld B., Waack J. Atomic spectrometry update: review of advances in the analysis of metals, chemicals and materials. JAAS, 2018, vol. 33, article 1802. doi: 10.1039/c8ja90039f
Balaram V. Strategies to overcome interferences in elemental and isotopic geochemical analysis by quadrupole inductively coupled plasma mass spectrometry: A critical evaluation of the recent developments. Rapid Commun. Mass Spectrom., 2021, vol. 35, article e9065. doi: 10.1002/rcm.9065
Wysocka I. Determination of rare earth elements concentrations in natural waters – A review of ICP-MS measurement approaches. Talanta. 2021, vol. 221, article 121636. doi: 10.1016/j.talanta.2020.121636
Kim Y.S., Kawaguchi H., Tanaka T., Mizuike A. Non-spectroscopic matrix interferences in inductively coupled plasma-mass spectrometry. Spectrochim Acta Part B, 1990, vol. 45, no. 3, pp. 333-339. doi: 10.1016/0584-8547(90)80108-U
Vaughan M.A., Horlick G. Effect of sampler and skimmer orifice size on analyte and analyte oxide signals in inductively coupled plasma-mass spectrometry. Spectrochim Acta Part B, 1990, vol. 45, no. 12, pp. 1289-1299. doi: 10.1016/0584-8547(90)80183-j
Makonnen Y., Beauchemin D. Investigation of a measure of robustness in inductively coupled plasma mass spectrometry. Spectrochim. Acta Part B, 2015, vol. 103-104, pp. 57–62. doi: 10.1016/j.sab.2014.11.010
Agatemor Ch., Beauchemin D. Matrix effects in inductively coupled plasma mass spectrometry: A review. Anal. Chim. Acta, 2011, vol. 706, pp. 66-83. doi: 10.1016/j.aca.2011.08.027
Thomas R. A beginner's guide to ICP-MS, part XII – A review of interferences. Spectroscopy, 2002, vol. 17, no. 10, pp. 24-31.
Balaram V. Recent advances and trends in ICP mass spectrometry and applications. Spectroscopy, 2018, vol. 16, no. 2, pp. 8-13.
Carter J.A., Barros A.I., Nóbrega J.A., Donati G.L. Traditional Calibration Methods in Atomic Spectrometry and New Calibration Strategies for Inductively Coupled Plasma Mass Spectrometry. Front. in Chem., 2018, vol. 6, pp. 1-25. doi: 10.3389/fchem.2018.00504
Nikolaeva I.V., Palessky S.V., Karpov A.V. [Comparison of ICP-MS analysis of geological samples in the solution version and laser ablation of glasses]. Izvestija Tomskogo politehn. univer. Inzhiniring georesursov [News of Tomsk Polytechnic University. Engineering of Georesources], 2019, vol. 330, no. 5, pp. 26-34. doi: 10.18799/24131830/2019/5/263 (In Russian)
Lin J., Liu Y., Yang Y., Hu Z. Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios. Sol. Ear. Sciences., 2016, vol. 1, no. 1, pp. 5-27.
