Анализ сигналов от движущегося объекта автодинных локаторов с линейными видами модуляции частоты

V Ya. Noskov, K A. Ignatkov, A P. Chupahin

Аннотация


Представлены результаты исследования особенностей формирования сигналов автодинной системы ближней радиолокации с линейной частотной модуляцией для движущегося отражающего объекта. Получены основные соотношения и результаты вычисления автодинных сигналов для случаев, когда продолжительность их периода значительно больше времени запаздывания отраженного излучения, а также для случаев, когда данное неравенство не выполняется. Рассмотрены особенности сигналов для приближающегося и удаляющегося объекта. Экспериментальные данные получены на генераторе, выполненном на диоде Ганна 8-мм диапазона с перестройкой частоты при помощи варикапа

Ключевые слова


автодин; автодинный сигнал; системы ближней радиолокации; частотная модуляция; генератор на диоде Ганна

Полный текст:

PDF

Литература


Komarov I. V., Smolskiy S. M. Fundamentals of short-range FM radar. Norwood, Artech House, 2003. 289 p.

Alidoost S. A., Sadeghzade R., Fatemi R. Autodyne System with a Single Antenna. 11th Intern. Radar Symposium (IRS-2010). Vilnius, Lithuania, 2010, 2, pp. 406–409.

Armstrong B. M., Brown R., Rix F., Stewart j. A. C. Use of Microstrip Imped-ance-Measurement Technique in the Design of a BARITT Diplex Doppler Sensor. IEEE Transactions on Microwave Theory and Techniques, 1980, MTT-28 (12), pp. 1437–1442. doi: 10.1109/TMTT.1980.1130263.

Efanov A. A., Diskus C. G., Stelzer A., Thim H. W., Lubke K., Springer A. L. Development of a Low-Cost 35 GHz Radar Sensor. Annals of Telecommunications, 1997, 52 (3), pp. 219–223. doi: 10.1007/BF02996047.

Varavin A. V., Vasiliev A. S., Ermak G. P., Popov I. V. Autodyne Gunndiode transceiver with internal signal detection for short-range linear FM radar sensor. Telecom. Radio Engineering, 2010, 69 (5), pp. 451–458. doi: 10.1615/TelecomRadEng.v69.i5.80.

Ermak G. P., Popov I. V., Vasilev A. S., Varavin A. V., Noskov V.Ya., Ignatkov K. A. Radar sensors for hump yard and rail crossing applications. Telecommunication and Radio Engineering, 2012, 71 (6), pp. 567–580. doi: 10.1615/TelecomRadEng.v71.i6.80.

Noskov V.Ya., Varavin A. V., Vasiliev A. S., Ermak G. P., Zakarlyuk N. M., Ignatkov K. A., Smolskiy S. M. Sovremennyie gibridno-integralnyie avtodinnyie generatoryi mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch.9. Radiolokatsionnoe primenenie avtodinov [Modern Hybrid-Integrated Autodyne Oscillators of Microwave and Millimeter Wave Ranges and Their Application. Part 9. Autodyne Radar Applications]. Uspehi sovremennoy radioelektroniki [Successes of modern electronic engineering], 2016, (3), pp. 32–86. (In Russian)

Votoropin S. D., Danilin A. I. Using of GIS EHF autodyne transceiver modules on mesa-planar Gunn diodes for definition of turbo machine blades deformations. Microwave Electronics: Measurements, Identification, Application Conference (MEMIA), 2001, pp. 243–245. doi: 10.1109/MEMIA.2001.982365.

Mirsaitov F. N., Safonova E. V., Boloznev V. V. Microwave Autodyne Vibrosensor in Aeroengine Diagnostics. European Frequency and Time Forum (EFTF), 2014, pp. 140–143. doi: 10.1109/EFTF.2014.7331447.

Kim S; Kim B.-H., Yook j.-G., Yun G.-H. Proximity Vital Sign Sensor Using Self-Oscillating Mixer. URSI Asia-Pacific Radio Science Conference (URSI AP-RASC), 2016, pp. 1446–1448. doi: 10.1109/URSIAPRASC.2016.7601402.

Usanov D. A., Skripal A. V., Postelga A. E. A Microwave Autodyne Meter of Vibration Parameters. Instruments and Experimental Techniques, 2004, 47 (5), pp. 689–693. doi: 10.1023/B: INET.0000043882.16801.3a.

