L. G. Shaidarova, A. V. Gedmina, E. R. Zhaldak, I. A. Chelnokova, H. C. Budnikov


The greatest interest in biomedicine among sulfur-containing compounds are the systems with redox couple thiol / disulfide. This is due to the fact that the most important part of the antioxidant system that converts free radicals into the low-activity products and interrupts the chain reactions in the body is a thiol-disulfide link with thiol / disulfide ratio (-SH/-SS- - coefficient) as its quantitative characteristic. Determination of this coefficient in the biological fluids (blood plasma) is used for the diagnosis and the study of the therapeutic treatment dynamics. The methods for the sulfur compounds voltammetric determination at the electrode modified by a film of cobalt hexachloroplatinate are developed and used for thiol/disulfide coefficient (TDC) determination. For the calculation of the TDC value the total substance of thiols and disulfides in the blood is defined using cystine / cysteine and glutathione oxidized / glutathione systems. A catalytic effect on the electrode modified with the cobalt hexachloroplatinate film is observed during the oxidation of all above mentioned sulfur-containing compounds. This effect results in decreasing potential and multiple increasing of sulfur containing compounds oxidation current. The linear dependence of the catalytic current from analyte concentration is observed in the range from 0.5 mM to 5.0 mM. The proposed method was used for determination of the TDC in the blood.

Key words: chemically modified electrode, cobalt hexachloroplatinate, electrocatalysis, thiol-disulphide coefficient 




L.G. Shaidarova, A.V. Gedmina, E.R. Zhaldak, I.A. Chelnokova, H.C. Budnikov

 Kazan Federal University, А. Butlerov Chemical Institute, Kazan`, Russian Federation

Полный текст:

PDF (Russian)


Roberts R.A., Laskin D.L., Smith C.V., Robertson F.M., Allen E.M., Doorn J.A., Slikker W. Nitrative and oxidative stress in toxicology and disease. Toxicol Sci, 2009, vol. 112, no.1, pp. 4-16. doi: 10.1093/toxsci/kfp179.

Kostiushev V.V., Bokal I.I. [The role of the thiol-disulfide system in the mechanism of oxidative stress and distress in HIV infection]. Biomeditsinskaia Khimiia [Biomedical Chemistry], 2010, vol.56, no.2, pp. 290-298 (In Russian).

Hawkley L.C., Cacioppo J.T. Stress and the aging immune system Brain. Brain Behav Immun, 2004, vol. 18, no. 2, pp. 114-119.

Papaharalambus C.A., Griendling K.K. Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury. Trends Cardiovasc Med, 2007, vol. 17, no. 2, pp. 48-54. doi: 10.1016/j.tcm.2006.11.005.

Tegza V.Y., Resunkova O.P., Korytova L.I. [Efficiency values of thiol-disulfide ratio analysis for the antioxidant system of cancer patients]. Vestnik rossiiskoi voenno-meditsinskoi akademii [Bulletin of the Russian Military Medical Academy], 2012, vol. 39, no.3. pp. 183-187 (In Russian).

Stepovaia Е.А., Zhavoronok Т.V., Petina G.V., Riazantseva N.V., Ivanov V.V., Tetenev F.F., Ageeva T.G., Novitskii V.V. [Participation of thiol-disulfide system in the regulation of proteins oxidative modification in neutrophils during oxidative stress]. Bulleten` SO RAMN [Bulletin SO RAMN], 2010, vol. 30, no.5, pp. 64-69 (In Russian).

Sokolovskii V.V. Tiol-disulfidnoe sootnoshenie krovi kak pokazatel` sostoianiia nespetsificheskoi rezistentnosti organizma [Thiol-disulfide ratio of blood as an indicator of the state of nonspecific resistance]. St. Petersburg, 1996. 30 p. (In Russian).

Polushin Y.S., Levshankov A.I., Lakhin R.E., Pashchinin A.N., Bezrukova E.V., Piskunovich A.L., Kostiuchek D.F., Belozerova A.K., Gaidukov S.N., Shapkaits V.A., Belozerova L.A., Krasnov N.V. [Perspective for the use thiol antioxidants analyzer in clinical practice for assess nonspecific resistance at various critical conditions and for predict obstetric complications]. Nauchnoe Priborostroenie [Scientific Instrument], 2013, vol. 23, no.3, pp. 5-12 (In Russian).

Iashin A., Iashin H. [High performance liquid chromatography of the oxidative stress markers] // Analitika [Analytics], 2011, vol. 1, pp. 34-43 (In Russian).

Guan X., Hoffman B., Dwivedi C., Matthees D.P. A simultaneous liquid chromatography/mass spectrometric assay of glutathione, cysteine, homocysteine and their disulfides in biological samples. J. Pharmaceut Biomed Anal, 2003, vol. 31, no. 2, pp. 251-261. doi:10.1016/S0731-7085(02)00594-0.

Potesil D., Petrlova J., Adam V., Vacek J., Klejdus B., Zehnalek J., Trnkova L., Havel L., Kizek R. Simultaneous femtomole determination of cysteine, reduced and oxidized glutathione, and phytochelatin in maize (Zea mays L.) kernels using high-performance liquid chromatography with electrochemical detection. J. Chromatogr. A, 2005, vol. 1084, no. 1-2, pp. 134-144. doi:10.1016/j.chroma.2005.06.019.