Liu Y.S., Hu Z.C., Li M., Gao S.G. Applications of LA-ICP-MS in the elemental analyses of geological samples. Chin. Sci. Bull., 2013, vol. 58, no. 32, pp. 3863-3878. doi: 10.1007/s11434-013-5901-4
Becker J.S., Dietze H.J. State-of-the-art in inorganic mass spectrometry for analysis of high-purity materials. Int. J. Mass Spectrom., 2003, vol. 228, pp. 127-150. doi: 10.1016/S1387-3806(03)00270-7
Khvostikov V.A., Karandashev V.K.., Burmiy Zh.P. [Optimization of analysis conditions by mass spectrometry with inductively coupled plasma and laser sampling]. Zavodskaia laboratoriia. Diagnostika materialov [Industrial laboratory. Diagnostics Materials], 2017, vol. 83, no. 1, pp. 13-20. (In Russian)
ShazzoY.K., Karpov Y.A. [Laser sampling in inductively coupled plasma mass spectrometry in the inorganic analysis of solid samples: elemental fractionation as the main source of errors]. Zh. analit. khimii. [J. Anal. Chem.], 2016, vol. 71, no. 11, pp. 1123-1136. doi: 10.1134/S1061934816110125
Gorbatenko A.A., Revina E.S. Laser sampling. Uspekhi khimii [Adv. Chem.], 2015, vol. 84, no. 10, pp. 1051-1058. doi: 10.1070/RCR4543 (In Russian)
Jianying Zhang, Tao Zhou, Dan Song, Yichuan Tang, Yanjie Cui, Bing Wu. A similar-matrix-matched calibration strategy by using microsecond pulsed glow discharge mass spectrometry in the application of purity analysis of high purity lanthanum oxide. Spectrochim. Acta Part B, 2020, vol. 164, article 105748. doi: 10.1016/j.sab.2019.105748
Khanchuk A.I., Sikharulidze G.G., Fokin K.S., Karpov Yu.A.[ Elemental analysis of geological materials by glow discharge mass spectrometry]. Standartnye obraztsy [Standard Samples], 2014, no. 3, pp. 3-23. (In Russian)
Yakimovich P.V., Alekseev A.V. [Determination of sulfur in cast heat-resistant nickel alloys using high-resolution glow discharge mass spectrometry]. Trudy VIAM [Proceedings of VIAM], 2020, vol. 85, no. 1, pp. 118-125. doi: 10.18577/2307-6046-2020-0-1-118-125 (In Russian)
Alekseev A.V., Yakimovich P.V. [Application of high-resolution glow discharge mass spectrometry in the analysis of nickel alloys]. Trudy VIAM [Proceedings of VIAM], 2020, vol. 90, no. 8, pp. 101-108. doi: 10.18577/2307-6046-2020-0-8-101-108 (In Russian)
Alekseev A.V., Yakimovich P.V., Koshelev A.V. [Analysis of aluminum by high-resolution glow discharge mass spectrometry]. Trudy VIAM [Proceedings of VIAM], 2023, vol. 123, no. 5, pp. 134-144. doi: 10.18577/2307-6046-2023-0-5-134-144 (In Russian)
Alekseev A.V., Yakimovich P.V. [Analysis of high purity nickel by high resolution glow discharge mass spectrometry]. Trudy VIAM [Proceedings of VIAM], 2023, vol. 127, no. 9, pp. 122-131. doi: 10.18577/2307-6046-2023-0-9-122-131 (In Russian)
Gubal A., Chuchina V., Trefilov I., Glumov O., Yakobson V., Titov A., Solovyev N., Ganeev A. Application of Glow Discharge Mass Spectrometry for the Monitoring of Dopant Distribution in Optical Crystals Grown by TSSG Method. Crystals, 2020, vol. 10, article 458. doi:10.3390/cryst10060458
Ganeev A.A., Gubal A.R., Solovyova N.D., Chuchina V.A., Ivanenko N.B., Kononov A.S., Titov A.D., Gorbunov I.S. [Hollow cathode and new methods of analysis based on it]. Zh. analit. khimii [J. Analyt. Chem.], 2019, vol. 74, no. 10, pp. 752-760. doi: 10.1134/S0044450219100049 (In Russian)
Victoria Chuchina, Anna Gubal, Yegor Lyalkin, Oleg Glumov, Ivan Trefilov, Angelina Sorokina, Sergey Savinov, Nikolay Solovyev, Alexander Ganeev. A study of matrix and admixture elements in fluorine-rich ionic conductors by pulsed glow discharge mass spectrometry. Rapid Com. Mass Spectrom., 2020, vol. 34, article e8786. doi: 10.1002/rcm.8786
Gubal A., Chuchina V., Sorokina A., Solovyev N., Ganeev A. Mass spectrometry-based techniques for high ionization energy elements in solid materials – challenges and perspectives. Mass Spectrom. Reviews., 2020, vol. 00, pp. 1–22. doi: 10.1002/mas.21643
Zhang J., Li X., Zhou T., Zhou Y., Jiao H.; Song D.; Han L. Measurement of key elements in rare earth alloy by pulsed glow discharge mass spectrometry. Chin. J. Analyt. Chem., 2018, no. 12, pp. 757-764.
