Recent advances in electrophoretic deposition of thin-film electrolytes for intermediate-temperature solid oxide fuel cells

Elena Y. Pikalova, Elena G. Kalinina, Nadezhda S. Pikalova


Solid oxide fuel cells (SOFCs) have been attracting considerable attention as ecologically friendly and highly efficient power sources with a variety of applications. Modern directions in the SOFCs technology are related to lowering the SOFC operating temperature that require both advanced materials design and development of versatile technologies to fabricate SOFC with thin-film electrolyte membrane to decrease ohmic losses at decreased temperatures. Electrophoretic deposition (EDP) is one of the most technologically flexible and cost-effective methods for the thin film formation currently available. This review highlights challenges and approaches presented in literature to the formation dense thin films based on oxygen-conducting and proton conducting electrolytes, as well as multilayer and composite electrolyte membranes.



Solid Oxide Fuel Cell; electrophoretic deposition; thin film; solid electrolyte; bilayer membrane; composite electrolyte

Full Text:



Mendonça C, Ferreira A, Santos DMF, Towards the Commercialization of Solid Oxide Fuel Cells: Recent Advances in Materials and Integration Strategies, Fuels. 2 (2021) 393–419. https://doi.org/10.3390/fuels2040023

Fallah Vostakola M, Amini Horri B, Progress in Material Development for Low-Temperature Solid Oxide Fuel Cells: A Review, Energies. 14 (2021) 1280. https://doi.org/10.3390/en14051280

Gao Z, Mogni LV, Miller EC, Railsback JG, Barnett SA, A perspective on low-temperature solid oxide fuel cells, Energy Environ. Sci. 9 (2016) 1602–1644. https://doi.org/10.1039/C5EE03858H

da Silva FS, de Souza TM, Novel Materials for Solid Oxide Fuel Cell Technologies: A Literature Review, Int. J. Hydrog. Energy. 42 (2017) 26020–26036. https://doi.org/10.1016/j.ijhydene.2017.08.105

Corigliano O, Pagnotta L, Fragiacomo P, On the Technology of Solid Oxide Fuel Cell (SOFC) Energy Systems for Stationary Power Generation: A Review, Sustainability. 14 (2022) 15276. https://doi.org/10.3390/su142215276

Naeini M, Cotton JS, Adams TA, Economically Optimal Sizing and Operation Strategy for Solid Oxide Fuel Cells to Effectively Manage Long-Term Degradation, Ind. Eng. Chem. Res. 60 (2021) 17128–17142. https://doi.org/10.1021/acs.iecr.1c03146

Ni M, New developments and challenges of solid oxide fuel cell (SOFC)-based technologies, Int. J. Energy Res. 42 (2018) 4526–4531. https://doi.org/10.1002/er.4213

Zhigachev AO, Rodaev VV, Zhigacheva DV, Lyskov NV, Shchukina MA, Doping of scandia-stabilized zirconia electrolytes for intermediate-temperature solid oxide fuel cell: A review, Ceram. Int. 47 (2021) 32490–32504. https://doi.org/10.1016/j.ceramint.2021.08.285

Filonova E, Medvedev D, Recent Progress in the Design, Characterisation and Application of LaAlO3- and LaGaO3-Based Solid Oxide Fuel Cell Electrolytes, Nanomater. 12 (2022) 1991. https://doi.org/10.3390/nano12121991

Morales M, Roa JJ, Tartaj J, Segarra M, A review of doped lanthanum gallates as electrolytes for intermediate temperature solid oxides fuel cells: From materials processing to electrical and thermo-mechanical properties, J. Eur. Ceram. Soc. 36 (2016) 1–16. https://doi.org/10.1016/j.jeurceramsoc.2015.09.025

Pikalova EYu, Kalinina EG, Solid oxide fuel cells based on ceramic membranes with mixed conductivity: improving efficiency, Russ. Chem. Rev. 90 (2021) 703–749. https://doi.org/10.1070/RCR4966

Jaiswal N, Tanwar K, Suman R, Kumar D, Upadhyay S, Parkash O, A brief review on ceria based solid electrolytes for solid oxide fuel cells, J. Alloys Compd. 781 (2019) 984–1005. https://doi.org/10.1016/j.jallcom.2018.12.015

Pikalova EYu, Ermakova LV, Vlasov MI, Fluorine doping as a feasible method to enhancing functional properties of Се0.8Sm0.2O1.9 electrolyte, Int. J. Hydrog. Energy. (2023) In Press. https://doi.org/10.1016/j.ijhydene.2022.11.238

Tarasova NA, Animitsa IE, Galisheva AO, Medvedev DA, Layered and hexagonal perovskites as novel classes of proton-conducting solid electrolytes. A focus review, Electrochem. Mater. Technol. 1 (2022) 20221004. https://doi.org/10.15826/elmattech.2022.1.004

Medvedev DA, Lyagaeva JG, Gorbova EV, Demin AK, Tsiakaras P, Advanced materials for SOFC application: Strategies for the development of highly conductive and stable solid oxide proton electrolytes, Prog. Mater. Sci. 75 (2016) 38–79. https://doi.org/10.1016/j.pmatsci.2015.08.001

Zhang W, Hu YH, Progress in proton‐conducting oxides as electrolytes for low‐temperature solid oxide fuel cells: From materials to devices, Energy Sci. Eng. 9 (2021) 984–1011. https://doi.org/10.1002/ese3.886

Zhang J, Ricote S, Hendriksen PV, Chen Y, Advanced Materials for Thin‐Film Solid Oxide Fuel Cells: Recent Progress and Challenges in Boosting the Device Performance at Low Temperatures, Adv. Funct. Mater. 32 (2022) 2111205. https://doi.org/10.1002/adfm.202111205

Tucker MC, Progress in metal-supported solid oxide fuel cells: A review, J. Power Sources. 195 (2010) 4570–4582. https://doi.org/10.1016/j.jpowsour.2010.02.035

Agarkova EA, Burmistrov IN, Agarkov DA, Zadorozhnaya OYu, Shipilova AV, Solovyev AA, et al., Bilayered anode supports for planar solid oxide fuel cells: Fabrication and electrochemical performance, Mater. Lett. 283 (2021) 128752. https://doi.org/10.1016/j.matlet.2020.128752

Dunyushkina LA, Solid Oxide Fuel Cells with a Thin Film Electrolyte: A Review on Manufacturing Technologies and Electrochemical Characteristicses, Electrochem. Mater. Technol. 1 (2022) 20221006. https://doi.org/10.15826/elmattech.2022.1.006

Besra L, Liu M, A review on fundamentals and applications of electrophoretic deposition (EPD), Prog. Mater. Sci. 52 (2007) 1–61. https://doi.org/10.1016/j.pmatsci.2006.07.001

