Cover Image

Synthesis and electrical properties of doped layered perovskites based on BaMInO4 (M = Y, Gd)

Nataliia Tarasova, Maxim Mashkovtsev, Maxim Domashenkov, Denis Khionin, Roman Bastrikov, Anzhelika Bedarkova


Perovskite or perovskite-related structural materials are widely studied for their many functional properties. They can be used as components of electrochemical devices such as solid oxide fuel cells and electrolyzers. Layered perovskites can also be considered as promising materials for use in these devices. In this paper, the possibility of heterovalent (acceptor and donor) and isovalent doping of La and In sublattices of layered perovskites BaYLaInO4 and BaGdLaInO4 was made for the first time. The structure and electrical properties of these oxides were studied. Electrical conductivity values increase in the series BaYInO4–BaLaInO4–BaGdInO4. However, the doping is an unsuitable strategy for improving the electrical properties of BaYInO4 and BaGdInO4 oxides. Further search for highly conductive materials with the layered perovskite structure can be aimed at materials with a different composition of the cation sublattice.


layered perovskite; oxygen-ion conductivity; Ruddlesden-Popper; structure

Full Text:



Zhang W, Hu YH. Progress in proton-conducting oxides as electrolytes for low-temperature solid oxide fuel cells: From materials to devices. Energy Sci Eng. 2021;9:984–1011. doi:10.1002/ese3.886

Nayak AP, Sasmal A. Recent advance on fundamental prop-erties and synthesis of barium zirconate for proton con-ducting ceramic fuel cell. J Cleaner Prod. 2023;386:135827. doi:10.1016/j.jclepro.2022.135827

Guo R, He T. High-entropy perovskite electrolyte for pro-tonic ceramic fuel cells operating below 600 °C. ACS Mater Lett. 2022;4:1646–1652. doi:10.1021/acsmaterialslett.2c00542

Wang C, Li Z, Zhao S, Xia L, Zhu M, Han M, Ni M. Modelling of an integrated protonic ceramic electrolyzer cell (PCEC) for methanol synthesis. J Power Sources. 2023;559:232667. doi:10.1016/j.jpowsour.2023.232667

Liu F, Ding D, Duan C. Protonic ceramic electrochemical cells for synthesizing sustainable chemicals and fuels. Adv Sci. 2023;10:2206478. doi:10.1002/advs.202206478

Kim D, Bae KT, Kim KJ, Im H-N, Jang S, Oh S, Lee SW, Shin TH, Lee KT. High-performance protonic ceramic electro-chemical cells. ACS Energy Lett. 2022;7:2393–2400. doi:10.1021/acsenergylett.2c01370

Tian H, Luo Z, Song Y, Zhou Y, Gong M, Li W, Shao Z, Liu M, Liu X. Protonic ceramic materials for clean and sustainable energy: Advantages and challenges. Int Mater Rev. 2022;0:1–29. doi:10.1080/09506608.2022.2068399

Ji HI, Lee JH, Son JW, Yoon KJ, Yang S, Kim BK. Protonic ceramic electrolysis cells for fuel production: A brief re-view. J Korean Ceram Soc. 2020;57:480–494. doi:10.1007/s43207-020-00059-4

Corigliano O, Pagnotta L, Fragiacomo P. On the technology of solid oxide fuel cell (SOFC) energy systems for station-ary power generation: A review. Sustainability. 2022;14:15276. doi:10.3390/su142215276

Kumar SS, Lim H. An overview of water electrolysis tech-nologies for green hydrogen production. Energy Rep. 2022;8:13793–13813. doi:10.1016/j.egyr.2022.10.127

Huang L, Huang X, Yan J, Liu Y, Jiang H, Zhang H, Tang J, Liu Q. Research progresses on the application of perovskite in adsorption and photocatalytic removal of water pollu-tants. J Hazard Mater. 2023;442:130024. doi:10.1016/j.jhazmat.2022.130024

Tarasova N. Layered perovskites BaLnnInnO3n+1 (n = 1, 2) for electrochemical applications: A mini review. Membranes. 2023;13:34. doi:10.3390/membranes13010034

Zvonareva IA, Medvedev DA. Proton-conducting barium stannate for high-temperature purposes: A brief review. J Eur Ceram Soc. 2023;43:198–207. doi:10.1016/j.jeurceramsoc.2022.10.049

Aminudin MA, Kamarudin SK, Lim BH, Majilan EH, Masdar MS, Shaari N. An overview: Current progress on hydrogen fuel cell vehicles. Int J Hydrogen Energy. 2023;48:4371–4388. doi:10.1016/j.ijhydene.2022.10.156

Liu F, Fang L, Diercks D, Kazempoor P, Duan C. Rationally designed negative electrode for selective CO2-to-CO conver-sion in protonic ceramic electrochemical cells. Nano Ener-gy 2022;102:107722. doi:10.1016/j.nanoen.2022.107722

