РАЗРАБОТКА МЕТОДИКИ ИСП-АЭС ОПРЕДЕЛЕНИЯ ВОЛЬФРАМА В ФЕРРОВОЛЬФРАМЕ С ИСПОЛЬЗОВАНИЕМ ТЕРМОДИНАМИЧЕСКОГО МОДЕЛИРОВАНИЯ

А. V. Маyorova, N. V. Pechishcheva, K. Yu. Shunyaev, А. V. Bunakov

Аннотация


Термодинамическое моделирование впервые было применено для разработки методики анализа ферровольфрама методом ИСП-АЭС. С помощью моделирования были рассмотрены три способа подготовки проб ферровольфрама к анализу (растворение с использованием смеси кислот и два варианта сплавления), изучено влияние щелочных элементов на эмиссию вольфрама, показана эффективность использования внутренней стандартизации для снижения погрешностей от случайного колебания операционных параметров прибора. Выбрана оптимальная спектральная линия для определения вольфрама, внутренний стандарт и его спектральная линия. Недостающие для моделирования термохимические свойства некоторых вольфрамсодержащих комплексов в кристаллическом состоянии и в растворе рассчитаны с помощью метода групповых составляющих.

Разработана теоретически обоснованная схема экспрессной методики ИСП-АЭС определения вольфрама в ферровольфраме. Ее экспериментальная апробация на стандартных образцах показала существенное уменьшение погрешности результатов анализа при использовании Sc II 424.683 нм в качестве внутреннего стандарта. Предложенная методика обеспечивает требования к точности результатов, аналогичные методикам гравиметрического анализа.

Ключевые слова: термодинамическое моделирование, определение вольфрама в ферровольфраме, атомно-эмиссионная спектрометрия с индуктивно связанной плазмой (ИСП-АЭС).

DOI: http://dx.doi.org/10.15826/analitika.2014.18.2.002

 


Полный текст:

PDF (Russian)

Литература


Arzamasov B.N., Brostrem V.A., Bouche N.A. Spravochnik po konstruktsionnym materialam [Handbook of structural materials]. Moscow, 2005. 640 p. (in Russian).

GOST 17293. Ferrovolfram. Technicheskie trebovaniia i uslovia postavki [State standard 17293. Ferrotungsten. Specification and conditions of delivery]. Moscow, Standartinform Publ., 1995. 9 p. (in Russian).

GOST 14638.1-81. Ferrovolfram. Metody khimicheskogo i fiziko-khimicheskogo analizov [State standard 17293. Ferrotungsten. Methods of chemical and physico-chemical analyzes.]. Moscow, Standartinform Publ., 1981. 40 p. (in Russian).

Li J. Improving Analytical Precision by Utilizing Intrinsic Internal Standards for Determining Minor Constituents by Inductively Coupled Plasma Atomic Emission Spectrometry, J. Anal. At. Spectrom, 1996, vol. 11, no. 9, pp. 683-687.

Mayorova A.V., Pechischeva N.V., Vorontsova K.A., Shchepetkin A.A. [Evaluating the effectiveness of internal standardization in the analysis of iron ore and slag by atomic emission spectroscopy with inductively coupled plasma] Butlerovskie soobshchenia [Butlerov Communications], 2013, vol. 35, no. 9, pp. 47-54 (in Russian).

Pupyshev A.A., Danilova D.A. [Using atomic emission spectroscopy with inductively coupled plasma analysis of materials and products of ferrous metallurgy]. Analitika i kontrol [Analysis and control], 2007, vol. 11, no. 2-3, pp. 131-181 (in Russian).

HSC Chemistry 6.1. Chemical reaction and equilibrium software with extensive thermochemical database and flowsheet simulation. Outokumpu research oy information center, Finland. 2006.

Trusov B.G. [TERRA software package for calculating the plasma-chemical processes]. Proceedings of the III Intern. Symposium on Theoretical and Applied Plasma Chemistry [Ples], 2002, pp. 217-218 (in Russian).