Corni I, Ryan MP, Boccaccini AR, Electrophoretic deposition: From traditional ceramics to nanotechnology, J. Eur. Ceram. Soc. 28 (2008) 1353–1367. https://doi.org/10.1016/j.jeurceramsoc.2007.12.011

Lee SH, Woo SP, Kakati N, Kim D-J, Yoon YS, A Comprehensive Review of Nanomaterials Developed Using Electrophoresis Process for High-Efficiency Energy Conversion and Storage Systems, Energies. 11 (2018) 3122. https://doi.org/10.3390/en11113122

Aznam I, Mah JCW, Muchtar A, Somalu MR, Ghazali MJ, A review of key parameters for effective electrophoretic deposition in the fabrication of solid oxide fuel cells, J. Zhejiang Univ.-Sci. A. 19 (2018) 811–823. https://doi.org/10.1631/jzus.A1700604

Kalinina EG, Pikalova EYu, New trends in the development of electrophoretic deposition method in the solid oxide fuel cell technology: theoretical approaches, experimental solutions and development prospects, Russ. Chem. Rev. 88 (2019) 1179–1219. https://doi.org/10.1070/RCR4889

Pikalova EYu, Kalinina EG, Electrophoretic deposition in the solid oxide fuel cell technology: Fundamentals and recent advances, Renew. Sustain. Energy Rev. 116 (2019) 109440. https://doi.org/10.1016/j.rser.2019.109440

Pikalova EYu, Kalinina EG, Place of electrophoretic deposition among thin-film methods adapted to the solid oxide fuel cell technology: A short review, Int. J. Energy Prod. Manag. 4 (2019) 1–27. https://doi.org/10.2495/EQ-V4-N1-1-27

Kalinina E, Pikalova E, Opportunities, Challenges and Prospects for Electrodeposition of Thin-Film Functional Layers in Solid Oxide Fuel Cell Technology, Materials. 14 (2021) 5584. https://doi.org/10.3390/ma14195584

Solovev AV, Starostin GN, Zvonareva IA, Tulenin SS, Markov VF, Electrophoretic deposition of YSZ layers on pyrolytic graphite and a porous anode substrate based on NiO-YSZ, Chim. Techno Acta. 9 (2022) 20229425, 6321. https://doi.org/10.15826/chimtech.2022.9.4.25

Van der Biest OO, Vandeperre LJ, Electrophoretic deposition on of materials, Annu. Rev. Mater. Sci. 29 (1999) 327–352. https://doi.org/10.1146/annurev.matsci.29.1.327

The cataphoresis of suspended particles. Part I.—The equation of cataphoresis, Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character. 133 (1931) 106–129. https://doi.org/10.1098/rspa.1931.0133

Sarkar P, Nicholson PS, Electrophoretic Deposition (EPD): Mechanisms, Kinetics, and Application to Ceramics, J. Am. Ceram. Soc. 79 (1996) 1987–2002. https://doi.org/10.1111/j.1151-2916.1996.tb08929.x

Hunter RJ Zeta Potential in Colloid Science, Elsevier, 1981: p. 386. https://doi.org/10.1016/B978-0-12-361961-7.50001-8

Serrano-Lotina A, Portela R, Baeza P, Alcolea-Rodriguez V, Villarroel M, Ávila P, Zeta potential as a tool for functional materials development, Catal. Today. (2022) In Press. https://doi.org/10.1016/j.cattod.2022.08.004

Jailani S, Franks GV, Healy TW, ζ Potential of Nanoparticle Suspensions: Effect of Electrolyte Concentration, Particle Size, and Volume Fraction, J. Am. Ceram. Soc. 91 (2008) 1141–1147. https://doi.org/10.1111/j.1551-2916.2008.02277.x

Carrique F, Arroyo FJ, Jiménez ML, Delgado ÁV, Influence of Double-Layer Overlap on the Electrophoretic Mobility and DC Conductivity of a Concentrated Suspension of Spherical Particles, J. Phys. Chem. B. 107 (2003) 3199–3206. https://doi.org/10.1021/jp027148k

Kalinina EG, Electrokinetic Properties of Nanopowder Suspensions Based on Aluminum Oxide, Obtained via the Electric Explosion of a Wire, Russ. J. Phys. Chem. A. 96 (2022) 2032–2037. https://doi.org/10.1134/S0036024422090163

Zhitomirsky I, Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects, Adv. Colloid Interface Sci. 97 (2002) 279–317. https://doi.org/10.1016/S0001-8686(01)00068-9

Bhattacharjee S, DLS and zeta potential – What they are and what they are not? J. Control. Release. 235 (2016) 337–351. https://doi.org/10.1016/j.jconrel.2016.06.017

Will J, Hruschka MKM, Gubler L, Gauckler LJ, Electrophoretic Deposition of Zirconia on Porous Anodic Substrates, J. Am. Ceram. Soc. 84 (2004) 328–32. https://doi.org/10.1111/j.1151-2916.2001.tb00658.x

Sora I, Pelosato R, Simone A, Montanaro L, Maglia F, Chiodelli G, Characterization of LSGM films obtained by electrophoretic deposition (EPD), Solid State Ion. 177 (2006) 1985–1989. https://doi.org/10.1016/j.ssi.2006.03.022

Kalinina EG, Safronov AP, Kotov YuA, Formation of thin YSZ electrolyte films by electrophoretic deposition on porous cathodes, Russ. J. Electrochem. 47 (2011) 671–675. https://doi.org/10.1134/S1023193511060036

Krkljuš I, Branković Z, Đuriš K, Vukotić V, Branković G, Bernik S, The Electrophoretic Deposition of Lanthanum Manganite Powders for a Cathode-Supported Solid Oxide Fuel Cell in Planar and Tubular Configurations, Int. J. Appl. Ceram. Technol. 5 (2008) 548–556. https://doi.org/10.1111/j.1744-7402.2008.02218.x

Kalinina EG, Efimov AA, Safronov AP, The influence of nanoparticle aggregation on formation of ZrO2 electrolyte thin films by electrophoretic deposition, Thin Solid Films. 612 (2016) 66–71. https://doi.org/10.1016/j.tsf.2016.05.039

Kalinina E, Pikalova E, Ermakova L, Bogdanovich N, Challenges of Formation of Thin-Film Solid Electrolyte Layers on Non-Conductive Substrates by Electrophoretic Deposition, Coatings. 11 (2021) 805. https://doi.org/10.3390/coatings11070805

Saji VS, Electrophoretic‐deposited Superhydrophobic Coatings, Chem. – Asian J. 16 (2021) 474–491. https://doi.org/10.1002/asia.202001425

Kalinina EG, Pikalova EYu, Menshikova AV, Nikolaenko IV, Electrophoretic deposition of a self-stabilizing suspension based on a nanosized multi-component electrolyte powder prepared by the laser evaporation method, Solid State Ion. 288 (2016) 110–114. https://doi.org/10.1016/j.ssi.2015.12.008