Khvostikov V.A., Karandashev V.K., Burmiy Zh.P., Buzanov O.A. [Monitoring the composition of lanthanum gallium silicate using LA-ICP-MS]. Zh. analit. khimii [J. Analyt. Chem.], 2014, vol. 69, no. 5, pp. 544-550. doi: 10.7868/S0044450214030086 (In Russian)
Miha´ly O´va´ri, Gergely Tarsoly, Zolta´n Ne´meth, Victor G. Mihucz, Gyula Z´aray. Investigation of lanthanum-strontium-cobalt ferrites using laser ablation inductively coupled plasma-mass spectrometry. Spectrochim. Acta Part B, 2017, vol. 127, pp. 42-47. doi: 10.1016/j.sab.2016.11.010
Cui W., Cai Z., Li Q., Qu H., Zheng J., Yu D., Chen J., Wang Z. In situ quantitative yttrium and trace elements imaging analysis of Y-doped BaF2 crystals by LA-ICP-MS. Talanta, 2023, vol. 255, article 124248. doi: 10.1016/j.talanta.2022.124248
Elizarova I.R., Masloboeva S.M. Using laser ablation to study the microhomogeneity and composition of rare-earth doped Ta2O5 Precursors and a LiTaO3 charge. Rus. J. Physical Chemistry A, 2015, vol. 89, pp. 1655-1661. doi: 10.1134/S0036024415090113
Zhang Y., Sun Y., Zhou J., Yang J., Deng J., Shao J., Zheng T., Ke Y., Long T. Preparation of REE-doped NaY(WO4)2 single crystals for quantitative determination of rare earth elements in REE: NaY(WO4)2 laser crystals by LA-ICP-MS. Analyt. Methods, 2022, vol. 14, no. 41, pp. 4085-4094. doi: 10.1039/d2ay01247b
Shaheen M.E., Gagnon J.E., Fryer B.J. Femtosecond (fs) lasers coupled with modern ICP-MS instruments provide new and improved potential for in situ elemental and isotopic analyses in the geosciences. Chem. Geology, 2012, vol. 330-331, pp. 260–273.
Glavin G.G., Ovchinnikov S.V., Vybyvanets V.I., Cherenkov A.V., Shilkin G.S., Kosukhin A.V. [Study of the isotopic and total impurity composition of tungsten using spark mass spectrometry and glow discharge mass spectrometry]. Perspektivnye materialy [Advanced materials], 2011, no. 10, pp. 110-115. (In Russian)
Metodika opredeleniia primesei v sverkhchistykh redkozemel'nykh metallakh metodom iskrovoi mass-spektrometrii [Methodology for determining impurities in ultra-pure rare earth metals using spark mass spectrometry]. Moscow, JSC «Giredmet», 2013. 25 p. (In Russian)
Metodika iskrovogo mass-spektral'nogo analiza nanosloev na poverkhnosti RZM [Methodology for spark mass spectral analysis of nanolayers on the surface of rare-earth metals]. Moscow, JSC «Giredmet», 2013. 83 p. (In Russian)
Saha A., Deb S.B., Nagar B.K., Saxena M.K. Determination of trace rare earth elements in gadolinium aluminate by inductively coupled plasma time of flight mass spectrometry. Spectrochim. Acta Part B, 2014, vol. 94-95, pp. 14-21. doi: 10.1016/j.sab.2014.03.002
Marlei Veiga, Patricia Mattiazzi, Jefferson S. de Gois, Paulo C. Nascimentod, Daniel L.G. Borgese, Denise Bohrer. Presence of other rare earth metals in gadolinium-based contrast agents. Talanta, 2020, vol. 216, article 120940. doi: 10.1016/j.talanta.2020.120940