Otmakhov V.I., Petrova E.V, Varlamov N.V, Anoshkina Iu.V. [Optimization of conditions for atomic emission analysis of zirconia and alumina nanoceramics modeling of physical and chemical processes in the excitation spectra of the sources]. Zhurnal analiticheskoi khimii [Journal of Analytical Chemistry], 2011, vol. 66, no. 9, pp. 589-593 (in Russian).

Mayorova A.V., Vorontsova K.A., Ivleva A.S., Pechischeva N.V., Pupyshev A.A., Shunyaev K.Y. [Development of methods for determining silica in the ore raw materials by atomic emission spectroscopy with inductively coupled plasma]. Zavodskaia laboratoria. Diagnostika materialov [Industrial Laboratory. Diagnostics of materials], 2013, vol. 79, no. 12, pp. 9-15 (in Russian).

Evdokimova O.V. Optimizatsiia opredelenia renia v mednom i molibdenovom syrie metodom atomno-emissionnoi spektroskopii s induktivno sviazannoi plazmoi. Diss. kand. khim. nauk [Optimization of the determination of rhenium in copper and molybdenum ore raw materials by atomic emission spectrometry with inductively coupled plasma. Сandidate chemistry sci. diss.]. Yekaterinburg, 2013. 105 p. (in Russian).

Romanova N.B., Pechischeva N.V., Shunyaev K.Y, Titov V.I., Gundobin N.V., Poleva T.G., Simonova N.I., Vlasova O.J., Borzenko A.G. [Determination of tungsten, titanium, molybdenum, niobium, vanadium in steels and nickel-based alloys by atomic emission spectrometry with inductively coupled plasma]. Zavodskaia laboratoria. Diagnostika materialov [Industrial laboratory. Diagnostics of materials], 2013, vol. 79, no. 3, pp. 3-7 (in Russian).

Gervasio A.P.G., Luca G.C., Menegário A.A., Reis B.F., Filho H.B. On-line electrolytic dissolution of alloys in flow injection analysis. Determination of Iron, tungsten, molybdenum, vanadium and chromium in tool steels by inductively coupled plasma atomic emission spectrometry. Anal. Chim. Acta, 2000, vol. 405, pp. 213-219.

Ung B.Z., Lee S.H., Lee S.H. Line selection tungsten alloy and interference correction for the analysis of by inductively coupled plasma atomic emission spectrometry // Talanta, 1997, vol. 44, no. 1, pp. 47-51.

Brenner I.B., Erlich S. The Spectrochemical (ICP-AES) Determination of Tungsten in Tungsten Ores, Concentrates, and Alloys: An Evaluation as an Alternative to the Classical Gravimetric Procedure // Applied Spectroscopy., 1984, vol 38, no. 6, pp. 887-890. doi: 10.1366/0003702844554594.

Coedo A.G., Lopez M.T.D., Maeso A.V. Inductively coupled plasma atomic emission spectroscopic determination of major elements in ferroalloys // Spectrochimica Acta Part B: Atomic Spectroscopy, 1986, vol. 41, no. 1-2, pp. 193-196.

Vatolin N.A., Moiseev G.K., Trusov B.G. Termodinamicheskoe modelirovanie v vysokotemperaturnykh neorganicheskikh sistemakh [Thermodynamic modeling in high-temperature inorganic systems]. Moscow, Metallurgy, 1994. 353 p. (in Russian).

Karpov Y.A., Savostin A.P. Metody probootbora i probopodgotovki [Methods of sampling and sample preparation]. Moscow, Bean. 2003. 243 p. (in Russian).

Korostelyov P.P. Fotometricheskii i kompleksometricheskii analiz v metallurgii [Complexometric and photometric analysis in metallurgy]. Handbook. Moscow, Metallurgy, 1984. 272 p. (in Russian).

Busev A.I., Ivanov V.M., Sokolova T.A. Analiticheskaia khimia vol`frama [Analytical chemistry of tungsten]. Moscow, Nauka, 1976. 240 p. (in Russian).