Metzger C, Drexel R, Meier F, Briesen H, Effect of ultrasonication on the size distribution and stability of cellulose nanocrystals in suspension: an asymmetrical flow field-flow fractionation study, Cellulose. 28 (2021) 10221–10238. https://doi.org/10.1007/s10570-021-04172-3

Negishi H, Yamaji K, Sakai N, Horita T, Yanagishita H, Yokokawa H, Electrophoretic deposition of YSZ powders for solid oxide fuel cells, J. Mater. Sci. 39 (2004) 833–838. https://doi.org/10.1023/B:JMSC.0000012911.86185.13

Panigrahi S, Bhattacharjee S, Besra L, Singh BP, Sinha SP, Electrophoretic deposition of doped ceria: Effect of solvents on deposition microstructure, J. Eur. Ceram. Soc. 30 (2010) 1097–1103. https://doi.org/10.1016/j.jeurceramsoc.2009.06.038

Chauoon S, Meepho M, Chuankrerkkul N, Chaianansutcharit S, Pornprasertsuk R, Fabrication of yttria stabilized zirconia thin films on powder-injected anode substrates by electrophoretic deposition technique for solid oxide fuel cell application, Thin Solid Films. 660 (2018) 741–748. https://doi.org/10.1016/j.tsf.2018.03.082

Oskouyi OE, Shahmiri M, Maghsoudipour A, Hasheminiasari M, Pulsed constant voltage electrophoretic deposition of YSZ electrolyte coating on conducting porous Ni–YSZ cermet for SOFCs applications, J. Alloys Compd. 785 (2019) 220–227. https://doi.org/10.1016/j.jallcom.2019.01.166

Zhitomirsky I, Petric A, Electrophoretic deposition of ceramic materials for fuel cell applications, J. Eur. Ceram. Soc. 20 (2000) 2055–2061. https://doi.org/10.1016/S0955-2219(00)00098-4

Das D, Basu RN, Organic acids as electrostatic dispersing agents to prepare high quality particulate thin film, J. Alloys Compd. 729 (2017) 71–83. https://doi.org/10.1016/j.jallcom.2017.09.097

Das D, Bagchi B, Basu RN, Nanostructured zirconia thin film fabricated by electrophoretic deposition technique, J. Alloys Compd. 693 (2017) 1220–1230. https://doi.org/10.1016/j.jallcom.2016.10.088

Xu Z, Rajaram G, Sankar J, Pai D, Electrophoretic deposition of YSZ electrolyte coatings for SOFCs, Fuel Cells Bull. 2007 (2007) 12–16. https://doi.org/10.1016/S1464-2859(07)70114-1

Pantoja-Pertegal JL, Díaz-Parralejo A, Macías-García A, Sánchez-González J, Cuerda-Correa EM, Design, preparation, and characterization of Yttria-Stabilized Zirconia (YSZ) coatings obtained by electrophoretic deposition (EPD), Ceram. Int. 47 (2021) 13312–13321. https://doi.org/10.1016/j.ceramint.2020.12.279

Kherad R, Dodangei S, Moussavi SH, Ghatee M, Characterization of anode supported micro-tubular solid oxide fuel cells prepared by successive non-aqueous electrophoretic deposition, J. Electroceram. 48 (2022) 1–7. https://doi.org/10.1007/s10832-021-00272-5

Yamaji K, Kishimoto H, Xiong Y, Horita T, Sakai N, Performance of anode-supported SOFCs fabricated with electrophoretic deposition techniques, Fuel Cells Bull. 2004 (2004) 12–15. https://doi.org/10.1016/S1464-2859(04)00445-6

Hu S, Li W, Yao M, Li T, Liu X, Electrophoretic Deposition of Gadolinium-doped Ceria as a Barrier Layer on Yttrium-stabilized Zirconia Electrolyte for olid Oxide Fuel Cells, Fuel Cells. 17 (2017) 869–874. https://doi.org/10.1002/fuce.201700122

Hu S, Li W, Li W, Zhang N, Qi H, Finklea H, Liu X, A study on the electrophoretic deposition of gadolinium doped ceria on polypyrrole coated yttrium stabilized zirconia, J. Colloid Interface Sci. 555 (2019) 115–123. https://doi.org/10.1016/j.jcis.2019.07.094

Ichiboshi H, Myoujin K, Kodera T, Ogihara T, Preparation of Ce0.8Sm0.2O1.9 Thin Films by Electrophoretic Deposition and their Fuel Cell Performance, Key Eng. Mater. 566 (2013) 137–140. https://doi.org/10.4028/www.scientific.net/KEM.566.137

Suarez G, Nguyen NTK, Rendtorff NM, Sakka Y, Uchikoshi T, Electrophoretic deposition for obtaining dense lanthanum silicate oxyapatite (LSO), Ceram. Int. 42 (2016) 19283–19288. https://doi.org/10.1016/j.ceramint.2016.09.095

Jothinathan E, Biest OV der, Vleugels J, Electrophoretic deposition of apatite type lanthanum silicates for SOFC half-cell production, Adv. Appl. Ceram. 111 (2012) 459–465. https://doi.org/10.1179/1743676112Y.0000000015

Argirusis C, Grosse-Brauckmann J, Sourkouni G, Taillades G, Roziere J, Preparation of Thin Proton Conducting Membranes by Means of EPD, Key Eng. Mater. 412 (2009) 125–130. https://doi.org/10.4028/www.scientific.net/KEM.412.125

Choudhary B, Anwar S, Besra L, Anwar S, Electrophoretic deposition studies of Ba(Zr‐Ce‐Y)O3 ceramic coating, Int. J. Appl. Ceram. Technol. 16 (2019) 1022–1031. https://doi.org/10.1111/ijac.13152

Ishihara T, Sato K, Takita Y, Electrophoretic Deposition of Y2O3-Stabilized ZrO2 Electrolyte Films in Solid Oxide Fuel Cells, J. Am. Ceram. Soc. 79 (1996) 913–919. https://doi.org/10.1111/j.1151-2916.1996.tb08525.x

Majhi SM, Behura SK, Bhattacharjee S, Singh BP, Chongdar TK, Gokhale NM, L. Besra L, Anode supported solid oxide fuel cells (SOFC) by electrophoretic deposition, Int. J. Hydrog. Energy. 36 (2011) 14930–14935. https://doi.org/10.1016/j.ijhydene.2011.02.100

Kalinina EG, Lyutyagina NA, Leiman DV, Safronov AP, Influence of the degree of deaggregation of YSZ nanopowders in suspension on the process of electrophoretic deposition, Nanotechnologies Russ. 9 (2014) 274–279. https://doi.org/10.1134/S1995078014030069

Salehzadeh D, Torabi M, Sadeghian Z, Marashi P, A multiscale-architecture solid oxide fuel cell fabricated by electrophoretic deposition technique, J. Alloys Compd. 830 (2020) 154654. https://doi.org/10.1016/j.jallcom.2020.154654