Korotkova N.A., Petrova K.V., Baranovskaya V.B. [Analysis of cerium oxide by mass spectrometry and optical emission spectrometry with inductively coupled plasma]. Zh. analit. khimii [J. Analyt. Chem.], 2021, vol. 76, nо. 12, pp. 1384-1394. doi: 10.1134/S1061934821120066
Salem D.B., Barrat J.A. Determination of rare earth elements in gadolinium-based contrast agents by ICP-MS. Talanta, 2021, vol. 221, article 121589. doi: 10.1016/j.talanta.2020.121589
Xu Y., Li M., Wang C., Li S., Chen W., Hu L., Boulon G. Impurities in large scale produced Nd-doped phosphate laser glasses. I. Cu ions. Optic. Mater. X, 2019, vol. 4, pp. 1-7. doi: 10.1016/j.omx.2019.100033
Lorenz T., Bertau M. Recycling of rare earth elements from FeNdB-Magnets via solid-state chlorination. J. Clean. Production. 2019, vol. 215, pp. 131-143. doi: 10.1016/j.jclepro.2019.01.051
Korotkova N.A., Baranovskaya V.B. and Petrova K.V. Microwave Digestion and ICP-MS Determination of Major and Trace Elements in Waste Sm-Co Magnets. Metals, 2022, vol. 12, article 1308. doi: 10.3390/met12081308
Lackey H., Bottenus D., Liezers M., Shen S., Branch Sh., Katalenich J., Lines A. A versatile and low-cost chip-to-world interface: Enabling ICP-MS characterization of isotachophoretically separated lanthanides on a microfluidic device. Anal. Chim. Acta. 2020, vol. 1137, pp. 11-18. doi: 10.1016/j.aca.2020.08.049
Alekseev A.V., Yakimovich P.V. [Analysis of praseodymium by ICP-MS]. Trudy VIAM [Proceedings of VIAM], 2022, vol. 113, no. 7, pp. 10. doi: 10.18577/2307-6046-2022-0-7-116-124 (In Russian)
Leikin A.Yu., Karandashev V.K., Lisovsky S.V., Volkov I.A. The use of a reaction-collision cell for the determination of impurity elements in rare earth metals using the ICP-MS method. Zavodskaia laboratoriia. Diagnostika materialov [Industrial laboratory. Diagnostics Materials], 2014, vol. 80, no. 5, pp. 6-9.
Zhang Y., Pan Z., Jiao P., Ju J., He T., Duan T., Cai H. Solvent extraction ICP-MS/MS method for the determination of REE impurities in ultra-high purity Ce chelates. Atom. Spectroscopy, 2019, vol. 40, pp. 167-172. doi: 10.46770/AS.2019.05.003
Nagar B.K., Kumari K., Deb S.B., Saxena M.K., Tomar B.S. Microwave-assisted dissolution of highly refractory dysprosium-titanate (Dy2TiO5) followed by chemical characterization for major and trace elements using ICP-MS, UV-visible spectroscopy and conventional methods. Radiochim. Acta, 2018, vol. 106, no. 11, pp. 917-926. doi: 10.1515/ract-2018-2934
Nagar B.K., Saxena M.K., Tomar B.S. Development of an analytical method for quantification of trace metallic impurities in U-Mo alloy employing time of flight based ICP-MS. Atom. Spectroscopy, 2017, vol. 38, no. 5, pp. 117-123. doi: 10.46770/AS.2017.05.001
Wei-Ming W., He-Lian L., Teng-Fei Z. Direct Determination of 14 Trace Rare Earth Elements in High Purity Nd2O3 by Triple Quadrupole Inductively Coupled-Plasma Mass Spectrometry. Chin. J. Analyt. Chem., 2015, vol. 43, no. 5, pp. 697-702.