Usanov D. A., Postelga A. E. Reconstruction of Complicated Movement of Part of the Human Body Using Radio Wave Autodyne Signal. Biomedical Engineering, 2011, 45 (1), pp. 6–8. doi: 10.1007/s10527-011-9198-9.

Noskov V.Ya., Ignatkov K. A., Chupahin A. P. Dvuhdiodnii avtodin v sistemah radiovolnovogo kontrolya dinamicheskih processov [Application of

a double-diode auto-dyne in radiowave monitoring systems of dynamic processes]. Datchiki i sistemi [Sensors and Systems], 2016, (6), pp. 31–37. (In Russian).

Noskov V.Ya., Ignatkov K. A., Chupahin A. P. Application of Two-Diode Auto-dynes in Devices for Radiowave Control of Product Dimensions. Measurement Techniques, 2016, 59 (7), pp. 715–721. doi: 10.1007/s11018-016-1035-9.

Nagasaku T., Kondoh H., Shunoda H. Radar Sensor. Patent US 6717544 B2. Pub. Date: April, 6, 2004. Filed: Aug. 26, 2002.

Votoropin S. D. Autodyne Sensors of the EHF Range on Gunn Diodes. 38th European Microwave Conference, 2008, pp. 1330–1333. doi: 10.1109/EUMC.2008.4751709.

Utagawa H., Matsui T. Microwave / Millimeter Wave Sensor. Patent Appl. Publ. US 2010/0117891 A1. Pub. Date: May 13, 2010. Filed: Mar. 31, 2008. 18. jefford P. А., Howes M. S. Modulation schemes in low-cost microwave field sensor. IEEE Transaction of Microwave Theory and Technique, 1985, MTT-31 (8), pp. 613–624. doi: 10.1109/TMTT.1983.1131559.

Votoropin S. D., Noskov V.Ya. Analysis of Operating Regimes of EHF Hybrid-Integrated Autodynes Based on the Gunn Micro Power Mesa Planar Diodes. Russian Physics Journal, 2002, 45 (2), pp. 195–206. doi: 10.1023/A:1019664300993.

Votoropin S. D., Noskov V.Ya., Smolskiy S. M. An Analysis of the Autodyne Effect of Oscillators with Linear Frequency Modulation. Russian Physics Journal, 2008, 51 (6), pp. 610–618. doi: 10.1007/s11182–008–9083–5.

Votoropin S. D., Noskov V.Ya., Smolskiy S. M. An Analysis of the Autodyne Effect of a Radio-Pulse Oscillator with Frequency Modulation. Russian Physics Journal, 2008, 51 (7), pp. 750–759. doi: 10.1007/s11182008-9105-3.

Votoropin S. D., Noskov V.Ya., Smolskiy S. M. Sovremennie gibridno-integralnie avtodinnie generatori mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 5. Issledovaniya avtodinov s chastotnoi modulyaciei [Modern hybrid-integrated autodyne oscillators of microwave and millimeter ranges and their application. Part 5. Investigations of frequencymodulated autodynes]. Uspehi sovremennoi radioelektroniki [Successes of modern electronic engineering], 2009, (3), pp. 3–50. (In Russian)

Noskov V.Ya., Vasiliev A. S., Ermak G. P., Ignatkov K. A., Chupahin A. P. Fluctuation Features of Autodyne Radar with Frequency Modulation. Radioelectronics and Communications Systems, 2017, 60 (3), pp. 123– 131. doi: 10.20535/S0021347017030049.

Giuliani G., Norgia M., Donati S., Bosch T. Laser Diode Self-Mixing Technique for Sensing Applications (Review article). Journal of Optics A: Pure and Applied Optics, 2002, 4 (6), pp. 283–294. doi: 10.1088/1464– 4258/4/6/371.

Sobolev V. S., Kashcheeva G. A. Self-Mixing Frequency-Modulated Laser Inter-ferometry. Optoelectronics, Instrumentation and Data Processing, 2008, 44 (6), pp. 519–529. DOI: 10.3103/S8756699008060058.

Usanov D. A., Skripal A. V., Astakhov E. I. Determination of Nanovibration Amplitudes Using Frequency-Modulated Semiconductor Laser Auto dyne. Quantum Electronics, 2014, 44 (2), pp. 184–188. doi: 10.1070/QE2014v044n02ABEH015176.

Noskov V.Ya., Ignatkov K. A., Chupahin A. P., Ermak G. P., Vasiliev A. S. Mathematical Model of FM Autodyne Radar. 9-th International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves (MSMW’16) (Kharkov, Ukraine, june 20–24, 2016), A-25, pp. 1–4. doi: 10.1109/MSMW.2016.7538000.