Kobayashi K, Supported Zr(Sc)O2 SOFCs for reduced temperature prepared by electrophoretic deposition, Solid State Ion. 152–153 (2002) 591–596. https://doi.org/10.1016/S0167-2738(02)00392-2

Nakayama S, Miyayama M, Fabrication and Fuel-Cell Properties of Sm-Doped CeO2 Electrolyte Film by Electrophoretic Deposition, Key Eng. Mater. 350 (2007) 175–178. https://doi.org/10.4028/www.scientific.net/KEM.350.175

Ou DR, Mori T, Ye F, Miyayama M, Nakayama S, Zou J, et al., Microstructural Characteristics of SDC Electrolyte Film Supported by Ni–SDC Cermet Anode, J. Electrochem. Soc. 156 (2009) B825. https://doi.org/10.1149/1.3129436

Di Bartolomeo E, Zunic M, Chevallier L, D’Epifanio A, Licoccia S, Traversa E, Fabrication of Proton Conducting Solid Oxide Fuel Cells by using Electrophoretic Deposition, ECS Trans. 25 (2009) 577–584. https://doi.org/10.1149/1.3205569

Itagaki Y, Yamamoto Y, Aono H, Yahiro H, Anode-supported SOFC with thin film of proton-conducting BaCe0.8Y0.2O3-δ by electrophoretic deposition, J. Ceram. Soc. Jpn. 125 (2017) 528–532. https://doi.org/10.2109/jcersj2.17048

Chen F, Liu M, Preparation of yttria-stabilized zirconia (YSZ) films on La0.85Sr0.15MnO3 (LSM) and LSM–YSZ substrates using an electrophoretic deposition (EPD) process, J. Eur. Ceram. Soc. 21 (2001) 127–134. https://doi.org/10.1016/S0955-2219(00)00195-3

Kalinina EG, Pikalova EYu, Preparation and Properties of Stable Suspensions of ZrO2–Y2O3 Powders with Different Particle Sizes for Electrophoretic Deposition, Inorg. Mater. 56 (2020) 941–948. https://doi.org/10.1134/S0020168520090095

Kalinina EG, Samatov OM, Safronov AP, Stable suspensions of doped ceria nanopowders for electrophoretic deposition of coatings for solid oxide fuel cells, Inorg. Mater. 52 (2016) 858–864. https://doi.org/10.1134/S0020168516080094

Kalinina EG, Pikalova EYu, Kolchugin AA, Pikalov SM, Kaigorodov AS, Cyclic electrophoretic deposition of electrolyte thin-films on the porous cathode substrate utilizing stable suspensions of nanopowders, Solid State Ion. 302 (2017) 126–132. https://doi.org/10.1016/j.ssi.2017.01.016

Kalinina EG, Bogdanovich NM, Bronin DI, Pikalova EYu, Pankratov AA, Formation of Thin-Film Electrolyte by Electrophoretic Deposition onto Modified Multilayer Cathode, Russ. J. Appl. Chem. 92 (2019) 191–198. https://doi.org/10.1134/S1070427219020046

Kalinina E, Pikalova E, Kolchugin A, Pikalova N, Farlenkov A, Comparative Study of Electrophoretic Deposition of Doped BaCeO3-Based Films on La2NiO4+δ and La1.7Ba0.3NiO4+δ Cathode Substrates, Materials. 12 (2019) 2545. https://doi.org/10.3390/ma12162545

Kalinina E, Kolchugin A, Shubin K, Farlenkov A, Pikalova E, Features of Electrophoretic Deposition of a Ba-Containing Thin-Film Proton-Conducting Electrolyte on a Porous Cathode Substrate, Appl. Sci. 10 (2020) 6535. https://doi.org/10.3390/app10186535

Kalinina E, Shubin K, Pikalova E, Electrophoretic Deposition and Characterization of the Doped BaCeO3 Barrier Layers on a Supporting Ce0.8Sm0.2O1.9 Solid-State Electrolyte, Membranes. 12 (2022) 308. https://doi.org/10.3390/membranes12030308

Kalinina EG, Pikalova EYu, Modifying Suspensions for the Electrophoretic Deposition of BaCe0.5Zr0.3Y0.1Yb0.1O3–δ Solid Electrolyte, Russ. J. Phys. Chem. A. 95 (2021) 1942–1947. https://doi.org/10.1134/S0036024421090077

Cherng JS, Sau JR, Chung CC, Aqueous electrophoretic deposition of YSZ electrolyte layers for solid oxide fuel cells, J. Solid State Electrochem. 12 (2008) 925–933. https://doi.org/10.1007/s10008-007-0458-2

Cherng JS, Wu CC, Chen WH, Yeh TH, Microstructure and performance of micro-tubular solid oxide fuel cells made by aqueous electrophoretic deposition, Ceram. Int. 39 (2013) S601–S604. https://doi.org/10.1016/j.ceramint.2012.10.144

Hu S, Li W, Li W, Zhang N, Qi H, Finklea H, Liu X, Aqueous electrophoretic deposition of gadolinium doped ceria, Colloids Surf. Physicochem. Eng. Asp. 579 (2019) 123717. https://doi.org/10.1016/j.colsurfa.2019.123717

Yamamoto K, Sato K, Matsuda M, Ozawa M, Ohara S, Anomalous low-temperature sintering of a solid electrolyte thin film of tailor-made nanocrystals on a porous cathode support for low-temperature solid oxide fuel cells, Ceram. Int. 47 (2021) 15939–15946. https://doi.org/10.1016/j.ceramint.2021.02.168

Oskouyi OE, Maghsoudipour A, Shahmiri M, Hasheminiasari M, Preparation of YSZ electrolyte coating on conducting porous Ni–YSZ cermet by DC and pulsed constant voltage electrophoretic deposition process for SOFCs applications, J. Alloys Compd. 795 (2019) 361–369. https://doi.org/10.1016/j.jallcom.2019.04.334

Talebi T, Raissi B, Maghsoudipour A, The role of addition of water to non-aqueous suspensions in electrophoretically deposited YSZ films for SOFCs, Int. J. Hydrog. Energy. 35 (2010) 9434–9439. https://doi.org/10.1016/j.ijhydene.2009.12.152

Das D, Basu RN, Suspension chemistry and electrophoretic deposition of zirconia electrolyte on conducting and non-conducting substrates, Mater. Res. Bull. 48 (2013) 3254–3261. https://doi.org/10.1016/j.materresbull.2013.05.034

Kalinina EG, Rusakova DS, Pikalova EYu, Peculiarities of electrophoretic deposition and morphology of deposited films in non-aqueous suspensions of Al2O3–Al nanopowder, Chim. Techno Acta. 9 (2022) 20229207, 5881. https://doi.org/10.15826/chimtech.2022.9.2.07