Karandashev V.K., Leikin A.Yu., Zhernokleeva K.V. [Reducing matrix effect in ICP-MS by optimizing ion optics]. Zh. analit. khimii [J. Analyt. Chem.], 2014, vol. 69, no. 1, pp. 26-34. (In Russian)
Petrova K.V., Es'kina V.V., Baranovskaya V.B., Doronina M.S., Korotkova N.A., Arkhipenko A.A. [Separation and Preconcentration of Impurities in Rare-Earth-Based Materials for Spectrometric Methods]. Izv. vuzov. Tsvet. Metallurgiia [Rus. J. Non-ferr. Met.], 2022, vol. 63, no. 5, pp. 510-525. doi: 10.3103/S106782122205008X
Yan P., He M., Chen B., Hu B. Fast preconcentration of trace rare earth elements from environmental samples by di(2-ethylhexyl)phosphoric acid grafted magnetic nanoparticles followed by inductively coupled plasma mass spectrometry detection. Spectrochim. Acta Part B, 2017, vol. 136, pp. 73–80. doi: 10.1016/j.sab.2017.08.011
Cardoso C.E.D., Almeida J.C., Lopes C.B., Trindade T., Vale C., Pereira E. Recovery of Rare Earth Elements by Carbon-Based Nanomaterials – A Review. Nanomater., 2019, vol. 9, article 814. doi: 10.3390/nano9060814
Chen B., He M., Zhang H., Jiang Z., Hu B. Chromatographic techniques for rare earth elements analysis. Phys. Scien. Reviews, 2017, vol. 2, no. 4, article 20160057. doi: 10.1515/psr-2016-0057
Xia L., Li G. Recent progress of microfluidic sample preparation techniques. J. Separat. Science, 2023, vol. 46, no. 15, article 2300327. doi: 10.1002/jssc.202300327
Elovskiy E.V. Mathematical Elimination of Spectral Interferences in the Direct Determination of Rare Earth Elements in Natural Waters by Inductively Coupled Plasma Quadrupole Mass Spectrometry. J. Analyt. Chem., 2015, vol. 70, no. 14, pp. 1654-1663. doi: 10.1134/S1061934815140063
Penanes P.A., Gal´an A.R., Gonzalo H.S., Rodr´ıguez-Castrill´on J.A., Moldovan M., Alonso J.I.G. Isotopic measurements using ICP-MS: a tutorial review. J. Analyt. Atom. Spectrometry, 2022, vol. 37, pp. 701-726. doi: 10.1039/d2ja00018k
Lin R., Lin J., Zong K., Yang A., Chen K., Liu Y., Hu Z. Determination of the Isotopic Composition of Ytterbium by MC-ICP-MS Using an Optimized Regression Model. Analyt. Chem., 2022, vol. 94, no. 20, pp. 7200-7209. doi: 10.1021/acs.analchem.1c05609
Lee S.G., Tsuyoshi T. Determination of Eu isotopic ratio by multi-collector inductively coupled plasma mass spectrometry using a Sm internal standard. Spectrochim. Acta Part B, 2019, vol. 156, pp. 42-50. doi: 10.1016/j.sab.2019.04.011
Shen S., Krogstad E., Conte E., Brown C. Rapid unseparated rare earth element analyses by isotope dilution multicollector inductively coupled plasma mass spectrometry (ID-MCICP-MS). Internat. J. Mass Spectrom., 2022, vol. 471, article. 116726. doi: 10.1016/j.ijms.2021.116726
DOI: https://doi.org/10.15826/analitika.2024.28.3.001
Ссылки
- На текущий момент ссылки отсутствуют.