Karpov I.K., Shepotko M.L., Cherniak A.S. [Thermodynamic analysis of complex chemical equilibria in heterogeneous multisystems as a method for studying of processes of dissolution and leaching]. Zhurnal fizicheskoi khimii [Journal of Physical Chemistry], 1979, vol. 53, no. 10, pp. 2476-2480 (in Russian).

Oleinik O. Iu., Chernenko I.M., Makarov V.O., Plahtii E.G. [Computer thermodynamic simulation of the formation of tungsten oxide (VI) in aqueous solutions] Trudy [UkrNDIVognetriviv name A.S. Bregnego. Dnepropetrovsk], 2010, no. 110, pp. 299-305 (in Ukrainian).

Domalski E.S., Hearing E.D. Estimation of the thermodynamic properties of C-H-N-O-S-Halogen compounds at 298.15 К. J. of Phys. and Chem. Ref. Data, 1993, vol. 22, pp. 805-1159.

Mostafa A.T.M.G., Eakman J.M., Montoya M.M. Prediction of Heat Capacities of Solid Inorganic Salts from Group Contributions. Ind. Eng. Chem. Res, 1996, vol. 35, pp. 343-348.

Mostafa A.T.M.G., Eakman J.M. Prediction of Standard Heats and Gibbs Free Energies of Formation of Solid Inorganic Salts from Group Contributions. Ind. Eng. Chem. Res., 1995, vol. 34, pp. 4577-4582.

Kireev V.A. Metody practicheskich raschetov v termodinamike khimicheskikh reaktsii [Methods of practical calculations in thermodynamics of chemical reactions]. Moscow, Chemistry, 1975. 536 p. (in Russian).

Kulikova T.V., Mayorova A.V., Bykov V.A., Il’inykh N.I., Shunyaev K.Yu. Thermochemical properties of gaseous and liquid polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, and dibenzofurans. Struct Chem. 2013, vol. 24, pp. 285-293. doi: 10.1007/s11224-012-0076-1.

Kulikova T.V., Maiorova A.V., Shunyaev K.Yu., Gorbunova T.I., Saloutin V.I, Chupakhin O.N. Thermodynamic Modeling of the Reaction of Polychlorinated Biphenyls with Sodium Methoxide. Russian Journal of General Chemistry. 2013, vol. 83, no. 5, pp. 893-900. doi: 10.1134/S1070363213050034.

Kulikova T.V., Mayorova A.V., Bykov V.A., Il’inykh N.I., Shunyaev K.Yu. [Thermochemical properties of liquid PCBs]. Doklady akademii nauk [Academy of Sciences reports], 2009, vol. 426, no. 1, pp. 59-62 (in Russian).

Dean J.A. Lange's Handbook of Chemistry. 15th ed. [Lange's Handbook of Chemistry]. New. York, McGraw-Hill, 1999. 1424 p.

Mermet J.M. Use of magnesium as a test element for inductively coupled plasma atomic emission spectrometry diagnostics. Anal. Chim. Acta, 1991, vol. 250, pp. 85-94.

Zaidel’ A.N., Prokof’ev V.K., Raiskii S.M., eds. Tablitsi spectralnyh linii [Tables of the spectral lines]. Moskow. Nauka, 1977. 800 p. (in Russian).

Pupyshev A.A., Danilova D.A. Termodinamicheskoe modelirovanie dlia atomno- emmisionnoi spectroskopii s induktivno sviazannoi plazmoi. Uchebnoe posobie [Thermodynamic modeling for inductively coupled plasma atomic emission spectroscopy.Textbook.]. Yekaterinburg, USTU, 2005. 75 p. (in Russian).

Huang M., Lehn S.A., Andrews E.J., Hieftje G.M. Comparison of electron concentrations, electron temperatures, gas kinetic temperatures, and excitation temperatures in argon ICPs operated at 27 and 40 MHz. Spectrochimica acta. Part B, 1997, vol. 52, pp. 1173-1193.


Ссылки

  • На текущий момент ссылки отсутствуют.