Guo F, Shapiro IP, Xiao P, Effect of HCl on electrophoretic deposition of yttria stabilized zirconia particles in organic solvents, J. Eur. Ceram. Soc. 31 (2011) 2505–2511. https://doi.org/10.1016/j.jeurceramsoc.2011.02.027

Xu H, Shapiro IP, Xiao P, pH Effect on Electrophoretic Deposition in Non-Aqueous Suspensions and Sintering of YSZ Coatings, Key Eng. Mater. 412 (2009) 165–170. https://doi.org/10.4028/www.scientific.net/KEM.412.165

Sarkar P, Huang X, Nicholson PS, Zirconia/Alumina Functionally Gradiented Composites by Electrophoretic Deposition Techniques, J. Am. Ceram. Soc. 76 (1993) 1055–1056. https://doi.org/10.1111/j.1151-2916.1993.tb05335.x

Hanaor D, Michelazzi M, Leonelli C, Sorrell CC, The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2, J. Eur. Ceram. Soc. 32 (2012) 235–244. https://doi.org/10.1016/j.jeurceramsoc.2011.08.015

Xu H, Shapiro IP, Xiao P, The influence of pH on particle packing in YSZ coatings electrophoretically deposited from a non-aqueous suspension, J. Eur. Ceram. Soc. 30 (2010) 1105–1114. https://doi.org/10.1016/j.jeurceramsoc.2009.07.021

Ahmadi M, Aghajani H, Suspension characterization and electrophoretic deposition of Yttria-stabilized Zirconia nanoparticles on an iron-nickel based superalloy, Ceram. Int. 43 (2017) 7321–7328. https://doi.org/10.1016/j.ceramint.2017.03.035

Olevsky EA, Wang X, Maximenko A, Meyers MA, Fabrication of Net-Shape Functionally Graded Composites by Electrophoretic Deposition and Sintering: Modeling and Experimentation, J. Am. Ceram. Soc. 90 (2007) 3047–3056. https://doi.org/10.1111/j.1551-2916.2007.01838.x

Zarbov M, Schuster I, Gal-Or L, Methodology for selection of charging agents for electrophoretic deposition of ceramic particles, J. Mater. Sci. 39 (2004) 813–817. https://doi.org/10.1023/B:JMSC.0000012908.18329.93

Kotov YuA, Electric Explosion of Wires as a Method for Preparation of Nanopowders, J. Nanoparticle Res. 5 (2003) 539–550. https://doi.org/10.1023/B:NANO.0000006069.45073.0b

Kotov YuA, The electrical explosion of wire: A method for the synthesis of weakly aggregated nanopowders, Nanotechnol. Russ. 4 (2009) 415–424. https://doi.org/10.1134/S1995078009070039

Ivanov M, Osipov V, Kotov Yu, Lisenkov V, Platonov V, Solomonov V, Laser Synthesis of Oxide Nanopowders, Adv. Sci. Technol. 45 (2006) 291–296. https://doi.org/10.4028/www.scientific.net/AST.45.291

Kalinina EG, Pikalova EYu, Safronov AP, A study of the electrophoretic deposition of thin-film coatings based on barium cerate nanopowder produced by laser evaporation, Russ. J. Appl. Chem. 90 (2017) 701–707. https://doi.org/10.1134/S1070427217050056

Safronov AP, Kalinina EG, Smirnova TA, Leiman DV, Bagazeev AV, Self-stabilization of aqueous suspensions of alumina nanoparticles obtained by electrical explosion, Russ. J. Phys. Chem. A. 84 (2010) 2122–2127. https://doi.org/10.1134/S0036024410120204

Santillán MJ, Caneiro A, Quaranta N, Boccaccini AR, Electrophoretic deposition of La0.6Sr0.4Co0.8Fe0.2O3−δ cathodes on Ce0.9Gd0.1O1.95 substrates for intermediate temperature solid oxide fuel cell (IT-SOFC), J. Eur. Ceram. Soc. 29 (2009) 1125–1132. https://doi.org/10.1016/j.jeurceramsoc.2008.07.057

Hamaker HC, Verwey EJW, Part II. Colloid stability. The role of the forces between the particles in electrodeposition and other phenomena, Trans Faraday Soc. 35 (1940) 180–185. https://doi.org/10.1039/TF9403500180

Besra L, Uchikoshi T, Suzuki TS, Sakka Y, Experimental verification of pH localization mechanism of particle consolidation at the electrode/solution interface and its application to pulsed DC electrophoretic deposition (EPD), J. Eur. Ceram. Soc. 30 (2010) 1187–1193. https://doi.org/10.1016/j.jeurceramsoc.2009.07.004

Grillon F, Fayeulle D, Jeandin M, Quantitative image analysis of electrophoretic coatings, J. Mater. Sci. Lett. 11 (1992) 272–275. https://doi.org/10.1007/BF00729410

Koelmans H, Overbeek JThG, Stability and electrophoretic deposition of suspensions in non-aqueous media, Discuss. Faraday Soc. 18 (1954) 52. https://doi.org/10.1039/df9541800052

van der Biest O, Put S, Anné G, Vleugels J, Electrophoretic deposition for coatings and free standing objects, J. Mater. Sci. 39 (2004) 779–785. https://doi.org/10.1023/B:JMSC.0000012905.62256.39

Ammam M, Electrophoretic deposition under modulated electric fields: a review, RSC Adv. 2 (2012) 7633. https://doi.org/10.1039/c2ra01342h

Panigrahi S, Besra L, Singh BP, Sinha SP, Bhattacharjee S, Electrophoretic deposition of doped ceria in anti-gravity set-up, Adv. Powder Technol. 22 (2011) 570–575. https://doi.org/10.1016/j.apt.2010.08.005

Matsuda M, Hosomi T, Murata K, Fukui T, Miyake M, Fabrication of bilayered YSZ/SDC electrolyte film by electrophoretic deposition for reduced-temperature operating anode-supported SOFC, J. Power Sources. 165 (2007) 102–107. https://doi.org/10.1016/j.jpowsour.2006.11.087

Pikalova E, Osinkin D, Kalinina E, Direct Electrophoretic Deposition and Characterization of Thin-Film Membranes Based on Doped BaCeO3 and CeO2 for Anode-Supported Solid Oxide Fuel Cells, Membranes. 12 (2022) 682. https://doi.org/10.3390/membranes12070682

Talic B, Wulff AC, Molin S, Andersen KB, Zielke P, Frandsen HL, Investigation of electrophoretic deposition as a method for coating complex shaped steel parts in solid oxide cell stacks, Surf. Coat. Technol. 380 (2019) 125093. https://doi.org/10.1016/j.surfcoat.2019.125093