Liu F, Duan C. Direct-hydrocarbon proton-conducting solid oxide fuel cells. Sustainability. 2021;13:4736. doi:10.3390/su13094736

Nayak AK, Sasmal A. Recent advance on fundamental prop-erties and synthesis of barium zirconate for proton con-ducting ceramic fuel cell. J Clean Prod. 2023;386:135827. doi:10.1016/j.jclepro.2022.135827

Qiao Z, Li S, Li Y, Xu N, Xiang K. Structure, mechanical properties, and thermal conductivity of BaZrO3 doped at the A-B site. Ceram Int. 2022;48;12529–12536. doi:10.1016/j.ceramint.2022.01.120

Guo R, Li D, Guan R, Kong D, Cui Z, Zhou Z, He T. Sn–Dy–Cu triply doped BaZr0.1Ce0.7Y0.2O3−δ: A chemically stable and highly proton-conductive electrolyte for low-temperature solid oxide fuel cells. ACS Sustain Chem Eng. 2022;10:5352–5362. doi:10.1021/acssuschemeng.2c00807

Gu Y, Luo G, Chen Z, Huo Y, Wu F. Enhanced chemical sta-bility and electrochemical performance of BaCe0.8Y0.1Ni0.04Sm0.06O3-δ perovskite electrolytes as proton conductors. Ceram Int. 2022;48:10650–10658. doi:10.1016/j.ceramint.2021.12.279

Medvedev DA. Current drawbacks of proton-conducting ceramic materials: How to overcome them for real electro-chemical purposes. Curr Opin Green Sustain Chem. 2021;32:100549. doi:10.1016/j.cogsc.2021.100549

Kasyanova AV, Zvonareva IA, Tarasova NA, Bi L, Medvedev DA, Shao Z. Electrolyte materials for protonic ceramic elec-trochemical cells: Main limitations and potential solutions. Mater Rep Energy. 2022;2:100158. doi:10.1016/j.matre.2022.100158

Tarutina L, Starostina I, Vdovin G., Pershina S, Vovkotrub A, Murashkina A. Chemical stability aspects of BaCe0.7–xFexZr0.2Y0.1O3–δ mixed ionic-electronic conductors as prom-ising electrodes for protonic ceramic fuel cells. Chim Tehno Acta. 2023;10(4):202310414. doi:10.15826/chimtech.2023.10.4.14

Danilov NA, Starostina IA, Starostin GN, Kasyanova AV, Medvedev DA. Fundamental Understanding and Applica-tions of Protonic Y-and Yb-Coped Ba(Ce,Zr)O3 perovskites: state-of-the-art and perspectives. Adv Energy Mater. 2023;13(47):2302175. doi:10.1002/aenm.202302175

Tarasova N, Animitsa I. Materials AIILnInO4 with Ruddles-den-Popper structure for electrochemical applications: Re-lationship between ion (oxygen-ion, proton) conductivity, water uptake and structural changes. Mater. 2022;15:114. doi:10.3390/ma15010114

Tarasova N. Layered perovskites BaLnnInnO3n+1 (n = 1, 2) for electrochemical applications: a mini review. Membranes. 2023;13:34. doi:10.3390/membranes13010034

Andreev RD, Korona DV, Anokhina IA, Animitsa IE. Novel Nb5+-doped hexagonal perovskite Ba5In2Al2ZrO13 (structure, hydration, electrical conductivity). Chimica Tehno Acta. 2022;9(4):20229414. doi:10.15826/chimtech.2022.9.4.14

Andreev RD, Anokhina IA, Korona DV, Gilev AR, Animitsa IE. Transport properties of In3+- and Y3+-doped hexagonal perovskite Ba5In2Al2ZrO13. Russ J Electrochem. 2023;59(3):190–203. doi:10.1134/S1023193523030035

Andreev RD, Animitsa IE. Protonic transport in the novel complex oxide Ba5Y0.5In1.5Al2ZrO13 with intergrowth struc-ture. Ionics. 2023;29(11):4647–4658. doi:10.1007/s11581-023-05187-5

Tarutin A, Lyagaeva J, Medvedev D, Bi L, Yaremchenko A. Recent advances in layered Ln2NiO4+δ nickelates: funda-mentals and prospects of their applications in protonic ce-ramic fuel and electrolysis cells. J Mater Chem A. 2021;9(1):154–195. doi:10.1039/D0TA08132A

Tarutin A, Gorshkov Yu, Bainov A, Vdovin G, Vylkov A, Lya-gaeva J, Medvedev D. Barium-doped nickelates Nd2–xBaxNiO4+δ as promising electrode materials for protonic ceramic electrochemical cells. Ceram Int. 2020;46(15):24355–24364. doi:10.1016/j.ceramint.2020.06.217

