Сканирующий терагерцовый дефектоскоп в аддитивном производстве полимерных конструкций

A. V. Badin, D. S. Katelina, R. E. Kholodov, A. A. Komarova, D. A. Pidotova

Аннотация


В работе представлены результаты разработки и тестирования радиоволнового дефектоскопа полимерных композитов в терагерцовом диапазоне частот. Дефектоскоп был реализован по квазиоптической схеме, состоящей из генератора монохроматического излучения (лампа обратной волны), детектора (акустооптический преобразователь), системы позиционирования объекта на основе линейных трансляторов, модуля ввода-вывода и тефлоновых линз. Тестирование дефектоскопа проводилось на частоте 872 ГГц на многослойном объекте, включающим дефекты в виде текста, изготовленные методом послойного наплавления из электропроводящего полимерного материала между оптически непрозрачными диэлектрическими пластинами из акрилонитрилбутадиенстирола. Сопоставление результатов визуализации и оптической микроскопии поверхности подтверждает возможность использования терагерцового дефектоскопа в аддитивном производстве конструкций.

Ключевые слова


дефектоскоп; терагерцовое излучение; дефекты; визуализация; имиджинг; аддитивное производство

Полный текст:

PDF

Литература


Wickramasinghe S., Do T., Tran P. FDM-based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments. Polymers. 2020;12(7):1529. DOI: 10.3390/polym12071529

Khadka M., Arigbabowo O. K., Tate J. S., Geerts W. J. The magnetic anisotropy of field-assisted 3D printed nylon strontium ferrite composites. AIP Advances. 2024;14(2):1–5. DOI: 10.1063/9.0000791

Yahng J. S., Yee D. S. High-speed time-and frequency-domain terahertz tomography of glass-fiber-reinforced polymer laminates with internal defects. Applied Sciences. 2021;11(11):4933. DOI: 10.3390/app11114933

Baechle-Clayton M., Loos E., Taheri M., Taheri H. Failures and flaws in fused deposition modeling (FDM) additively manufactured polymers and composites. Journal of Composites Science. 2022;6(7):202. DOI: 10.3390/jcs6070202

Taheri H., Hassen A. A. Nondestructive ultrasonic inspection of composite materials: A comparative advantage of phased array ultrasonic. Applied Sciences. 2019;9(8):1628. DOI: 10.3390/app9081628

Silva M. I., Malitckii E., Santos T. G., Vilaça P. Review of conventional and advanced non-destructive testing techniques for detection and characterization of small-scale defects. Progress in Materials Science. 2023;138:101155. DOI: 10.1016/j.pmatsci.2023.101155

Silva H. V., Catapirra N. P., Carvalho M. S., Santos T. G., Machado M. A. Nondestructive testing of 3D printed fiber-reinforced polymeric composites: an experimental critical comparison. 3D Printing and Additive Manufacturing. 2024;11(3): e1196–e1208. DOI: 10.1089/3dp.2022.0291

Yang X., Fang Y., Wang R., Li Y., Chen Z. Visual quantitative detection of delamination defects in GFRP via microwave. Sensors. 2023;23(14):6386. DOI: 10.3390/s23146386

Golovin Y. I., Golovin D. Y., Tyurin A. I. Dynamic thermography for technical diagnostics of materials and structures. Russian metallurgy (Metally). 2021;2021(4):512–527. DOI: 10.1134/S0036029521040091

Sima W., Yang Y., Sun P., Shi Y., Yuan T., Yang M., et al. Self‐Reporting Microsensors Inspired by Noctiluca Scintillans for Small‐Defect Positioning and Electrical‐Stress Visualization in Polymers. Advanced Materials. 2024;36(24):2313254. DOI: 10.1002/adma.202313254

Zhao J., Rüsing M., Mookherjea S. Optical diagnostic methods for monitoring the poling of thin-film lithium niobate waveguides. Optics express. 2019;27(9):12025–12038. DOI: 10.1364/OE.27.012025

Afsah-Hejri L., Akbari E., Toudeshki A., Homayouni T., Alizadeh A., Ehsani R. Terahertz spectroscopy and imaging: A review on agricultural applications. Computers and Electronics in Agriculture. 2020;177:105628. DOI: 10.1016/j.compag.2020.105628

Ibrahim M. E., Headland D., Withayachumnankul W., Wang C. H. Nondestructive testing of defects in polymer–matrix composite materials for marine applications using terahertz waves. Journal of Nondestructive Evaluation. 2021;40(2):37. DOI: 10.1007/s10921-021-00767-9

Shanmugam V., Rajendran D. J. J., Babu K., Rajendran S., Veerasimman A., Marimuthu U., et al. The mechanical testing and performance analysis of polymer-fibre composites prepared through the additive manufacturing. Polymer testing. 2021;93:106925. DOI: 10.1016/j.polymertesting.2020.106925

Ashfaq A., Clochard M.-С., Coqueret X., Dispenza C., Driscoll M., Ulański P., et al. Polymerization reactions and modifications of polymers by ionizing radiation. Polymers. 2020;12(12):2877. DOI: 10.3390/polym12122877

Mei H., Jiang H., Yin F., Wang L., Farzaneh M. Terahertz imaging method for composite insulator defects based on edge detection algorithm. IEEE Transactions on Instrumentation and Measurement. 2021;70:1–10. DOI: 10.1109/TIM.2021.3075031

Berdyugin A. I., Badin A. V. Continuous terahertz wave imaging of microelectronics objects. Journal of Physics: Conference Series by IOP Publishing. 2021;1862(1):012030. DOI: 10.1088/1742-6596/1862/1/012030

Li Z., Yan Q., Qin Y., Kong W., Zou M., Zhou X., et al. Resolution enhancement in terahertz digital in-line holography by sparsity-based extrapolation. Journal of Infrared, Millimeter, and Terahertz Waves. 2021;42(5):479–492. DOI: 10.1007/s10762-021-00796-5

Baechle-Clayton M., Loos E., Taheri M., Taheri H. Failures and flaws in fused deposition modeling (FDM) additively manufactured polymers and composites. Journal of Composites Science. 2022;6(7):202. DOI: 10.3390/jcs6070202

Yahng J. S., Yee D. S. High-speed time-and frequency-domain terahertz tomography of glass-fiber-reinforced polymer laminates with internal defects. Applied Sciences. 2021;11(11):4933. DOI: 10.3390/app11114933

Moxham T. E. J., Dhamgaye V., Laundy D., Fox O. J. L., Khosroabadi H., Sawhney K., et al. Two-dimensional wavefront characterization of adaptable corrective optics and Kirkpatrick–Baez mirror system using ptychography. Optics Express. 2022;30(11):19185–19198. DOI: 10.1364/OE.453239

Бердюгин А. И., Бадьин А. В., Гурский Р. П., Трофимов Е. А., Кулешов Г. Е. Терагерцовый сканирующий рефлектометр для визуализации строения полимерных конструкций в аддитивном производстве. Ural Radio Engineering Journal. 2021;5(3):207–224. DOI: 10.15826/urej.2021.5.3.001




DOI: https://doi.org/10.15826/urej.2024.8.4.005