Zanchi E, Sabato AG, Molin S, Cempura G, Boccaccini AR, Smeacetto F, Recent advances on spinel-based protective coatings for solid oxide cell metallic interconnects produced by electrophoretic deposition, Mater. Lett. 286 (2021) 129229. https://doi.org/10.1016/j.matlet.2020.129229

Matsuda M, Hashimoto M, Matsunaga C, Suzuki TS, Sakka Y, Uchikoshi T, Electrophoretic fabrication of a-b plane oriented La2NiO4 cathode onto electrolyte in strong magnetic field for low-temperature operating solid oxide fuel cell, J. Eur. Ceram. Soc. 36 (2016) 4077–4082. https://doi.org/10.1016/j.jeurceramsoc.2016.06.043

Itagaki Y, Yahiro H, Electrophoretic Deposition of Electrode Membrane for Solid Oxide Fuel Cells, ECS Meet. Abstr. MA2018-01 (2018) 1201–1201. https://doi.org/10.1149/MA2018-01/18/1201

Zarabian M, Yar AY, Vafaeenezhad S, Sani MAF, Simchi A, A. Simchi, Electrophoretic deposition of functionally-graded NiO–YSZ composite films, J. Eur. Ceram. Soc. 33 (2013) 1815–1823. https://doi.org/10.1016/j.jeurceramsoc.2013.01.032

Basu RN, Randall CA, Mayo MJ, Fabrication of Dense Zirconia Electrolyte Films for Tubular Solid Oxide Fuel Cells by Electrophoretic Deposition, J. Am. Ceram. Soc. 84 (2001) 33–40. https://doi.org/10.1111/j.1151-2916.2001.tb00604.x

Fung K-Z, Chen T-Y, Cathode-supported SOFC using a highly conductive lanthanum aluminate-based electrolyte, Solid State Ion. 188 (2011) 64–68. https://doi.org/10.1016/j.ssi.2010.09.035

Yu FA, Wu CC, Yeh TH, Cherng JS, Effects of layer thickness on the performance of micro-tubular solid oxide fuel cells made by sequential aqueous electrophoretic deposition, Int. J. Hydrog. Energy. 40 (2015) 14072–14076. https://doi.org/10.1016/j.ijhydene.2015.05.191

Cherng JS, Ho MY, Yeh TH, Chen WH, Anode-supported micro-tubular SOFCs made by aqueous electrophoretic deposition, Ceram. Int. 38 (2012) S477–S480. https://doi.org/10.1016/j.ceramint.2011.05.057

Ivanov M, Kalinina E, Kopylov Y, Kravchenko V, Krutikova I, Kynast U, Li J, Leznina M, Medvedev A, Highly transparent Yb-doped (LaxY1−x)2O3 ceramics prepared through colloidal methods of nanoparticles compaction, J. Eur. Ceram. Soc. 36 (2016) 4251–4259. https://doi.org/10.1016/j.jeurceramsoc.2016.06.013

Laska A, Parameters of the electrophoretic deposition process and its influence on the morphology of hydroxyapatite coatings. Review, Inż. Mater. 1 (2020) 20–25. https://doi.org/10.15199/28.2020.1.3

Mochales C, Zehbe R, Frank S, Rahimi F, Urbanska A, Fleck C, Müller WD, Multilayered Ceramic Constructs Created by EPD, Key Eng. Mater. 654 (2015) 122–126. https://doi.org/10.4028/www.scientific.net/KEM.654.122

Lee S-H, Park Y-T, Park J-W, Lee K-T, Fabrication of Symmetrical La0.7Ca0.3Cr0.8Mn0.2O3- d Electrode Scaffold-Type Micro Tubular Solid Oxide Fuel Cells By Electrophoretic Deposition, ECS Meet. Abstr. MA2016-02 (2016) 3955–3955. https://doi.org/10.1149/MA2016-02/53/3955

König K, Novak S, Boccaccini AR, Kobe S, The effect of the particle size and the morphology of alumina powders on the processing of green bodies by electrophoretic deposition, J. Mater. Process. Technol. 210 (2010) 96–103. https://doi.org/10.1016/j.jmatprotec.2009.08.007

Kalinina EG, Rusakova DS, Kaigorodov AS, Farlenkov AS, Safronov AP, Formation of Bulk Alumina Ceramics by Electrophoretic Deposition from Nanoparticle Suspensions, Russ. J. Phys. Chem. A. 95 (2021) 1519–1528. https://doi.org/10.1134/S0036024421080148

Kalinina EG, Rusakova DS, Pikalova EYu, Electrophoretic deposition of coatings and bulk compacts using magnesium-doped aluminum oxide nanopowders, Chim. Techno Acta. 8 (2021) 20218206, 5072. https://doi.org/10.15826/chimtech.2021.8.2.06

Hosomi T, Matsuda M, Miyake M, Electrophoretic deposition for fabrication of YSZ electrolyte film on non-conducting porous NiO–YSZ composite substrate for intermediate temperature SOFC, J. Eur. Ceram. Soc. 27 (2007) 173–178. https://doi.org/10.1016/j.jeurceramsoc.2006.04.175

Suzuki HT, Uchikoshi T, Kobayashi K, Suzuki TS, Sugiyama T, Furuya K, Matsuda M, Sakka Y, Munakata F, Fabrication of GDC/LSGM/GDC tri-layers on polypyrrole-coated NiO-YSZ by electrophoretic deposition for anode-supported SOFC, J. Ceram. Soc. Jpn. 117 (2009) 1246–1248. https://doi.org/10.2109/jcersj2.117.1246

Besra L, Compson C, Liu M, Electrophoretic deposition on non-conducting substrates: The case of YSZ film on NiO–YSZ composite substrates for solid oxide fuel cell application, J. Power Sources. 173 (2007) 130–136. https://doi.org/10.1016/j.jpowsour.2007.04.061

E. Kalinina, E. Pikalova, L. Ermakova, N. Bogdanovich, Challenges of Formation of Thin-Film Solid Electrolyte Layers on Non-Conductive Substrates by Electrophoretic Deposition, Coatings. 11 (2021) 805. https://doi.org/10.3390/coatings11070805

Shri Prakash B, Pavitra R, Senthil Kumar S, Aruna ST, Electrolyte bi-layering strategy to improve the performance of an intermediate temperature solid oxide fuel cell: A review, J. Power Sources. 381 (2018) 136–155. https://doi.org/10.1016/j.jpowsour.2018.02.003

Medvedev DA, Pikalova EYu, Development of the Cathode Materials for Intermediate-Temperature SOFCs Based on Proton-Conducting Electrolytes, in: S. Syngellakis, C. Brebbia (Eds.), Chall. Solut. Russ. Energy Sect., Springer International Publishing, Cham, 2018: pp. 173–180. https://doi.org/10.1007/978-3-319-75702-5_20