Wang W., Xin H., Shao H., Jin W. Determination of glutathione in single human hepatocarcinoma cells by capillary electrophoresis with electrochemical detection. J Chromatogr B, 2003, vol. 789, no. 2, pp. 425-429. doi:10.1016/S1570-0232(03)00105-3.

Tao Y., Zhang X., Wang J., Wang X., Yang N. Simultaneous determination of cysteine, ascorbic acid and uric acid by capillary electrophoresis with electrochemiluminescence. J. Electroanal. Chem, 2012, vol. 674, pp. 65-70. doi:10.1016/j.jelechem.2012.03.009.

Hormozi-Nezhad M.R., Seyedhosseini E., Robatjazi H. Spectrophotometric determination of glutathione and cysteine based on aggregation of colloidal gold nanoparticles. Sci Iran, 2012, vol. 19, no. 3, pp. 958-963. doi:10.1016/j.scient.2012.04.018.

Liao C.-Y., Zen J.-M. Development of a method for total plasma thiols measurement using a disposable screen-printed carbon electrode coupled with a MnO2 reactor. Sensors and Actuators B, 2008, vol. 129, no. 2, pp. 896-902. doi:10.1016/j.snb.2007.10.004.

Lock J., Davis J. The determination of disulphide species within physiological fluids. Trends in Analytical Chemistry, 2002, vol. 21, no. 12, pp. 807-815. doi:10.1016/S0165-9936(02)01203-7.

Shaidarova L.G, Budnikov G.K. [Chemically modified electrodes based on noble metals, polymer films or composites in organic voltammetry (Review)]. Zhurnal Analiticheskoi khimii [Journal of Analytical Chemistry], 2008, vol. 63, no.10, pp. 1014-1037 (In Russian). doi: 10.1134/S106193480810002X.

Shaidarova L.G., Budnikov G.K. Amperometricheskie sensori s kataliticheskimi svoistvami v organicheskoi voltamperometrii. V. 14: Chemicheskie sensori [Amperometric sensors with catalytic properties in organic voltammetry / Problems of analytical chemistry. V. 14: Chemical sensors]. Moscow, Nauka, 2011. 203-284 p. (In Russian).

Kaplun M.M., Smirnov U.E., Mikli V., Malev V.V. Strukturnoe issledovanie plenok geksatsianoferrata kobal`ta, sintezirovannyh iz kompleksnogo elektrolita [Structural investigation of cobalt hexacyanoferrate films synthesized from complex electrolyte]. Elektrokhimiia [Electrochemistry], 2001, vol. 37, no. 9, pp. 1065-1075 (In Russian).

Pei J., Li X.-Y., Buffle J. Preparation, characterization and application of an electrode modified with electropolymerized CuPtBr6 film. Electrochim. Acta, 2000, vol. 45, no. 10, pp. 1581-1593. doi:10.1016/S0013-4686(99)00323-0.

Chen S.-M., Lin K.-H. The electrochemical properties of NADH and NAD+ and their electrocatalytic reactions with tin hexachloroplatinate films. J. Electroanal. Chem, 2004, vol. 571, no. 2, pp. 223-232. doi:10.1016/j.jelechem.2004.05.013.

Pei J., Li X.-Y. Electrochemical study and flow-injection amperometric detection of trace NO2- at CuPrCl6 chemically modified electrode. Talanta, 2000, vol. 51, no. 6, pp. 1107-1115. doi:10.1016/S0039-9140(00)00279-4.

Chen S.-M., Li S.-H., Thangamuthu R. Electrochemical Preparation, Characterization, and Electrocatalytic Properties of OsPtCl6 Film Electrodes Towards Reduction of NAD+, Chloroacetic Acids, and Nitrous Oxide. Electroanalysis, 2009, vol. 21, no. 13, pp. 1505-1513. doi: 10.1002/elan.200804569.

Barbero C., Planes G.A., Miras M.C. Redox coupled ion exchange in cobalt oxide film. Electrochem. Commun, 2001, vol. 3, no. 3, pp. 113-116. doi:10.1016/S1388-2481(01)00107-2.

Karim-Nezhad G., Hasanzadeh M., Saghatforoush L., Shadjou N., Khalilzadeh B., Ershad S. Electro-oxidation of ascorbic acid catalyzed on cobalt hydroxide-modified glassy carbon electrode. J. Serb. Chem. Soc, 2009, vol. 74, no. 5, pp. 581-593. doi: 10.2298/JSC0905581K.

Budnikov G.K., Maistrenko V.N., Viaselev M.R. Osnovy sovremennogo elektrokhimicheskogo analiza [Fundamentals of modern electrochemical analysis]. Moscow, Mir: Binom LZ, 2003. 592 p. (In Russian).

Bard A. J., Faulkner L.R. Electrochemical methods: Fundamentals and Applications. New York, WILEY, 2000. 833 р.

Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem, 1979, vol. 101, no. 1, pp. 19-28. doi:10.1016/S0022-0728(79)80075-3.


  • На текущий момент ссылки отсутствуют.