Tarutin A, Lyagaeva J, Farlenkov A, Plaksin S, Vdovin G, Demin A, Medvedev D. A reversible protonic ceramic cell with symmetrically designed Pr2NiO4+δ-based electrodes: fabrication and electrochemical features. Mater. 2019;12(1):118. doi:10.3390/ma12010118

Tarutin AP, Lyagaeva JG, Farlenkov AS, Vylkov AI, Medvedev DA. Cu-substituted La2NiO4+δ as oxygen elec-trodes for protonic ceramic electrochemical cells. Ceram Int. 2019;45(13):16105–16112. doi:10.1016/j.ceramint.2019.05.127

Fujii K, Esaki Y, Omoto K, Yashima M, Hoshikawa A, Ishi-gaki T, Hester JR. New perovskite-related structure family of oxide-ion conducting materials NdBaInO4. Chem Mater. 2014;26:2488−2491. doi:10.1021/cm500776x

Fujii, K, Shiraiwa, M, Esaki, Y, Yashima, M, Kim, S.J, Lee. S. Improved oxide-ion conductivity of NdBaInO4 by Sr doping. J Mater Chem A 2015;3:11985. doi:10.1039/c5ta01336d

Ishihara T, Yan Yu, Sakai T, Ida S. Oxide ion conductivity in doped NdBaInO4. Solid State Ion. 2016;288:262. doi:10.1016/j.ssi.2016.01.011

Yang X, Liu S, Lu F, Xu J, Kuan, X. Acceptor doping and oxy-gen vacancy migration in layered perovskite NdBaInO4-based mixed conductors. J Phys Chem C. 2016;120:6416–6426. doi:10.1021/acs.jpcc.6b00700

Fijii K, Yashima M. Discovery and development of BaNdI-nO4 – A brief review. J Ceram Soc Jpn. 2018;126:852–859. doi:10.2109/jcersj2.18110

Zhou Y, Shiraiwa M, Nagao M, Fujii K, Tanaka I, Yashima M, Baque L, Basbus JF, Mogni LV, Skinner SJ. Protonic con-duction in the BaNdInO4 structure achieved by acceptor doping. Chem Mater. 2021;33:2139–2146. doi:10.1021/acs.chemmater.0c04828

Troncoso L, Alonso JA, Aguadero A. Low activation energies for interstitial oxygen conduction in the layered perov-skites La1+xSr1-xInO4+d. J Mater Chem A. 2015;3:17797–17803. doi:10.1039/c5ta03185k

Troncoso L, Alonso JA, Fernández-Díaz MT, Aguadero A. Introduction of interstitial oxygen atoms in the layered perovskite LaSrIn1-xBxO4+δ system (B=Zr, Ti). Solid State Ion. 2015;282:82–87. doi:10.1016/j.ssi.2015.09.014

Troncoso L, Mariño C, Arce MD, Alonso JA. Dual oxygen defects in layered La1.2Sr0.8–xBaxInO4+d (x = 0.2, 0.3) oxide-ion conductors: A neutron diffraction study. Mater. 2019;12:1624. doi:10.3390/ma12101624

Troncoso L, Arce MD, Fernández-Díaz MT, Mogni LV, Alonso JA. Water insertion and combined interstitial-vacancy oxy-gen conduction in the layered perovskites La1.2Sr0.8-xBaxInO4+δ. New J Chem. 2019;43:6087–6094. doi:10.1039/C8NJ05320K

Shiraiwa M, Kido T, Fujii K, Yashima M. High-temperature proton conductors based on the (110) layered perovskite BaNdScO4. J Mat Chem A. 2021;9:8607. doi:10.1039/D0TA11573H

Tarasova N, Animitsa I, Galisheva A, Korona D. Incorpora-tion and conduction of protons in Ca, Sr, Ba-doped BaLaInO4 with Ruddlesden-Popper structure. Mater. 2019;12:1668. doi:10.3390/ma12101668

Tarasova N, Galisheva A, Animitsa I. Ba2+/Ti4+- co-doped layered perovskite BаLaInO4: the structure and ionic (O2−, H+) conductivity. Int J Hydrog Energy. 2021;46(32):16868–16877. doi:10.1016/j.ijhydene.2021.02.044

Tarasova N, Galisheva A, Animitsa I, Anokhina I, Gilev A, Cheremisina P. Novel mid-temperature Y3+ → In3+ doped proton conductors based on the layered perovskite BaLaInO4. Ceram Int. 2022;48:15677–15685. doi:10.1016/j.ceramint.2022.02.102

Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogeni-des. Acta Cryst. 1976;A32:751–767. doi:10.1107/S0567739476001551


Copyright (c) 2024 Nataliia Tarasova, Maxim Mashkovtsev, Maxim Domashenkov, Denis Khionin, Roman Bastrikov, Anzhelika Bedarkova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Scopus logo WorldCat logo DOAJ logo CAS logo BASE logo eLibrary logo

Chimica Techno Acta, 2014-2024
ISSN 2411-1414 (Online)
Copyright Notice