Ishihara T, Shimose K, Kudo T, Nishiguchi H, Akbay T, Takita Y, Preparation of Yttria-Stabilized Zirconia Thin Films on Strontium-Doped LaMnO3 Cathode Substrates via Electrophoretic Deposition for Solid Oxide Fuel Cells, J. Am. Ceram. Soc. 83 (2000) 1921–1927. https://doi.org/10.1111/j.1151-2916.2000.tb01491.x

Peng Z, Liu M, Preparation of Dense Platinum-Yttria Stabilized Zirconia and Yttria Stabilized Zirconia Films on Porous La0.9Sr0.1MnO3 (LSM) Substrates, J. Am. Ceram. Soc. 84 (2004) 283–88. https://doi.org/10.1111/j.1151-2916.2001.tb00651.x

Basu RN, Altin O, Mayo MJ, Randall CA, Eser S, Pyrolytic Carbon Deposition on Porous Cathode Tubes and Its Use as an Interlayer for Solid Oxide Fuel Cell Zirconia Electrolyte Fabrication, J. Electrochem. Soc. 148 (2001) A506. https://doi.org/10.1149/1.1366620

Kuterbekov KA, Nikonov AV, Bekmyrza KZh, Pavzderin NB, Kabyshev AM, Kubenova MM, Kabdrakhimova GD, Aidarbekov N, Classification of Solid Oxide Fuel Cells, Nanomaterials. 12 (2022) 1059. https://doi.org/10.3390/nano12071059

Azarian Borojeni I, Raissi B, Maghsoudipour A, Kazemzad M, Talebi T, Fabrication of Solid Oxide Fuel Cells (SOFCs) Electrolytes by Electrophoretic Deposition (EPD) and Optimizing the Process, Key Eng. Mater. 654 (2015) 83–87. https://doi.org/10.4028/www.scientific.net/KEM.654.83

Talebi T, Haji M, Raissi B, Effect of sintering temperature on the microstructure, roughness and electrochemical impedance of electrophoretically deposited YSZ electrolyte for SOFCs, Int. J. Hydrog. Energy. 35 (2010) 9420–9426. https://doi.org/10.1016/j.ijhydene.2010.05.079

Matsuda M, Hosomi T, Murata K, Fukui T, Miyake M, Direct EPD of YSZ Electrolyte Film onto Porous NiO-YSZ Composite Substrate for Reduced-Temperature Operating Anode-Supported SOFC, Electrochem. Solid-State Lett. 8 (2005) A8. https://doi.org/10.1149/1.1828342

Das D, Basu RN, Electrophoretically deposited thin film electrolyte for solid oxide fuel cell, Adv. Appl. Ceram. 113 (2014) 8–13. https://doi.org/10.1179/1743676113Y.0000000114

Xu Z, Rajaram G, Sankar J, Exploration of Electrophoretic Deposition of YSZ Electrolyte for Solid Oxide Fuel Cells, MRS Proc. 835 (2004) K8.2. https://doi.org/10.1557/PROC-835-K8.2

Meepho M, Wattanasiriwech S, Angkavatana P, Wattanasiriwech D, Application of 8YSZ Nanopowder Synthesized by the Modified Solvothermal Process for Anode Supported Solid Oxide Fuel Cells, J. Nanosci. Nanotechnol. 15 (2015) 2570–2574. https://doi.org/10.1166/jnn.2015.10223

Horri BA, Selomulya C, Wang H, Characteristics of Ni/YSZ ceramic anode prepared using carbon microspheres as a pore former, Int. J. Hydrog. Energy. 37 (2012) 15311–15319. https://doi.org/10.1016/j.ijhydene.2012.07.108

Horri BA, Selomulya C, Wang H, Electrochemical characteristics and performance of anode-supported SOFCs fabricated using carbon microspheres as a pore-former, Int. J. Hydrog. Energy. 37 (2012) 19045–19054. https://doi.org/10.1016/j.ijhydene.2012.10.005

Yu SM, Lee KT, Fabrication of YSZ-based Micro Tubular SOFC Single Cell using Electrophoretic Deposition Process, J. Korean Ceram. Soc. 52 (2015) 315–319. https://doi.org/10.4191/kcers.2015.52.5.315

Ivanov VV, Kotov YuA, Lipilin AS, Safronov AP, Nikonov AV, Kalinina EG, Rempel AlA, Timishenkova OR, Zayats SV, Electrophoretic formation of electrolyte layer on cathode surface of cathode supported SOFC, Altern. Energy Ecol. 66 (2008) 36–50. Available from: https://naukarus.com/elektroforeticheskoe-formirovanie-tonkoplenochnogo-elektrolita-na-nesuschem-katode-tote. Access: 19.03.2023

Singh M, Zappa D, Comini E, Solid oxide fuel cell: Decade of progress, future perspectives and challenges, Int. J. Hydrog. Energy. 46 (2021) 27643–27674. https://doi.org/10.1016/j.ijhydene.2021.06.020

Pikalova EY, Kalinina EG, Pikalova NS, Filonova EA, High-Entropy Materials in SOFC Technology: Theoretical Foundations for Their Creation, Features of Synthesis, and Recent Achievements, Materials. 15 (2022) 8783. https://doi.org/10.3390/ma15248783

Shi H, Su C, Ran R, Cao J, Shao Z, Electrolyte materials for intermediate-temperature solid oxide fuel cells, Prog. Nat. Sci. Mater. Int. 30 (2020) 764–774. https://doi.org/10.1016/j.pnsc.2020.09.003

Pikalova EYu, Kolchugin AA, Bamburov VG, Ceria-based materials for high-temperature electrochemistry applications, Int. J. Energy Prod. Manag. 1 (2016) 272–283. https://doi.org/10.2495/EQ-V1-N3-272-283

Kumar CNS, Bauri R, Reddy GS, Phase stability and conductivity of rare earth co-doped nanocrystalline zirconia electrolytes for solid oxide fuel cells, J. Alloys Compd. 833 (2020) 155100. https://doi.org/10.1016/j.jallcom.2020.155100

Noviyanti AR, Juliandri, Winarsih S, Syarif DG, Malik YT, Septawendar R, Risdiana, Highly enhanced electrical properties of lanthanum-silicate-oxide-based SOFC electrolytes with co-doped tin and bismuth in La9.33−xBixSi6−ySnyO26, RSC Adv. 11 (2021) 38589–38595. https://doi.org/10.1039/D1RA07223D

Cheng M-Y, Shiau C-Y, Lin P-H, Chang J-C, Anode-supported solid oxide fuel cell with electrophoretic deposition-derived electrolyte operated under single-chamber conditions and a methane–air mixture, J. Solid State Electrochem. 15 (2011) 773–779. https://doi.org/10.1007/s10008-010-1153-2

Kalinina EG, Pikalova EYu, Formation of a Single- and Two-Layer Solid Electrolyte by Electrophoresis on Anodic Substrates Metalized with Silver or Platinum, Russ. J. Phys. Chem. A. 96 (2022) 2763–2773. https://doi.org/10.1134/S0036024422120147