Noskov V.Ya., Ignatkov K. A., Chupahin A. P., Ermak G. P., Vasiliev A. S. Main Expressions for Analysis of Signals and Noise of Autodyne FM Radar. 9-th International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW’16) (Kharkov, Ukraine, june 20–24, 2016), A-9, pp. 1–4. doi: 10.1109/MSMW.2016.7538019.

Noskov V.Ya., Ignatkov K. A., Chupahin A. P., Ermak G. P., Vasiliev A. S. Peculiarities of Signal and Noise Characteristics of FMCW Autodyne Radar. 9-th International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW’16) (Kharkov, Ukraine, june 20–24, 2016), A-10, pp. 1–4. doi: 10.1109/MSMW.2016.7537984.

Noskov V.Ya., Ignatkov K. A., Chupahin A. P., Vasiliev A. S., Ermak G. P., Smolskiy S. M. Signals of Autodyne Radars with Frequency Modulation According to Symmetric Saw-Tooth Law. Telecommunication and Radio Engineering, 2016, 75 (17), pp. 1551–1566. doi: 10.1615/TelecomRadEng.v75.i17.40.

Noskov V.Ya., Ignatkov K. A., Chupahin A. P., Vasiliev A. S., Ermak G. P., Smolskiy S. M. Peculiarities of Signal Formation of Autodyne Radars with Linear Frequency Modulation. Visn. NTUU KPI, Ser. Radioteh. radioaparatobuduv., 2016, no. 67, pp. 50–57. Available at: http://radap.kpi. ua/en/radiotechnique/article/view/1366. (accessed 01.10.2017).

Kurokawa K. Injection Locking of Microwave Solid-State Oscillators. Proceedings of the IEEE, 1973, 61 (10), pp. 1386–1410. doi: 10.1109/PROC.1973.9293.

Noskov V.Ya., Ignatkov K. A., Smolskiy S. M. Zavisimost avtodinnih harakteristik ot vnutrennih parametrov SVCh generatorov [Autodyne Characteristic Dependence on the UHF Oscillator’s Inherent Parameters]. Radiotehnika [Radio engineering], 2012, (6), pp. 24–42. (In Russian)

Noskov V.Ya., Ermak G. P. Signal and Fluctuation Characteristics of Autodyne Vibration and Displacement Meters. Telecommunication and Radio Engineering, 2014, 73 (19), pp. 1727–1743. doi: 10.1615/TelecomRadEng.v73.i19.30.

Noskov V.Ya., Ignatkov K. A. About Applicability of Quasi-Static Method of Autodyne Systems Analysis. Radioelectronics and Communications Systems, 2014, 57, no. 3, pp. 139–148. doi: 10.3103/S0735272714030054.

Noskov V.Ya., Ignatkov K. A. Autodyne Signals in Case of Random Delay Time of the Reflected Radiation. Telecommunication and Radio Engineering, 2013, 72, no. 16, pp. 1521–1536. doi: 10.1615/TelecomRadEng.v72.i16.70.

Noskov V.Ya., Ignatkov K. A. Dynamic Features of Autodyne Signals. Russian Physics Journal, 2013, 56, no. 4, pp. 420–428. DOI: 10.1007/s11182013-0051-3.

Lathi B. P. Communication systems. john Wiley & Sons, Inc, New York, 1968, 320 p.

Noskov V.Ya., Smolskiy S. M. Sovremennie gibridno-integralnie avtodinnie generatori mikrovolnovogo i millimetrovogo diapazonov i ih primenenie. Ch. 6. Issledo-vaniya radioimpulsnih avtodinov [Modern hybrid-integrated autodyne oscillators of mi-crowave and millimeter range and their applications. Part 6. Research of radio-pulse auto-dynes]. Uspehi sovremennoi radioelektroniki [Successes of modern electronic engineering], 2009, (6), pp. 3–51. (In Russian)

Noskov V.Ya., Ignatkov K. A. Dynamics of Autodyne Response Formation in Microwave Generators. Radioelectronics and Communications Systems, 2013, 56, no. 5, pp. 227–242. doi: 10.3103/S0735272713050026.

Hussain Z. M., Sadik A. Z., O’Shea P. Digital Signal Processing: An Introduction with MATLAB and Applications. Springer, 2011, 350 p.

DOI: 10.15826/urej.2017.1.1.002




DOI: https://doi.org/10.15826/urej.2017.1.1.002