Kalinina EG, Rusakova DS, Shubin KS, Ermakova LV, Pikalova EYu, CeO2-based thin-film electrolyte membranes for intermediate temperature SOFCs: Direct electrophoretic deposition on the supporting anode from additive-modified suspensions, Int. J. Hydrog. Energy. (2023) In Press. https://doi.org/10.1016/j.ijhydene.2023.01.159

Trulsson M, Jönsson B, Labbez C, On the origin of the halo stabilization, Phys. Chem. Chem. Phys. 15 (2013) 541–545. https://doi.org/10.1039/C2CP42404E

Tohver V, Smay JE, Braem A, Braun PV, Lewis JA, Nanoparticle halos: A new colloid stabilization mechanism, Proc. Natl. Acad. Sci. 98 (2001) 8950–8954. https://doi.org/10.1073/pnas.151063098

Hu S, Finklea H, Li W, Li W, Qi H, Zhang N, Liu X, Alternating Current Electrophoretic Deposition of Gadolinium Doped Ceria onto Yttrium Stabilized Zirconia: A Study of the Mechanism, ACS Appl. Mater. Interfaces. 12 (2020) 11126–11134. https://doi.org/10.1021/acsami.9b17504

Yamaji K, Performance of anode-supported SOFCs fabricated with EPD techniques, Solid State Ion. 175 (2004) 165–169. https://doi.org/10.1016/j.ssi.2004.09.032

Mathews T, Fabrication of La1−xSrxGa1−yMgyO3−(x+y)/2 thin films by electrophoretic deposition and its conductivity measurement, Solid State Ion. 128 (2000) 111–115. https://doi.org/10.1016/S0167-2738(99)00308-2

Bozza F, Polini R, Traversa E, Electrophoretic Deposition of Dense Sr- and Mg-Doped LaGaO3 Electrolyte Films on Porous La-Doped Ceria for Intermediate Temperature Solid Oxide Fuel Cells, Fuel Cells. 8 (2008) 344–350. https://doi.org/10.1002/fuce.200800022

Medvedev D, Murashkina A, Pikalova E, Demin A, Podias A, Tsiakaras P, BaCeO3: Materials development, properties and application, Prog. Mater. Sci. 60 (2014) 72–129. https://doi.org/10.1016/j.pmatsci.2013.08.001

Haile SM, Staneff G, Ryu KH, Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites, J. Mater. Sci. 36 (2001) 1149–1160. https://doi.org/10.1023/A:1004877708871

Mercadelli E, Montaleone D, Gondolini A, Pinasco P, Sanson A, Tape-cast asymmetric membranes for hydrogen separation, Ceram. Int. 43 (2017) 8010–8017. https://doi.org/10.1016/j.ceramint.2017.03.099

Ding Y, Li Y, Huang W, The role of Ba concentration on the structural characteristics and electrical conductivities of BaxCe0.9Y0.1O3-α, Mater. Res. Bull. 95 (2017) 328–333. https://doi.org/10.1016/j.materresbull.2017.08.004

Pikalova E, Medvedev D, Effect of anode gas mixture humidification on the electrochemical performance of the BaCeO3-based protonic ceramic fuel cell, Int. J. Hydrog. Energy. 41 (2016) 4016–4025. https://doi.org/10.1016/j.ijhydene.2015.11.092

Kalinina EG, Pikalova EYu, Farlenkov AS, Electrophoretic Deposition of Thin-Film Coatings of Solid Electrolyte Based on Microsize BaCeO3 Powders, Russ. J. Appl. Chem. 91 (2018) 934–941. https://doi.org/10.1134/S1070427218060095

Pikalova EYu, Kolchugin AA, The Influence of the Substituting Element (M = Ca, Sr, Ba) in La1.7M0.3NiO4+δ on the Electrochemical Performance of the Composite Electrodes, Eurasian Chem.-Technol. J. 18 (2016) 3. https://doi.org/10.18321/ectj386

Tarutin AP, Danilov NA, Kalinin AA, Murashkina AA, Medvedev DA, Ba-doped Pr2NiO4+δ electrodes for proton-conducting electrochemical cells. Part 1: Structure, mechanical, and chemical properties, Int. J. Hydrog. Energy. (2022) In Press. https://doi.org/10.1016/j.ijhydene.2022.11.175

Tarutin AP, Gorshkov MYu, Bainov IN, Vdovin GK, Vylkov AI, Lyagaeva JG, Medvedev DA, Barium-doped nickelates Nd2–xBaxNiO4+δ as promising electrode materials for protonic ceramic electrochemical cells, Ceram. Int. 46 (2020) 24355–24364. https://doi.org/10.1016/j.ceramint.2020.06.217

Zunic M, Chevallier L, Di Bartolomeo E, D’Epifanio A, Licoccia S, Traversa E, Anode Supported Protonic Solid Oxide Fuel Cells Fabricated Using Electrophoretic Deposition, Fuel Cells. 11 (2011) 165–171. https://doi.org/10.1002/fuce.200900104

Zunic M, Chevallier L, Deganello F, D’Epifanio A, Licoccia S, Di Bartolomeo E, Traversa E, Electrophoretic deposition of dense BaCe0.9Y0.1O3−x electrolyte thick-films on Ni-based anodes for intermediate temperature solid oxide fuel cells, J. Power Sources. 190 (2009) 417–422. https://doi.org/10.1016/j.jpowsour.2009.01.046

Medvedev D, Lyagaeva J, Plaksin S, Demin A, Tsiakaras P, Sulfur and carbon tolerance of BaCeO3–BaZrO3 proton-conducting materials, J. Power Sources. 273 (2015) 716–723. https://doi.org/10.1016/j.jpowsour.2014.09.116

Bozza F, Bonanos N, Fabrication of supported Ca-doped lanthanum niobate electrolyte layer and NiO containing anode functional layer by electrophoretic deposition, Solid State Ion. 213 (2012) 98–102. https://doi.org/10.1016/j.ssi.2011.05.017

Sun W, Jiang Y, Wang Y, Fang S, Zhu Z, Liu W, A novel electronic current-blocked stable mixed ionic conductor for solid oxide fuel cells, J. Power Sources. 196 (2011) 62–68. https://doi.org/10.1016/j.jpowsour.2010.07.038

Kalinina EG, Pikalova EYu, Electrophoretic deposition of dense anode barrier layers of doped ZrO2 and BaCeO3 on a supporting Ce0.8Sm0.2O2-δ solid electrolyte: Problems and search for solutions in SOFC technology, Int. J. Hydrog. Energy. (2023) In press. https://doi.org/10.1016/j.ijhydene.2023.02.042

DOI: https://doi.org/10.15826/elmattech.2023.2.011

Copyright (c) 2023 Elena Y. Pikalova, Elena G. Kalinina, Nadezhda S. Pikalova

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.